4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-24 20:37:23 +08:00
Gavin Liu 943f83d58f imxrt:enet: Support imxrt ethernet interface
1. Add "drv_eth.c" for all imxrt platforms.
2. Add ksz8081 phy driver for imxrt1052-nxp-evk board.
3. Disable the LED demo in main.c file if enable the ENET
   and ksz8081 phy, because the PINs of LED and ksz8081
   reset are from the same GPIO.
4. Update the relevant Kconfig and Sconscript files.

Signed-off-by: Gavin Liu <gavin-liugang@outlook.com>
2019-09-19 11:21:42 +08:00

907 lines
26 KiB
C

/*
* Copyright (c) 2006-2019, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-10-10 Tanek the first version
* 2019-5-10 misonyo add DMA TX and RX function
*/
#include <rtthread.h>
#include "board.h"
#include <rtdevice.h>
#ifdef RT_USING_FINSH
#include <finsh.h>
#endif
#include "fsl_enet.h"
#include "fsl_gpio.h"
#include "fsl_phy.h"
#include "fsl_cache.h"
#include "fsl_iomuxc.h"
#ifdef RT_USING_LWIP
#include <netif/ethernetif.h>
#include "lwipopts.h"
#define ENET_RXBD_NUM (4)
#define ENET_TXBD_NUM (4)
#define ENET_RXBUFF_SIZE (ENET_FRAME_MAX_FRAMELEN)
#define ENET_TXBUFF_SIZE (ENET_FRAME_MAX_FRAMELEN)
/* debug option */
#undef ETH_RX_DUMP
#undef ETH_TX_DUMP
#define DBG_ENABLE
#define DBG_SECTION_NAME "[ETH]"
#define DBG_COLOR
#define DBG_LEVEL DBG_INFO
#include <rtdbg.h>
#define MAX_ADDR_LEN 6
struct rt_imxrt_eth
{
/* inherit from ethernet device */
struct eth_device parent;
enet_handle_t enet_handle;
ENET_Type *enet_base;
enet_data_error_stats_t error_statistic;
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
rt_bool_t tx_is_waiting;
struct rt_semaphore tx_wait;
enet_mii_speed_t speed;
enet_mii_duplex_t duplex;
};
ALIGN(ENET_BUFF_ALIGNMENT) enet_tx_bd_struct_t g_txBuffDescrip[ENET_TXBD_NUM] SECTION("NonCacheable");
ALIGN(ENET_BUFF_ALIGNMENT) rt_uint8_t g_txDataBuff[ENET_TXBD_NUM][RT_ALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT)];
ALIGN(ENET_BUFF_ALIGNMENT) enet_rx_bd_struct_t g_rxBuffDescrip[ENET_RXBD_NUM] SECTION("NonCacheable");
ALIGN(ENET_BUFF_ALIGNMENT) rt_uint8_t g_rxDataBuff[ENET_RXBD_NUM][RT_ALIGN(ENET_RXBUFF_SIZE, ENET_BUFF_ALIGNMENT)];
static struct rt_imxrt_eth imxrt_eth_device;
void _enet_rx_callback(struct rt_imxrt_eth *eth)
{
rt_err_t result;
ENET_DisableInterrupts(eth->enet_base, kENET_RxFrameInterrupt);
result = eth_device_ready(&(eth->parent));
if (result != RT_EOK)
rt_kprintf("RX err =%d\n", result);
}
void _enet_tx_callback(struct rt_imxrt_eth *eth)
{
if (eth->tx_is_waiting == RT_TRUE)
{
eth->tx_is_waiting = RT_FALSE;
rt_sem_release(&eth->tx_wait);
}
}
void _enet_callback(ENET_Type *base, enet_handle_t *handle, enet_event_t event, void *userData)
