4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-28 07:00:24 +08:00
2020-12-25 14:33:03 +08:00

1005 lines
28 KiB
C

/*
* Copyright (C) 2020, Huada Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-10-30 CDT first version
*/
/*******************************************************************************
* Include files
******************************************************************************/
#include <rtthread.h>
#include "drv_spi.h"
#if defined(RT_USING_SPI) && defined(RT_USING_PIN)
#include <rtdevice.h>
#if !defined(BSP_USING_SPI1) && !defined(BSP_USING_SPI2) && \
!defined(BSP_USING_SPI3) && !defined(BSP_USING_SPI4) && \
!defined(BSP_USING_SPI5) && !defined(BSP_USING_SPI6)
#error "Please define at least one SPIx"
#endif
/*******************************************************************************
* Local type definitions ('typedef')
******************************************************************************/
/*******************************************************************************
* Local pre-processor symbols/macros ('#define')
******************************************************************************/
/* #define DEBUG */
#ifndef HC32_SPI_DEBUG
#define SPI_PRINT_DBG(fmt, args...)
#define SPI_PRINT_ERR(fmt, args...) rt_kprintf(fmt, ##args);
#else
#define SPI_PRINT_DBG(fmt, args...) rt_kprintf(fmt, ##args);
#define SPI_PRINT_ERR(fmt, args...) rt_kprintf(fmt, ##args);
#endif
/*******************************************************************************
* Global variable definitions (declared in header file with 'extern')
******************************************************************************/
/*******************************************************************************
* Local function prototypes ('static')
******************************************************************************/
/* private rt-thread spi ops function */
static rt_err_t hc32_spi_configure(struct rt_spi_device* device,
struct rt_spi_configuration* configuration);
static rt_uint32_t hc32_spi_xfer(struct rt_spi_device* device,
struct rt_spi_message* message);
#if defined(BSP_USING_SPI1)
static void spi1_rx_dma_irq_handle(void);
static void spi1_tx_dma_irq_handle(void);
#endif /* BSP_USING_SPI1 */
#if defined(BSP_USING_SPI2)
static void spi2_rx_dma_irq_handle(void);
static void spi2_tx_dma_irq_handle(void);
#endif /* BSP_USING_SPI2 */
#if defined(BSP_USING_SPI3)
static void spi3_rx_dma_irq_handle(void);
static void spi3_tx_dma_irq_handle(void);
#endif /* BSP_USING_SPI3 */
#if defined(BSP_USING_SPI4)
static void spi4_rx_dma_irq_handle(void);
static void spi4_tx_dma_irq_handle(void);
#endif /* BSP_USING_SPI4 */
#if defined(BSP_USING_SPI5)
static void spi5_rx_dma_irq_handle(void);
static void spi5_tx_dma_irq_handle(void);
#endif /* BSP_USING_SPI5 */
#if defined(BSP_USING_SPI6)
static void spi6_rx_dma_irq_handle(void);
static void spi6_tx_dma_irq_handle(void);
#endif /* BSP_USING_SPI6 */
/*******************************************************************************
* Local variable definitions ('static')
******************************************************************************/
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
#ifdef BSP_USING_SPI5
SPI5_INDEX,
#endif
#ifdef BSP_USING_SPI6
SPI6_INDEX,
#endif
SPI_INDEX_MAX,
};
static const struct spi_index spi_map[] =
{
#ifdef BSP_USING_SPI1
{SPI1_INDEX, M4_SPI1},
#endif
#ifdef BSP_USING_SPI2
{SPI2_INDEX, M4_SPI2},
#endif
#ifdef BSP_USING_SPI3
{SPI3_INDEX, M4_SPI3},
#endif
#ifdef BSP_USING_SPI4
{SPI4_INDEX, M4_SPI4},
#endif
#ifdef BSP_USING_SPI5
{SPI5_INDEX, M4_SPI5},
#endif
#ifdef BSP_USING_SPI6
{SPI6_INDEX, M4_SPI6},
#endif
};
static struct hc32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
SPI1_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI2
SPI2_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI3
SPI3_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI4
SPI4_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI5
SPI5_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI6
SPI6_BUS_CONFIG,
#endif
};
static const struct spi_irq_handler spi_irq_handlers[] =
{
#ifdef BSP_USING_SPI1
{spi1_rx_dma_irq_handle, spi1_tx_dma_irq_handle},
#endif
#ifdef BSP_USING_SPI2
{spi2_rx_dma_irq_handle, spi2_tx_dma_irq_handle},
#endif
#ifdef BSP_USING_SPI3
{spi3_rx_dma_irq_handle, spi3_tx_dma_irq_handle},
#endif
#ifdef BSP_USING_SPI4
{spi4_rx_dma_irq_handle, spi4_tx_dma_irq_handle},
#endif
#ifdef BSP_USING_SPI5
{spi5_rx_dma_irq_handle, spi5_tx_dma_irq_handle},
#endif
#ifdef BSP_USING_SPI6
{spi6_rx_dma_irq_handle, spi6_tx_dma_irq_handle},
#endif
};
static struct hc32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
/*******************************************************************************
* Function implementation - global ('extern') and local ('static')
******************************************************************************/
extern void hc32_board_spi_init(M4_SPI_TypeDef *M4_SPIx, rt_uint8_t mode);
/**
* @brief This function gets index for specific SPI_Instance.
