4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-21 01:03:31 +08:00
2022-03-29 16:33:36 +08:00

813 lines
29 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2020 NXP
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_OS_ABSTRACTION_H_
#define _FSL_OS_ABSTRACTION_H_
#include "fsl_common.h"
#include "fsl_os_abstraction_config.h"
#include "generic_list.h"
/*!
* @addtogroup osa_adapter
* @{
*/
#ifdef __cplusplus
extern "C" {
#endif
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Type for the Task Priority*/
typedef uint16_t osa_task_priority_t;
/*! @brief Type for a task handler */
typedef void *osa_task_handle_t;
/*! @brief Type for the parameter to be passed to the task at its creation */
typedef void *osa_task_param_t;
/*! @brief Type for task pointer. Task prototype declaration */
typedef void (*osa_task_ptr_t)(osa_task_param_t task_param);
/*! @brief Type for the semaphore handler */
typedef void *osa_semaphore_handle_t;
/*! @brief Type for the mutex handler */
typedef void *osa_mutex_handle_t;
/*! @brief Type for the event handler */
typedef void *osa_event_handle_t;
/*! @brief Type for an event flags group, bit 32 is reserved. */
typedef uint32_t osa_event_flags_t;
/*! @brief Message definition. */
typedef void *osa_msg_handle_t;
/*! @brief Type for the message queue handler */
typedef void *osa_msgq_handle_t;
/*! @brief Type for the Timer handler */
typedef void *osa_timer_handle_t;
/*! @brief Type for the Timer callback function pointer. */
typedef void (*osa_timer_fct_ptr_t)(void const *argument);
/*! @brief Thread Definition structure contains startup information of a thread.*/
typedef struct osa_task_def_tag
{
osa_task_ptr_t pthread; /*!< start address of thread function*/
uint32_t tpriority; /*!< initial thread priority*/
uint32_t instances; /*!< maximum number of instances of that thread function*/
uint32_t stacksize; /*!< stack size requirements in bytes; 0 is default stack size*/
uint32_t *tstack; /*!< stack pointer*/
void *tlink; /*!< link pointer*/
uint8_t *tname; /*!< name pointer*/
uint8_t useFloat; /*!< is use float*/
} osa_task_def_t;
/*! @brief Thread Link Definition structure .*/
typedef struct osa_thread_link_tag
{
uint8_t link[12]; /*!< link*/
osa_task_handle_t osThreadId; /*!< thread id*/
osa_task_def_t *osThreadDefHandle; /*!< pointer of thread define handle*/
uint32_t *osThreadStackHandle; /*!< pointer of thread stack handle*/
} osa_thread_link_t, *osa_thread_link_handle_t;
/*! @brief Definition structure contains timer parameters.*/
typedef struct osa_time_def_tag
{
osa_timer_fct_ptr_t pfCallback; /* < start address of a timer function */
void *argument; /* < argument of a timer function */
} osa_time_def_t;
/*! @brief Type for the timer definition*/
typedef enum _osa_timer
{
KOSA_TimerOnce = 0, /*!< one-shot timer*/
KOSA_TimerPeriodic = 1 /*!< repeating timer*/
} osa_timer_t;
/*! @brief Defines the return status of OSA's functions */
typedef enum _osa_status
{
KOSA_StatusSuccess = kStatus_Success, /*!< Success */
KOSA_StatusError = MAKE_STATUS(kStatusGroup_OSA, 1), /*!< Failed */
KOSA_StatusTimeout = MAKE_STATUS(kStatusGroup_OSA, 2), /*!< Timeout occurs while waiting */
KOSA_StatusIdle = MAKE_STATUS(kStatusGroup_OSA, 3), /*!< Used for bare metal only, the wait object is not ready