{
switch (event)
{
case kENET_RxEvent:
_enet_rx_callback((struct rt_imxrt_eth *)userData);
break;
case kENET_TxEvent:
_enet_tx_callback((struct rt_imxrt_eth *)userData);
break;
case kENET_ErrEvent:
dbg_log(DBG_LOG, "kENET_ErrEvent\n");
break;
case kENET_WakeUpEvent:
dbg_log(DBG_LOG, "kENET_WakeUpEvent\n");
break;
case kENET_TimeStampEvent:
dbg_log(DBG_LOG, "kENET_TimeStampEvent\n");
break;
case kENET_TimeStampAvailEvent:
dbg_log(DBG_LOG, "kENET_TimeStampAvailEvent \n");
break;
default:
dbg_log(DBG_LOG, "unknow error\n");
break;
}
}
static void _enet_clk_init(void)
{
const clock_enet_pll_config_t config = {.enableClkOutput = true, .enableClkOutput25M = false, .loopDivider = 1};
CLOCK_InitEnetPll(&config);
IOMUXC_EnableMode(IOMUXC_GPR, kIOMUXC_GPR_ENET1TxClkOutputDir, true);
IOMUXC_GPR->GPR1|=1<<23;
}
static void _enet_config(void)
{
enet_config_t config;
uint32_t sysClock;
/* prepare the buffer configuration. */
enet_buffer_config_t buffConfig =
{
ENET_RXBD_NUM,
ENET_TXBD_NUM,
SDK_SIZEALIGN(ENET_RXBUFF_SIZE, ENET_BUFF_ALIGNMENT),
SDK_SIZEALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT),
&g_rxBuffDescrip[0],
&g_txBuffDescrip[0],
&g_rxDataBuff[0][0],
&g_txDataBuff[0][0],
};
/* Get default configuration. */
/*
* config.miiMode = kENET_RmiiMode;
* config.miiSpeed = kENET_MiiSpeed100M;
* config.miiDuplex = kENET_MiiFullDuplex;
* config.rxMaxFrameLen = ENET_FRAME_MAX_FRAMELEN;
*/
ENET_GetDefaultConfig(&config);
config.interrupt = kENET_TxFrameInterrupt | kENET_RxFrameInterrupt;
config.miiSpeed = imxrt_eth_device.speed;
config.miiDuplex = imxrt_eth_device.duplex;
/* Set SMI to get PHY link status. */
sysClock = CLOCK_GetFreq(kCLOCK_AhbClk);
dbg_log(DBG_LOG, "deinit\n");
ENET_Deinit(imxrt_eth_device.enet_base);
dbg_log(DBG_LOG, "init\n");
ENET_Init(imxrt_eth_device.enet_base, &imxrt_eth_device.enet_handle, &config, &buffConfig, &imxrt_eth_device.dev_addr[0], sysClock);
dbg_log(DBG_LOG, "set call back\n");
ENET_SetCallback(&imxrt_eth_device.enet_handle, _enet_callback, &imxrt_eth_device);
dbg_log(DBG_LOG, "active read\n");
ENET_ActiveRead(imxrt_eth_device.enet_base);
}
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
static void packet_dump(const char *msg, const struct pbuf *p)
{
const struct pbuf *q;
rt_uint32_t i, j;
rt_uint8_t *ptr;
rt_kprintf("%s %d byte\n", msg, p->tot_len);
i = 0;
for (q = p; q != RT_NULL; q = q->next)
{
ptr = q->payload;
for (j = 0; j < q->len; j++)
{
if ((i % 8) == 0)
{
rt_kprintf(" ");
}
if ((i % 16) == 0)
{
rt_kprintf("\r\n");
}
rt_kprintf("%02x ", *ptr);
i++;
ptr++;
}
}
rt_kprintf("\n\n");
}
#else
#define packet_dump(...)