* @param Instance
* @retval index
*/
static uint32_t get_spi_index(M4_SPI_TypeDef *Instance)
{
uint32_t index = SPI_INDEX_MAX;
for (uint8_t i = 0U; i < ARRAY_SZ(spi_map); i++)
{
if (spi_map[i].Instance == Instance)
{
index = spi_map[i].index;
RT_ASSERT(index < SPI_INDEX_MAX)
break;
}
}
return index;
}
static uint32_t get_spi_fcg(M4_SPI_TypeDef *Instance)
{
return (PWC_FCG1_SPI1 << get_spi_index(Instance));
}
rt_err_t hc32_spi_init(struct hc32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
stc_spi_init_t stcSpiInit;
stc_clk_freq_t stcClkFreq;
M4_SPI_TypeDef *spi_handle = spi_drv->handle.Instance;
/* Enable spi clock gate */
PWC_Fcg1PeriphClockCmd(get_spi_fcg(spi_handle), Enable);
/* Init spi struct as default value */
SPI_StructInit(&stcSpiInit);
/* Slave or master mode */
if (cfg->mode & RT_SPI_SLAVE)
{
stcSpiInit.u32MasterSlave = SPI_SLAVE;
}
else
{
stcSpiInit.u32MasterSlave = SPI_MASTER;
}
/* 3 wire or 4 wire mode */
if (cfg->mode & RT_SPI_3WIRE)
{
stcSpiInit.u32WireMode = SPI_WIRE_3;
}
else
{
stcSpiInit.u32WireMode = SPI_WIRE_4;
}
/* spi mode */
if (0x00 == (cfg->mode & (RT_SPI_CPHA | RT_SPI_CPOL)))
{
stcSpiInit.u32SpiMode = SPI_MODE_0;
}
else if (0x01 == (cfg->mode & (RT_SPI_CPHA | RT_SPI_CPOL)))
{
stcSpiInit.u32SpiMode = SPI_MODE_1;
}
else if (0x02 == (cfg->mode & (RT_SPI_CPHA | RT_SPI_CPOL)))
{
stcSpiInit.u32SpiMode = SPI_MODE_2;
}
else if (0x03 == (cfg->mode & (RT_SPI_CPHA | RT_SPI_CPOL)))
{
stcSpiInit.u32SpiMode = SPI_MODE_3;
}
/* LSB or MSB */
if (cfg->mode & RT_SPI_MSB)
{
stcSpiInit.u32FirstBit = SPI_FIRST_MSB;
}
else
{
stcSpiInit.u32FirstBit = SPI_FIRST_LSB;
}
/* config data width 4~16, 20, 24, 32 */
if (4u > cfg->data_width)
{
return RT_EIO;
}
else if (16u >= cfg->data_width)
{
stcSpiInit.u32DataBits = ((cfg->data_width - 4u) << 8u);
}
else if (20u == cfg->data_width)
{
stcSpiInit.u32DataBits = SPI_DATA_SIZE_20BIT;
}
else if (24u == cfg->data_width)
{
stcSpiInit.u32DataBits = SPI_DATA_SIZE_24BIT;
}
else if (32u == cfg->data_width)
{
stcSpiInit.u32DataBits = SPI_DATA_SIZE_32BIT;
}
else
{
return RT_EIO;
}
/* Get APB clock */
CLK_GetClockFreq(&stcClkFreq);
if (cfg->max_hz >= stcClkFreq.pclk1Freq / 2u)
{
stcSpiInit.u32BaudRatePrescaler = SPI_BR_PCLK1_DIV2;
}
else if (cfg->max_hz >= stcClkFreq.pclk1Freq / 4u)
{
stcSpiInit.u32BaudRatePrescaler = SPI_BR_PCLK1_DIV4;
}
else if (cfg->max_hz >= stcClkFreq.pclk1Freq / 8u)
{
stcSpiInit.u32BaudRatePrescaler = SPI_BR_PCLK1_DIV8;
}
else if (cfg->max_hz >= stcClkFreq.pclk1Freq / 16u)
{
stcSpiInit.u32BaudRatePrescaler = SPI_BR_PCLK1_DIV16;
}
else if (cfg->max_hz >= stcClkFreq.pclk1Freq / 32u)
{
stcSpiInit.u32BaudRatePrescaler = SPI_BR_PCLK1_DIV32;
}
else if (cfg->max_hz >= stcClkFreq.pclk1Freq / 64u)
{
stcSpiInit.u32BaudRatePrescaler = SPI_BR_PCLK1_DIV64;
}
else if (cfg->max_hz >= stcClkFreq.pclk1Freq / 128u)
{
stcSpiInit.u32BaudRatePrescaler = SPI_BR_PCLK1_DIV128;
}
else if (cfg->max_hz >= stcClkFreq.pclk1Freq / 256u)
{
stcSpiInit.u32BaudRatePrescaler = SPI_BR_PCLK1_DIV256;
}
/* spi port init */