and timeout still not occur */
} osa_status_t;
#ifdef USE_RTOS
#undef USE_RTOS
#endif
#define USE_RTOS (1)
#if (defined(GENERIC_LIST_LIGHT) && (GENERIC_LIST_LIGHT > 0U))
#define OSA_TASK_HANDLE_SIZE (12U)
#else
#define OSA_TASK_HANDLE_SIZE (16U)
#endif
#define OSA_EVENT_HANDLE_SIZE (8U)
#define OSA_SEM_HANDLE_SIZE (4U)
#define OSA_MUTEX_HANDLE_SIZE (4U)
#define OSA_MSGQ_HANDLE_SIZE (4U)
#define OSA_MSG_HANDLE_SIZE (0U)
/*! @brief Priority setting for OSA. */
#ifndef OSA_PRIORITY_IDLE
#define OSA_PRIORITY_IDLE (6)
#endif
#ifndef OSA_PRIORITY_LOW
#define OSA_PRIORITY_LOW (5)
#endif
#ifndef OSA_PRIORITY_BELOW_NORMAL
#define OSA_PRIORITY_BELOW_NORMAL (4)
#endif
#ifndef OSA_PRIORITY_NORMAL
#define OSA_PRIORITY_NORMAL (3)
#endif
#ifndef OSA_PRIORITY_ABOVE_NORMAL
#define OSA_PRIORITY_ABOVE_NORMAL (2)
#endif
#ifndef OSA_PRIORITY_HIGH
#define OSA_PRIORITY_HIGH (1)
#endif
#ifndef OSA_PRIORITY_REAL_TIME
#define OSA_PRIORITY_REAL_TIME (0)
#endif
#ifndef OSA_TASK_PRIORITY_MAX
#define OSA_TASK_PRIORITY_MAX (0)
#endif
#ifndef OSA_TASK_PRIORITY_MIN
#define OSA_TASK_PRIORITY_MIN (15)
#endif
#define SIZE_IN_UINT32_UNITS(size) (((size) + sizeof(uint32_t) - 1) / sizeof(uint32_t))
/*! @brief Constant to pass as timeout value in order to wait indefinitely. */
#define osaWaitForever_c ((uint32_t)(-1))
#define osaEventFlagsAll_c ((osa_event_flags_t)(0x00FFFFFF))
#define osThreadStackArray(name) osThread_##name##_stack
#define osThreadStackDef(name, stacksize, instances) \
uint32_t osThreadStackArray(name)[SIZE_IN_UINT32_UNITS(stacksize) * (instances)];
/* ==== Thread Management ==== */
/* Create a Thread Definition with function, priority, and stack requirements.
* \param name name of the thread function.
* \param priority initial priority of the thread function.
* \param instances number of possible thread instances.
* \param stackSz stack size (in bytes) requirements for the thread function.
* \param useFloat
*/
#if defined(FSL_RTOS_MQX)
#define OSA_TASK_DEFINE(name, priority, instances, stackSz, useFloat) \
osa_thread_link_t osThreadLink_##name[instances] = {0}; \
osThreadStackDef(name, stackSz, instances) osa_task_def_t os_thread_def_##name = { \
(name), (priority), (instances), (stackSz), osThreadStackArray(name), osThreadLink_##name, \
(uint8_t *)#name, (useFloat)}
#elif defined(FSL_RTOS_UCOSII)
#if gTaskMultipleInstancesManagement_c
#define OSA_TASK_DEFINE(name, priority, instances, stackSz, useFloat) \
osa_thread_link_t osThreadLink_##name[instances] = {0}; \
osThreadStackDef(name, stackSz, instances) osa_task_def_t os_thread_def_##name = { \
(name), (priority), (instances), (stackSz), osThreadStackArray(name), osThreadLink_##name, \
(uint8_t *)#name, (useFloat)}
#else
#define OSA_TASK_DEFINE(name, priority, instances, stackSz, useFloat) \
osThreadStackDef(name, stackSz, instances) osa_task_def_t os_thread_def_##name = { \
(name), (priority), (instances), (stackSz), osThreadStackArray(name), NULL, (uint8_t *)#name, (useFloat)}
#endif
#else
#define OSA_TASK_DEFINE(name, priority, instances, stackSz, useFloat) \
osa_task_def_t os_thread_def_##name = {(name), (priority), (instances), (stackSz), \
NULL, NULL, (uint8_t *)#name, (useFloat)}
#endif
/* Access a Thread defintion.
* \param name name of the thread definition object.