#endif /* dump */
/* initialize the interface */
static rt_err_t rt_imxrt_eth_init(rt_device_t dev)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_init...\n");
_enet_config();
return RT_EOK;
}
static rt_err_t rt_imxrt_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_open...\n");
return RT_EOK;
}
static rt_err_t rt_imxrt_eth_close(rt_device_t dev)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_close...\n");
return RT_EOK;
}
static rt_size_t rt_imxrt_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_read...\n");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_imxrt_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_write...\n");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_imxrt_eth_control(rt_device_t dev, int cmd, void *args)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_control...\n");
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, imxrt_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
static void _ENET_ActiveSend(ENET_Type *base, uint32_t ringId)
{
assert(ringId < FSL_FEATURE_ENET_QUEUE);
switch (ringId)
{
case 0:
base->TDAR = ENET_TDAR_TDAR_MASK;
break;
#if FSL_FEATURE_ENET_QUEUE > 1
case kENET_Ring1:
base->TDAR1 = ENET_TDAR1_TDAR_MASK;
break;
case kENET_Ring2:
base->TDAR2 = ENET_TDAR2_TDAR_MASK;
break;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
default:
base->TDAR = ENET_TDAR_TDAR_MASK;
break;
}
}
static status_t _ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, const uint8_t *data, uint32_t length)
{
assert(handle);
assert(data);
volatile enet_tx_bd_struct_t *curBuffDescrip;
uint32_t len = 0;
uint32_t sizeleft = 0;
uint32_t address;
/* Check the frame length. */
if (length > ENET_FRAME_MAX_FRAMELEN)
{
return kStatus_ENET_TxFrameOverLen;
}
/* Check if the transmit buffer is ready. */
curBuffDescrip = handle->txBdCurrent[0];
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
{
return kStatus_ENET_TxFrameBusy;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
bool isPtpEventMessage = false;
/* Check PTP message with the PTP header. */
isPtpEventMessage = ENET_Ptp1588ParseFrame(data, NULL, true);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* One transmit buffer is enough for one frame. */
if (handle->txBuffSizeAlign[0] >= length)
{
/* Copy data to the buffer for uDMA transfer. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
pbuf_copy_partial((const struct pbuf *)data, (void *)address, length, 0);
/* Set data length. */
curBuffDescrip->length = length;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (isPtpEventMessage)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Increase the buffer descriptor address. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdCurrent[0] = handle->txBdBase[0];
}
else
{
handle->txBdCurrent[0]++;
}
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache clean maintain. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