hc32_board_spi_init(spi_handle, cfg->mode);
if (Ok != SPI_Init(spi_handle, &stcSpiInit))
{
return RT_EIO;
}
/* DMA configuration */
if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
struct dma_config *spi_dma;
stc_dma_init_t stcDmaInit;
/* Get spi dma_rx */
spi_dma = spi_drv->config->dma_rx;
/* Config Dma */
DMA_StructInit(&stcDmaInit);
stcDmaInit.u32IntEn = DMA_INT_ENABLE;
stcDmaInit.u32BlockSize = 1UL;
stcDmaInit.u32TransCnt = 0;
stcDmaInit.u32DestAddr = 0;
stcDmaInit.u32SrcAddr = (uint32_t)(&spi_handle->DR);
stcDmaInit.u32SrcInc = DMA_SRC_ADDR_FIX;
stcDmaInit.u32DestInc = DMA_DEST_ADDR_INC;
if (8u >= cfg->data_width)
{
stcDmaInit.u32DataWidth = DMA_DATAWIDTH_8BIT;
}
else if (16u >= cfg->data_width)
{
stcDmaInit.u32DataWidth = DMA_DATAWIDTH_16BIT;
}
else
{
stcDmaInit.u32DataWidth = DMA_DATAWIDTH_32BIT;
}
/* Enable Dma clock gate */
if (M4_DMA1 == spi_dma->Instance)
{
PWC_Fcg0PeriphClockCmd(PWC_FCG0_DMA1, Enable);
}
else
{
PWC_Fcg0PeriphClockCmd(PWC_FCG0_DMA2, Enable);
}
/* Init Dma */
if (Ok != DMA_Init(spi_dma->Instance, spi_dma->channel, &stcDmaInit))
{
return RT_EIO;
}
/* register interrupt */
hc32_install_irq_handler(&spi_dma->irq_config,
spi_irq_handlers[get_spi_index(spi_handle)].rx_dma_irq_handler,
RT_TRUE);
/* Enable Dma */
DMA_Cmd(spi_dma->Instance, Enable);
}
if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
struct dma_config *spi_dma;
stc_dma_init_t stcDmaInit;
/* Get spi dma_tx */
spi_dma = spi_drv->config->dma_tx;
/* Config Dma */
DMA_StructInit(&stcDmaInit);
stcDmaInit.u32IntEn = DMA_INT_ENABLE;
stcDmaInit.u32BlockSize = 1UL;
stcDmaInit.u32TransCnt = 0;
stcDmaInit.u32DestAddr = (uint32_t)(&spi_handle->DR);;
stcDmaInit.u32SrcAddr = 0;
stcDmaInit.u32SrcInc = DMA_SRC_ADDR_INC;
stcDmaInit.u32DestInc = DMA_DEST_ADDR_FIX;
if (8u >= cfg->data_width)
{
stcDmaInit.u32DataWidth = DMA_DATAWIDTH_8BIT;
}
else if (16u >= cfg->data_width)
{
stcDmaInit.u32DataWidth = DMA_DATAWIDTH_16BIT;
}
else
{
stcDmaInit.u32DataWidth = DMA_DATAWIDTH_32BIT;
}
/* Enable Dma clock gate */
if (M4_DMA1 == spi_dma->Instance)
{
PWC_Fcg0PeriphClockCmd(PWC_FCG0_DMA1 | PWC_FCG0_AOS, Enable);
}
else
{
PWC_Fcg0PeriphClockCmd(PWC_FCG0_DMA2 | PWC_FCG0_AOS, Enable);
}
/* Init Dma */
if (Ok != DMA_Init(spi_dma->Instance, spi_dma->channel, &stcDmaInit))
{
return RT_EIO;
}
/* register interrupt */
hc32_install_irq_handler(&spi_dma->irq_config,
spi_irq_handlers[get_spi_index(spi_handle)].tx_dma_irq_handler,
RT_TRUE);
/* Enable Dma */
DMA_Cmd(spi_dma->Instance, Enable);
}
return RT_EOK;
}
static void hc32_spi_deinit(struct hc32_spi *spi_drv)
{
M4_SPI_TypeDef *spi_handle = spi_drv->handle.Instance;
SPI_DeInit(spi_handle);
/* Disable spi clock gate */
PWC_Fcg1PeriphClockCmd(get_spi_fcg(spi_handle), Disable);
}
static rt_err_t hc32_spi_dma(struct hc32_spi_config *spi_dma, const uint8_t *pvTxBuf, void *pvRxBuf, uint32_t u32Length)
{
if (RT_NULL == pvTxBuf)
{
DMA_SetDestAddr(spi_dma->dma_rx->Instance, spi_dma->dma_rx->channel, (uint32_t)pvRxBuf);