*/
#define OSA_TASK(name) &os_thread_def_##name
#define OSA_TASK_PROTO(name) externosa_task_def_t os_thread_def_##name
/* ==== Timer Management ====
* Define a Timer object.
* \param name name of the timer object.
* \param function name of the timer call back function.
*/
#define OSA_TIMER_DEF(name, function) osa_time_def_t os_timer_def_##name = {(function), NULL}
/* Access a Timer definition.
* \param name name of the timer object.
*/
#define OSA_TIMER(name) &os_timer_def_##name
/* ==== Buffer Definition ==== */
/*!
* @brief Defines the semaphore handle
*
* This macro is used to define a 4 byte aligned semaphore handle.
* Then use "(osa_semaphore_handle_t)name" to get the semaphore handle.
*
* The macro should be global and could be optional. You could also define semaphore handle by yourself.
*
* This is an example,
* @code
* OSA_SEMAPHORE_HANDLE_DEFINE(semaphoreHandle);
* @endcode
*
* @param name The name string of the semaphore handle.
*/
#define OSA_SEMAPHORE_HANDLE_DEFINE(name) \
uint32_t name[(OSA_SEM_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t)]
/*!
* @brief Defines the mutex handle
*
* This macro is used to define a 4 byte aligned mutex handle.
* Then use "(osa_mutex_handle_t)name" to get the mutex handle.
*
* The macro should be global and could be optional. You could also define mutex handle by yourself.
*
* This is an example,
* @code
* OSA_MUTEX_HANDLE_DEFINE(mutexHandle);
* @endcode
*
* @param name The name string of the mutex handle.
*/
#define OSA_MUTEX_HANDLE_DEFINE(name) uint32_t name[(OSA_MUTEX_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t)]
/*!
* @brief Defines the event handle
*
* This macro is used to define a 4 byte aligned event handle.
* Then use "(osa_event_handle_t)name" to get the event handle.
*
* The macro should be global and could be optional. You could also define event handle by yourself.
*
* This is an example,
* @code
* OSA_EVENT_HANDLE_DEFINE(eventHandle);
* @endcode
*
* @param name The name string of the event handle.
*/
#define OSA_EVENT_HANDLE_DEFINE(name) uint32_t name[(OSA_EVENT_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t)]
/*!
* @brief Defines the message queue handle
*
* This macro is used to define a 4 byte aligned message queue handle.
* Then use "(osa_msgq_handle_t)name" to get the message queue handle.
*
* The macro should be global and could be optional. You could also define message queue handle by yourself.
*
* This is an example,
* @code
* OSA_MSGQ_HANDLE_DEFINE(msgqHandle, 3, sizeof(msgStruct));
* @endcode
*
* @param name The name string of the message queue handle.
* @param numberOfMsgs Number of messages.
* @param msgSize Message size.
*
*/
/*< Macro For FREE_RTOS*/
#define OSA_MSGQ_HANDLE_DEFINE(name, numberOfMsgs, msgSize) \
uint32_t name[(OSA_MSGQ_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t)]
/*!
* @brief Defines the TASK handle
*
* This macro is used to define a 4 byte aligned TASK handle.
* Then use "(osa_task_handle_t)name" to get the TASK handle.
*
* The macro should be global and could be optional. You could also define TASK handle by yourself.
*
* This is an example,
* @code
* OSA_TASK_HANDLE_DEFINE(taskHandle);
* @endcode
*
* @param name The name string of the TASK handle.
*/
#define OSA_TASK_HANDLE_DEFINE(name) uint32_t name[(OSA_TASK_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t)]
#include "fsl_os_abstraction_rtthread.h"
extern const uint8_t gUseRtos_c;
/*
* alloc the temporary memory to store the status
*/
#define OSA_SR_ALLOC() uint32_t osaCurrentSr;
/*
* Enter critical mode
*/
#define OSA_ENTER_CRITICAL() OSA_EnterCritical(&osaCurrentSr)
/*
* Exit critical mode and retore the previous mode
*/
#define OSA_EXIT_CRITICAL() OSA_ExitCritical(osaCurrentSr)
/*******************************************************************************
* API
******************************************************************************/
/*!
* @brief Reserves the requested amount of memory in bytes.