DCACHE_CleanByRange(address, length);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Active the transmit buffer descriptor. */
_ENET_ActiveSend(base, 0);
return kStatus_Success;
}
else
{
/* One frame requires more than one transmit buffers. */
do
{
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (isPtpEventMessage)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Increase the buffer descriptor address. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdCurrent[0] = handle->txBdBase[0];
}
else
{
handle->txBdCurrent[0]++;
}
/* update the size left to be transmit. */
sizeleft = length - len;
if (sizeleft > handle->txBuffSizeAlign[0])
{
/* Data copy. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
memcpy((void *)address, data + len, handle->txBuffSizeAlign[0]);
/* Data length update. */
curBuffDescrip->length = handle->txBuffSizeAlign[0];
len += handle->txBuffSizeAlign[0];
/* Sets the control flag. */
curBuffDescrip->control &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
/* Active the transmit buffer descriptor*/
_ENET_ActiveSend(base, 0);
}
else
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
memcpy((void *)address, data + len, sizeleft);
curBuffDescrip->length = sizeleft;
/* Set Last buffer wrap flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache clean maintain. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
DCACHE_CleanByRange(address, handle->txBuffSizeAlign[0]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Active the transmit buffer descriptor. */
_ENET_ActiveSend(base, 0);
return kStatus_Success;
}
/* Get the current buffer descriptor address. */
curBuffDescrip = handle->txBdCurrent[0];
} while (!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK));
return kStatus_ENET_TxFrameBusy;
}
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_imxrt_eth_tx(rt_device_t dev, struct pbuf *p)
{
rt_err_t result = RT_EOK;
enet_handle_t * enet_handle = &imxrt_eth_device.enet_handle;
RT_ASSERT(p != NULL);
RT_ASSERT(enet_handle != RT_NULL);
dbg_log(DBG_LOG, "rt_imxrt_eth_tx: %d\n", p->len);
#ifdef ETH_TX_DUMP
packet_dump("send", p);
#endif
do
{
result = _ENET_SendFrame(imxrt_eth_device.enet_base, enet_handle, (const uint8_t *)p, p->tot_len);
if (result == kStatus_ENET_TxFrameBusy)
{
imxrt_eth_device.tx_is_waiting = RT_TRUE;
rt_sem_take(&imxrt_eth_device.tx_wait, RT_WAITING_FOREVER);
}
}
while (result == kStatus_ENET_TxFrameBusy);
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_imxrt_eth_rx(rt_device_t dev)
{
uint32_t length = 0;
status_t status;
struct pbuf *p = RT_NULL;
enet_handle_t *enet_handle = &imxrt_eth_device.enet_handle;
ENET_Type *enet_base = imxrt_eth_device.enet_base;
enet_data_error_stats_t *error_statistic = &imxrt_eth_device.error_statistic;
/* Get the Frame size */
status = ENET_GetRxFrameSize(enet_handle, &length);
/* Call ENET_ReadFrame when there is a received frame. */
if (length != 0)
{
/* Received valid frame. Deliver the rx buffer with the size equal to length. */