DMA_SetTransCnt(spi_dma->dma_rx->Instance, spi_dma->dma_rx->channel, u32Length);
DMA_SetTriggerSrc(spi_dma->dma_rx->Instance, spi_dma->dma_rx->channel,spi_dma->dma_rx->trigger_evt_src);
DMA_ChannelCmd(spi_dma->dma_rx->Instance, spi_dma->dma_rx->channel, Enable);
}
else if (RT_NULL == pvRxBuf)
{
DMA_SetSrcAddr(spi_dma->dma_tx->Instance, spi_dma->dma_tx->channel, (uint32_t)pvTxBuf);
DMA_SetTransCnt(spi_dma->dma_tx->Instance, spi_dma->dma_tx->channel, u32Length);
DMA_SetTriggerSrc(spi_dma->dma_tx->Instance, spi_dma->dma_tx->channel,spi_dma->dma_tx->trigger_evt_src);
DMA_ChannelCmd(spi_dma->dma_tx->Instance, spi_dma->dma_tx->channel, Enable);
}
else
{
DMA_SetDestAddr(spi_dma->dma_rx->Instance, spi_dma->dma_rx->channel, (uint32_t)pvRxBuf);
DMA_SetTransCnt(spi_dma->dma_rx->Instance, spi_dma->dma_rx->channel, u32Length);
DMA_SetTriggerSrc(spi_dma->dma_rx->Instance, spi_dma->dma_rx->channel,spi_dma->dma_rx->trigger_evt_src);
DMA_SetSrcAddr(spi_dma->dma_tx->Instance, spi_dma->dma_tx->channel, (uint32_t)pvTxBuf);
DMA_SetTransCnt(spi_dma->dma_tx->Instance, spi_dma->dma_tx->channel, u32Length);
DMA_SetTriggerSrc(spi_dma->dma_tx->Instance, spi_dma->dma_tx->channel,spi_dma->dma_tx->trigger_evt_src);
DMA_ChannelCmd(spi_dma->dma_tx->Instance, spi_dma->dma_tx->channel, Enable);
DMA_ChannelCmd(spi_dma->dma_rx->Instance, spi_dma->dma_rx->channel, Enable);
}
SPI_FunctionCmd(spi_dma->Instance, Enable);
return RT_EOK;
}
static struct rt_spi_ops hc32_spi_ops =
{
.configure = hc32_spi_configure,
.xfer = hc32_spi_xfer,
};
static rt_err_t hc32_spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct hc32_spi *spi_drv = rt_container_of(device->bus, struct hc32_spi, spi_bus);
spi_drv->cfg = configuration;
return hc32_spi_init(spi_drv, configuration);
}
static rt_uint32_t hc32_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_uint8_t state;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct hc32_spi *spi_drv = rt_container_of(device->bus, struct hc32_spi, spi_bus);
SPI_HandleType *spi_handle = &spi_drv->handle;
struct hc32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take)
{
GPIO_ResetPins(cs->port, cs->pin);
}
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
/* calculate the start address */
already_send_length = message->length - send_length - message_length;
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
if(message->send_buf && message->recv_buf)
{
if ((spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX) && (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX))
{
state = hc32_spi_dma(spi_drv->config, send_buf, recv_buf, send_length);
}
else
{
SPI_FunctionCmd(spi_handle->Instance, Enable);
state = SPI_TransmitReceive(spi_handle->Instance, send_buf, recv_buf, send_length);
}
}
else if(message->send_buf)
{
if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
state = hc32_spi_dma(spi_drv->config, send_buf, RT_NULL, send_length);
}
else
{
SPI_FunctionCmd(spi_handle->Instance, Enable);
state = SPI_Transmit(spi_handle->Instance, send_buf, send_length);