*
* The function is used to reserve the requested amount of memory in bytes and initializes it to 0.
*
* @param length Amount of bytes to reserve.
*
* @return Pointer to the reserved memory. NULL if memory can't be allocated.
*/
void *OSA_MemoryAllocate(uint32_t length);
/*!
* @brief Frees the memory previously reserved.
*
* The function is used to free the memory block previously reserved.
*
* @param p Pointer to the start of the memory block previously reserved.
*
*/
void OSA_MemoryFree(void *p);
/*!
* @brief Enter critical with nesting mode.
*
* @param sr Store current status and return to caller.
*/
void OSA_EnterCritical(uint32_t *sr);
/*!
* @brief Exit critical with nesting mode.
*
* @param sr Previous status to restore.
*/
void OSA_ExitCritical(uint32_t sr);
/*!
* @name Task management
* @{
*/
/*!
* @brief Creates a task.
*
* This function is used to create task based on the resources defined
* by the macro OSA_TASK_DEFINE.
*
* Example below shows how to use this API to create the task handle.
* @code
* OSA_TASK_HANDLE_DEFINE(taskHandle);
* OSA_TASK_DEFINE( Job1, OSA_PRIORITY_HIGH, 1, 800, 0);
* OSA_TaskCreate((osa_task_handle_t)taskHandle, OSA_TASK(Job1), (osa_task_param_t)NULL);
* @endcode
*
* @param taskHandle Pointer to a memory space of size OSA_TASK_HANDLE_SIZE allocated by the caller, task handle.
* The handle should be 4 byte aligned, because unaligned access doesn't be supported on some devices.
* You can define the handle in the following two ways:
* #OSA_TASK_HANDLE_DEFINE(taskHandle);
* or
* uint32_t taskHandle[((OSA_TASK_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))];
* @param thread_def pointer to theosa_task_def_t structure which defines the task.
* @param task_param Pointer to be passed to the task when it is created.
* @retval KOSA_StatusSuccess The task is successfully created.
* @retval KOSA_StatusError The task can not be created.
*/
#if ((defined(FSL_OSA_TASK_ENABLE)) && (FSL_OSA_TASK_ENABLE > 0U))
osa_status_t OSA_TaskCreate(osa_task_handle_t taskHandle, osa_task_def_t *thread_def, osa_task_param_t task_param);
#endif /* FSL_OSA_TASK_ENABLE */
/*!
* @brief Gets the handler of active task.
*
* @return Handler to current active task.
*/
#if ((defined(FSL_OSA_TASK_ENABLE)) && (FSL_OSA_TASK_ENABLE > 0U))
osa_task_handle_t OSA_TaskGetCurrentHandle(void);
#endif /* FSL_OSA_TASK_ENABLE */
/*!
* @brief Puts the active task to the end of scheduler's queue.
*
* When a task calls this function, it gives up the CPU and puts itself to the
* end of a task ready list.
*
* @retval KOSA_StatusSuccess The function is called successfully.
* @retval KOSA_StatusError Error occurs with this function.
*/
#if ((defined(FSL_OSA_TASK_ENABLE)) && (FSL_OSA_TASK_ENABLE > 0U))
osa_status_t OSA_TaskYield(void);
#endif /* FSL_OSA_TASK_ENABLE */
/*!
* @brief Gets the priority of a task.
*
* @param taskHandle The handler of the task whose priority is received.
*
* @return Task's priority.
*/
#if ((defined(FSL_OSA_TASK_ENABLE)) && (FSL_OSA_TASK_ENABLE > 0U))
osa_task_priority_t OSA_TaskGetPriority(osa_task_handle_t taskHandle);
#endif /* FSL_OSA_TASK_ENABLE */
/*!
* @brief Sets the priority of a task.
*
* @param taskHandle The handler of the task whose priority is set.
* @param taskPriority The priority to set.
*
* @retval KOSA_StatusSuccess Task's priority is set successfully.
* @retval KOSA_StatusError Task's priority can not be set.
*/
#if ((defined(FSL_OSA_TASK_ENABLE)) && (FSL_OSA_TASK_ENABLE > 0U))
osa_status_t OSA_TaskSetPriority(osa_task_handle_t taskHandle, osa_task_priority_t taskPriority);
#endif /* FSL_OSA_TASK_ENABLE */
/*!