p = pbuf_alloc(PBUF_RAW, length, PBUF_POOL);
if (p != NULL)
{
status = ENET_ReadFrame(enet_base, enet_handle, p->payload, length);
if (status == kStatus_Success)
{
#ifdef ETH_RX_DUMP
packet_dump("recv", p);
#endif
return p;
}
else
{
dbg_log(DBG_LOG, " A frame read failed\n");
pbuf_free(p);
}
}
else
{
dbg_log(DBG_LOG, " pbuf_alloc faild\n");
}
}
else if (status == kStatus_ENET_RxFrameError)
{
dbg_log(DBG_WARNING, "ENET_GetRxFrameSize: kStatus_ENET_RxFrameError\n");
/* Update the received buffer when error happened. */
/* Get the error information of the received g_frame. */
ENET_GetRxErrBeforeReadFrame(enet_handle, error_statistic);
/* update the receive buffer. */
ENET_ReadFrame(enet_base, enet_handle, NULL, 0);
}
ENET_EnableInterrupts(enet_base, kENET_RxFrameInterrupt);
return NULL;
}
static void phy_monitor_thread_entry(void *parameter)
{
phy_speed_t speed;
phy_duplex_t duplex;
bool link = false;
imxrt_enet_phy_reset_by_gpio();
PHY_Init(imxrt_eth_device.enet_base, PHY_ADDRESS, CLOCK_GetFreq(kCLOCK_AhbClk));
while (1)
{
bool new_link = false;
status_t status = PHY_GetLinkStatus(imxrt_eth_device.enet_base, PHY_ADDRESS, &new_link);
if ((status == kStatus_Success) && (link != new_link))
{
link = new_link;
if (link) // link up
{
PHY_GetLinkSpeedDuplex(imxrt_eth_device.enet_base,
PHY_ADDRESS, &speed, &duplex);
if (kPHY_Speed10M == speed)
{
dbg_log(DBG_LOG, "10M\n");
}
else
{
dbg_log(DBG_LOG, "100M\n");
}
if (kPHY_HalfDuplex == duplex)
{
dbg_log(DBG_LOG, "half dumplex\n");
}
else
{
dbg_log(DBG_LOG, "full dumplex\n");
}
if ((imxrt_eth_device.speed != (enet_mii_speed_t)speed)
|| (imxrt_eth_device.duplex != (enet_mii_duplex_t)duplex))
{
imxrt_eth_device.speed = (enet_mii_speed_t)speed;
imxrt_eth_device.duplex = (enet_mii_duplex_t)duplex;
dbg_log(DBG_LOG, "link up, and update eth mode.\n");
rt_imxrt_eth_init((rt_device_t)&imxrt_eth_device);
}
else
{
dbg_log(DBG_LOG, "link up, eth not need re-config.\n");
}
dbg_log(DBG_LOG, "link up.\n");
eth_device_linkchange(&imxrt_eth_device.parent, RT_TRUE);
}
else
{
dbg_log(DBG_LOG, "link down.\n");
eth_device_linkchange(&imxrt_eth_device.parent, RT_FALSE);
}
}
rt_thread_delay(RT_TICK_PER_SECOND * 2);
}
}
static int rt_hw_imxrt_eth_init(void)
{
rt_err_t state;
_enet_clk_init();
/* NXP (Freescale) MAC OUI */
imxrt_eth_device.dev_addr[0] = 0x00;
imxrt_eth_device.dev_addr[1] = 0x04;
imxrt_eth_device.dev_addr[2] = 0x9F;
/* generate MAC addr from 96bit unique ID (only for test). */
imxrt_eth_device.dev_addr[3] = 0x05;
imxrt_eth_device.dev_addr[4] = 0x44;
imxrt_eth_device.dev_addr[5] = 0xE5;
imxrt_eth_device.speed = kENET_MiiSpeed100M;
imxrt_eth_device.duplex = kENET_MiiFullDuplex;
imxrt_eth_device.enet_base = ENET;
imxrt_eth_device.parent.parent.init = rt_imxrt_eth_init;
imxrt_eth_device.parent.parent.open = rt_imxrt_eth_open;
imxrt_eth_device.parent.parent.close = rt_imxrt_eth_close;
imxrt_eth_device.parent.parent.read = rt_imxrt_eth_read;