}
if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
{
SPI_FunctionCmd(spi_handle->Instance, Disable);
}
}
else
{
rt_memset((uint8_t *)recv_buf, 0xff, send_length);
if (spi_drv->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
state = hc32_spi_dma(spi_drv->config, RT_NULL, recv_buf, send_length);
}
else
{
SPI_FunctionCmd(spi_handle->Instance, Enable);
state = SPI_Receive(spi_handle->Instance, recv_buf, send_length);
}
}
if(state != RT_EOK)
{
message->length = 0;
}
/* wait spi transfer complete */
while(Reset != SPI_GetStatus(spi_handle->Instance, SPI_FLAG_IDLE));
}
if (message->cs_release)
{
GPIO_SetPins(cs->port, cs->pin);
}
return message->length;
}
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t hc32_hw_spi_device_attach(const char *bus_name,
const char *device_name,
uint8_t cs_gpio_port,
uint16_t cs_gpio_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct hc32_hw_spi_cs *cs_pin;
stc_gpio_init_t stcGpioInit;
GPIO_StructInit(&stcGpioInit);
stcGpioInit.u16PinState = PIN_STATE_SET;
stcGpioInit.u16PinDir = PIN_DIR_OUT;
stcGpioInit.u16PullUp = PIN_PU_ON;
stcGpioInit.u16PinDrv = PIN_DRV_HIGH;
GPIO_Init(SPI1_NSS_PORT, SPI1_NSS_PIN, &stcGpioInit);
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct hc32_hw_spi_cs *)rt_malloc(sizeof(struct hc32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->port = cs_gpio_port;
cs_pin->pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
return result;
}
static int hc32_hw_spi_bus_init(void)
{
rt_err_t result;
for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &hc32_spi_ops);
}
return result;
}
/**
* @brief Clear DMA transfer complete flag.
* @param dma specific dam witch spi used.
* @retval None
*/
static void hc32_dma_irq_handle(struct dma_config *dma)
{
dma->Instance->INTCLR1 |= (1u << dma->channel);
}
#if defined(BSP_USING_SPI1)
/**
* @brief This function handles DMA Rx complete interrupt request.
* @param None
* @retval None
*/
static void spi1_rx_dma_irq_handle(void)
{
#if defined(BSP_SPI1_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI1_INDEX].dma_rx);
SPI_FunctionCmd(spi_config[SPI1_INDEX].Instance, Disable);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI1_RX_USING_DMA */
}
/**
* @brief This function handles DMA Tx complete interrupt request.
* @param None
* @retval None
*/
static void spi1_tx_dma_irq_handle(void)
{
#if defined(BSP_SPI1_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI1_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI1_TX_USING_DMA */
}
#endif /* BSP_USING_SPI1 */
#if defined(BSP_USING_SPI2)
/**
* @brief This function handles DMA Rx complete interrupt request.
* @param None
* @retval None
*/
static void spi2_rx_dma_irq_handle(void)
{
#if defined(BSP_SPI2_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI2_INDEX].dma_rx);
SPI_FunctionCmd(spi_config[SPI2_INDEX].Instance, Disable);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI2_RX_USING_DMA */
}
/**
* @brief This function handles DMA Tx complete interrupt request.