* @brief Destroys a previously created task.
*
* @param taskHandle The handler of the task to destroy.
*
* @retval KOSA_StatusSuccess The task was successfully destroyed.
* @retval KOSA_StatusError Task destruction failed or invalid parameter.
*/
#if ((defined(FSL_OSA_TASK_ENABLE)) && (FSL_OSA_TASK_ENABLE > 0U))
osa_status_t OSA_TaskDestroy(osa_task_handle_t taskHandle);
#endif /* FSL_OSA_TASK_ENABLE */
/*!
* @brief Creates a semaphore with a given value.
*
* This function creates a semaphore and sets the value to the parameter
* initValue.
*
* Example below shows how to use this API to create the semaphore handle.
* @code
* OSA_SEMAPHORE_HANDLE_DEFINE(semaphoreHandle);
* OSA_SemaphoreCreate((osa_semaphore_handle_t)semaphoreHandle, 0xff);
* @endcode
*
* @param semaphoreHandle Pointer to a memory space of size OSA_SEM_HANDLE_SIZE allocated by the caller.
* The handle should be 4 byte aligned, because unaligned access doesn't be supported on some devices.
* You can define the handle in the following two ways:
* #OSA_SEMAPHORE_HANDLE_DEFINE(semaphoreHandle);
* or
* uint32_t semaphoreHandle[((OSA_SEM_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))];
* @param initValue Initial value the semaphore will be set to.
*
* @retval KOSA_StatusSuccess the new semaphore if the semaphore is created successfully.
* @retval KOSA_StatusError if the semaphore can not be created.
*/
osa_status_t OSA_SemaphoreCreate(osa_semaphore_handle_t semaphoreHandle, uint32_t initValue);
/*!
* @brief Destroys a previously created semaphore.
*
* @param semaphoreHandle The semaphore handle.
* The macro SEMAPHORE_HANDLE_BUFFER_GET is used to get the semaphore buffer pointer,
* and should not be used before the macro SEMAPHORE_HANDLE_BUFFER_DEFINE is used.
*
* @retval KOSA_StatusSuccess The semaphore is successfully destroyed.
* @retval KOSA_StatusError The semaphore can not be destroyed.
*/
osa_status_t OSA_SemaphoreDestroy(osa_semaphore_handle_t semaphoreHandle);
/*!
* @brief Pending a semaphore with timeout.
*
* This function checks the semaphore's counting value. If it is positive,
* decreases it and returns KOSA_StatusSuccess. Otherwise, a timeout is used
* to wait.
*
* @param semaphoreHandle The semaphore handle.
* @param millisec The maximum number of milliseconds to wait if semaphore is not
* positive. Pass osaWaitForever_c to wait indefinitely, pass 0
* will return KOSA_StatusTimeout immediately.
*
* @retval KOSA_StatusSuccess The semaphore is received.
* @retval KOSA_StatusTimeout The semaphore is not received within the specified 'timeout'.
* @retval KOSA_StatusError An incorrect parameter was passed.
*/
osa_status_t OSA_SemaphoreWait(osa_semaphore_handle_t semaphoreHandle, uint32_t millisec);
/*!
* @brief Signals for someone waiting on the semaphore to wake up.
*
* Wakes up one task that is waiting on the semaphore. If no task is waiting, increases
* the semaphore's counting value.
*
* @param semaphoreHandle The semaphore handle to signal.
*
* @retval KOSA_StatusSuccess The semaphore is successfully signaled.
* @retval KOSA_StatusError The object can not be signaled or invalid parameter.
*
*/
osa_status_t OSA_SemaphorePost(osa_semaphore_handle_t semaphoreHandle);
/*!
* @brief Create an unlocked mutex.
*
* This function creates a non-recursive mutex and sets it to unlocked status.
*
* Example below shows how to use this API to create the mutex handle.
* @code
* OSA_MUTEX_HANDLE_DEFINE(mutexHandle);
* OSA_MutexCreate((osa_mutex_handle_t)mutexHandle);
* @endcode
*
* @param mutexHandle Pointer to a memory space of size OSA_MUTEX_HANDLE_SIZE allocated by the caller.