imxrt_eth_device.parent.parent.write = rt_imxrt_eth_write;
imxrt_eth_device.parent.parent.control = rt_imxrt_eth_control;
imxrt_eth_device.parent.parent.user_data = RT_NULL;
imxrt_eth_device.parent.eth_rx = rt_imxrt_eth_rx;
imxrt_eth_device.parent.eth_tx = rt_imxrt_eth_tx;
dbg_log(DBG_LOG, "sem init: tx_wait\r\n");
/* init tx semaphore */
rt_sem_init(&imxrt_eth_device.tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
/* register eth device */
dbg_log(DBG_LOG, "eth_device_init start\r\n");
state = eth_device_init(&(imxrt_eth_device.parent), "e0");
if (RT_EOK == state)
{
dbg_log(DBG_LOG, "eth_device_init success\r\n");
}
else
{
dbg_log(DBG_LOG, "eth_device_init faild: %d\r\n", state);
}
eth_device_linkchange(&imxrt_eth_device.parent, RT_FALSE);
/* start phy monitor */
{
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
RT_NULL,
512,
RT_THREAD_PRIORITY_MAX - 2,
2);
if (tid != RT_NULL)
rt_thread_startup(tid);
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_imxrt_eth_init);
#endif
#ifdef RT_USING_FINSH
#include <finsh.h>
void phy_read(uint32_t phyReg)
{
uint32_t data;
status_t status;
status = PHY_Read(imxrt_eth_device.enet_base, PHY_ADDRESS, phyReg, &data);
if (kStatus_Success == status)
{
rt_kprintf("PHY_Read: %02X --> %08X", phyReg, data);
}
else
{
rt_kprintf("PHY_Read: %02X --> faild", phyReg);
}
}
void phy_write(uint32_t phyReg, uint32_t data)
{
status_t status;
status = PHY_Write(imxrt_eth_device.enet_base, PHY_ADDRESS, phyReg, data);
if (kStatus_Success == status)
{
rt_kprintf("PHY_Write: %02X --> %08X\n", phyReg, data);
}
else
{
rt_kprintf("PHY_Write: %02X --> faild\n", phyReg);
}
}
void phy_dump(void)
{
uint32_t data;
status_t status;
int i;
for (i = 0; i < 32; i++)
{
status = PHY_Read(imxrt_eth_device.enet_base, PHY_ADDRESS, i, &data);
if (kStatus_Success != status)
{
rt_kprintf("phy_dump: %02X --> faild", i);
break;
}
if (i % 8 == 7)
{
rt_kprintf("%02X --> %08X ", i, data);
}
else
{
rt_kprintf("%02X --> %08X\n", i, data);
}
}
}
void enet_reg_dump(void)
{
ENET_Type *enet_base = imxrt_eth_device.enet_base;
#define DUMP_REG(__REG) \
rt_kprintf("%s(%08X): %08X\n", #__REG, (uint32_t)&enet_base->__REG, enet_base->__REG)
DUMP_REG(EIR);
DUMP_REG(EIMR);
DUMP_REG(RDAR);
DUMP_REG(TDAR);
DUMP_REG(ECR);
DUMP_REG(MMFR);
DUMP_REG(MSCR);
DUMP_REG(MIBC);
DUMP_REG(RCR);
DUMP_REG(TCR);
DUMP_REG(PALR);
DUMP_REG(PAUR);
DUMP_REG(OPD);
DUMP_REG(TXIC);
DUMP_REG(RXIC);
DUMP_REG(IAUR);
DUMP_REG(IALR);
DUMP_REG(GAUR);
DUMP_REG(GALR);
DUMP_REG(TFWR);
DUMP_REG(RDSR);
DUMP_REG(TDSR);
DUMP_REG(MRBR);
DUMP_REG(RSFL);
DUMP_REG(RSEM);
DUMP_REG(RAEM);
DUMP_REG(RAFL);
DUMP_REG(TSEM);
DUMP_REG(TAEM);
DUMP_REG(TAFL);
DUMP_REG(TIPG);
DUMP_REG(FTRL);
DUMP_REG(TACC);
DUMP_REG(RACC);
DUMP_REG(RMON_T_DROP);
DUMP_REG(RMON_T_PACKETS);
DUMP_REG(RMON_T_BC_PKT);
DUMP_REG(RMON_T_MC_PKT);
DUMP_REG(RMON_T_CRC_ALIGN);
DUMP_REG(RMON_T_UNDERSIZE);
DUMP_REG(RMON_T_OVERSIZE);
DUMP_REG(RMON_T_FRAG);
DUMP_REG(RMON_T_JAB);
DUMP_REG(RMON_T_COL);