* @param None
* @retval None
*/
static void spi2_tx_dma_irq_handle(void)
{
#if defined(BSP_SPI2_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI2_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI2_TX_USING_DMA */
}
#endif /* BSP_USING_SPI2 */
#if defined(BSP_USING_SPI3)
/**
* @brief This function handles DMA Rx complete interrupt request.
* @param None
* @retval None
*/
static void spi3_rx_dma_irq_handle(void)
{
#if defined(BSP_SPI3_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI3_INDEX].dma_rx);
SPI_FunctionCmd(spi_config[SPI3_INDEX].Instance, Disable);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI3_RX_USING_DMA */
}
/**
* @brief This function handles DMA Tx complete interrupt request.
* @param None
* @retval None
*/
static void spi3_tx_dma_irq_handle(void)
{
#if defined(BSP_SPI3_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI3_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI3_TX_USING_DMA */
}
#endif /* BSP_USING_SPI3 */
#if defined(BSP_USING_SPI4)
/**
* @brief This function handles DMA Rx complete interrupt request.
* @param None
* @retval None
*/
static void spi4_rx_dma_irq_handle(void)
{
#if defined(BSP_SPI4_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI4_INDEX].dma_rx);
SPI_FunctionCmd(spi_config[SPI4_INDEX].Instance, Disable);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI4_RX_USING_DMA */
}
/**
* @brief This function handles DMA Tx complete interrupt request.
* @param None
* @retval None
*/
static void spi4_tx_dma_irq_handle(void)
{
#if defined(BSP_SPI4_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI4_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI4_TX_USING_DMA */
}
#endif /* BSP_USING_SPI4 */
#if defined(BSP_USING_SPI5)
/**
* @brief This function handles DMA Rx complete interrupt request.
* @param None
* @retval None
*/
static void spi5_rx_dma_irq_handle(void)
{
#if defined(BSP_SPI5_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI5_INDEX].dma_rx);
SPI_FunctionCmd(spi_config[SPI5_INDEX].Instance, Disable);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI5_RX_USING_DMA */
}
/**
* @brief This function handles DMA Tx complete interrupt request.
* @param None
* @retval None
*/
static void spi5_tx_dma_irq_handle(void)
{
#if defined(BSP_SPI5_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI5_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI5_TX_USING_DMA */
}
#endif /* BSP_USING_SPI5 */
#if defined(BSP_USING_SPI6)
/**
* @brief This function handles DMA Rx complete interrupt request.
* @param None
* @retval None
*/
static void spi6_rx_dma_irq_handle(void)
{
#if defined(BSP_SPI6_RX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI6_INDEX].dma_rx);
SPI_FunctionCmd(spi_config[SPI6_INDEX].Instance, Disable);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI6_RX_USING_DMA */
}
/**
* @brief This function handles DMA Tx complete interrupt request.
* @param None
* @retval None
*/
static void spi6_tx_dma_irq_handle(void)
{
#if defined(BSP_SPI6_TX_USING_DMA)
/* enter interrupt */
rt_interrupt_enter();
hc32_dma_irq_handle(spi_config[SPI6_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
#endif /* BSP_SPI6_TX_USING_DMA */
}
#endif /* BSP_USING_SPI6 */
/**
* @brief This function gets dma witch spi used infomation include unit,
* channel, interrupt etc.
* @param None
* @retval None
*/
static void hc32_get_dma_info(void)
{
#ifdef BSP_SPI1_RX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
#endif
#ifdef BSP_SPI1_TX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
#endif
#ifdef BSP_SPI2_RX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
#endif
#ifdef BSP_SPI2_TX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
#endif
#ifdef BSP_SPI3_RX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
#endif
#ifdef BSP_SPI3_TX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
#endif
#ifdef BSP_SPI4_RX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
#endif
#ifdef BSP_SPI4_TX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
#endif
#ifdef BSP_SPI5_RX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
#endif
#ifdef BSP_SPI5_TX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
#endif
#ifdef BSP_SPI6_RX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
#endif
#ifdef BSP_SPI6_TX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
#endif
}
int hc32_hw_spi_init(void)
{
hc32_get_dma_info();
return hc32_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(hc32_hw_spi_init);
#endif /* BSP_USING_SPI */