DUMP_REG(RMON_T_P64);
DUMP_REG(RMON_T_P65TO127);
DUMP_REG(RMON_T_P128TO255);
DUMP_REG(RMON_T_P256TO511);
DUMP_REG(RMON_T_P512TO1023);
DUMP_REG(RMON_T_P1024TO2047);
DUMP_REG(RMON_T_P_GTE2048);
DUMP_REG(RMON_T_OCTETS);
DUMP_REG(IEEE_T_DROP);
DUMP_REG(IEEE_T_FRAME_OK);
DUMP_REG(IEEE_T_1COL);
DUMP_REG(IEEE_T_MCOL);
DUMP_REG(IEEE_T_DEF);
DUMP_REG(IEEE_T_LCOL);
DUMP_REG(IEEE_T_EXCOL);
DUMP_REG(IEEE_T_MACERR);
DUMP_REG(IEEE_T_CSERR);
DUMP_REG(IEEE_T_SQE);
DUMP_REG(IEEE_T_FDXFC);
DUMP_REG(IEEE_T_OCTETS_OK);
DUMP_REG(RMON_R_PACKETS);
DUMP_REG(RMON_R_BC_PKT);
DUMP_REG(RMON_R_MC_PKT);
DUMP_REG(RMON_R_CRC_ALIGN);
DUMP_REG(RMON_R_UNDERSIZE);
DUMP_REG(RMON_R_OVERSIZE);
DUMP_REG(RMON_R_FRAG);
DUMP_REG(RMON_R_JAB);
DUMP_REG(RMON_R_RESVD_0);
DUMP_REG(RMON_R_P64);
DUMP_REG(RMON_R_P65TO127);
DUMP_REG(RMON_R_P128TO255);
DUMP_REG(RMON_R_P256TO511);
DUMP_REG(RMON_R_P512TO1023);
DUMP_REG(RMON_R_P1024TO2047);
DUMP_REG(RMON_R_P_GTE2048);
DUMP_REG(RMON_R_OCTETS);
DUMP_REG(IEEE_R_DROP);
DUMP_REG(IEEE_R_FRAME_OK);
DUMP_REG(IEEE_R_CRC);
DUMP_REG(IEEE_R_ALIGN);
DUMP_REG(IEEE_R_MACERR);
DUMP_REG(IEEE_R_FDXFC);
DUMP_REG(IEEE_R_OCTETS_OK);
DUMP_REG(ATCR);
DUMP_REG(ATVR);
DUMP_REG(ATOFF);
DUMP_REG(ATPER);
DUMP_REG(ATCOR);
DUMP_REG(ATINC);
DUMP_REG(ATSTMP);
DUMP_REG(TGSR);
}
void enet_nvic_tog(void)
{
NVIC_SetPendingIRQ(ENET_IRQn);
}
void enet_rx_stat(void)
{
enet_data_error_stats_t *error_statistic = &imxrt_eth_device.error_statistic;
#define DUMP_STAT(__VAR) \
rt_kprintf("%-25s: %08X\n", #__VAR, error_statistic->__VAR);
DUMP_STAT(statsRxLenGreaterErr);
DUMP_STAT(statsRxAlignErr);
DUMP_STAT(statsRxFcsErr);
DUMP_STAT(statsRxOverRunErr);
DUMP_STAT(statsRxTruncateErr);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
DUMP_STAT(statsRxProtocolChecksumErr);
DUMP_STAT(statsRxIpHeadChecksumErr);
DUMP_STAT(statsRxMacErr);
DUMP_STAT(statsRxPhyErr);
DUMP_STAT(statsRxCollisionErr);
DUMP_STAT(statsTxErr);
DUMP_STAT(statsTxFrameErr);
DUMP_STAT(statsTxOverFlowErr);
DUMP_STAT(statsTxLateCollisionErr);
DUMP_STAT(statsTxExcessCollisionErr);
DUMP_STAT(statsTxUnderFlowErr);
DUMP_STAT(statsTxTsErr);
#endif
}
void enet_buf_info(void)
{
int i = 0;
for (i = 0; i < ENET_RXBD_NUM; i++)
{
rt_kprintf("%d: length: %-8d, control: %04X, buffer:%p\n",
i,
g_rxBuffDescrip[i].length,
g_rxBuffDescrip[i].control,
g_rxBuffDescrip[i].buffer);
}
for (i = 0; i < ENET_TXBD_NUM; i++)
{
rt_kprintf("%d: length: %-8d, control: %04X, buffer:%p\n",
i,
g_txBuffDescrip[i].length,
g_txBuffDescrip[i].control,
g_txBuffDescrip[i].buffer);
}
}
FINSH_FUNCTION_EXPORT(phy_read, read phy register);
FINSH_FUNCTION_EXPORT(phy_write, write phy register);
FINSH_FUNCTION_EXPORT(phy_dump, dump phy registers);
FINSH_FUNCTION_EXPORT(enet_reg_dump, dump enet registers);
FINSH_FUNCTION_EXPORT(enet_nvic_tog, toggle enet nvic pendding bit);
FINSH_FUNCTION_EXPORT(enet_rx_stat, dump enet rx statistic);
FINSH_FUNCTION_EXPORT(enet_buf_info, dump enet tx and tx buffer descripter);
#endif