* The handle should be 4 byte aligned, because unaligned access doesn't be supported on some devices.
* You can define the handle in the following two ways:
* #OSA_MUTEX_HANDLE_DEFINE(mutexHandle);
* or
* uint32_t mutexHandle[((OSA_MUTEX_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))];
* @retval KOSA_StatusSuccess the new mutex if the mutex is created successfully.
* @retval KOSA_StatusError if the mutex can not be created.
*/
osa_status_t OSA_MutexCreate(osa_mutex_handle_t mutexHandle);
/*!
* @brief Waits for a mutex and locks it.
*
* This function checks the mutex's status. If it is unlocked, locks it and returns the
* KOSA_StatusSuccess. Otherwise, waits for a timeout in milliseconds to lock.
*
* @param mutexHandle The mutex handle.
* @param millisec The maximum number of milliseconds to wait for the mutex.
* If the mutex is locked, Pass the value osaWaitForever_c will
* wait indefinitely, pass 0 will return KOSA_StatusTimeout
* immediately.
*
* @retval KOSA_StatusSuccess The mutex is locked successfully.
* @retval KOSA_StatusTimeout Timeout occurred.
* @retval KOSA_StatusError Incorrect parameter was passed.
*
* @note This is non-recursive mutex, a task can not try to lock the mutex it has locked.
*/
osa_status_t OSA_MutexLock(osa_mutex_handle_t mutexHandle, uint32_t millisec);
/*!
* @brief Unlocks a previously locked mutex.
*
* @param mutexHandle The mutex handle.
*
* @retval KOSA_StatusSuccess The mutex is successfully unlocked.
* @retval KOSA_StatusError The mutex can not be unlocked or invalid parameter.
*/
osa_status_t OSA_MutexUnlock(osa_mutex_handle_t mutexHandle);
/*!
* @brief Destroys a previously created mutex.
*
* @param mutexHandle The mutex handle.
*
* @retval KOSA_StatusSuccess The mutex is successfully destroyed.
* @retval KOSA_StatusError The mutex can not be destroyed.
*
*/
osa_status_t OSA_MutexDestroy(osa_mutex_handle_t mutexHandle);
/*!
* @brief Initializes an event object with all flags cleared.
*
* This function creates an event object and set its clear mode. If autoClear
* is 1, when a task gets the event flags, these flags will be
* cleared automatically. Otherwise these flags must
* be cleared manually.
*
* Example below shows how to use this API to create the event handle.
* @code
* OSA_EVENT_HANDLE_DEFINE(eventHandle);
* OSA_EventCreate((osa_event_handle_t)eventHandle, 0);
* @endcode
*
* @param eventHandle Pointer to a memory space of size OSA_EVENT_HANDLE_SIZE allocated by the caller.
* The handle should be 4 byte aligned, because unaligned access doesn't be supported on some devices.
* You can define the handle in the following two ways:
* #OSA_EVENT_HANDLE_DEFINE(eventHandle);
* or
* uint32_t eventHandle[((OSA_EVENT_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))];
* @param autoClear 1 The event is auto-clear.
* 0 The event manual-clear
* @retval KOSA_StatusSuccess the new event if the event is created successfully.
* @retval KOSA_StatusError if the event can not be created.
*/
osa_status_t OSA_EventCreate(osa_event_handle_t eventHandle, uint8_t autoClear);
/*!
* @brief Sets one or more event flags.
*
* Sets specified flags of an event object.
*
* @param eventHandle The event handle.
* @param flagsToSet Flags to be set.
*
* @retval KOSA_StatusSuccess The flags were successfully set.
* @retval KOSA_StatusError An incorrect parameter was passed.
*/
osa_status_t OSA_EventSet(osa_event_handle_t eventHandle, osa_event_flags_t flagsToSet);
/*!
* @brief Clears one or more flags.
*
* Clears specified flags of an event object.
*
* @param eventHandle The event handle.
* @param flagsToClear Flags to be clear.
*
* @retval KOSA_StatusSuccess The flags were successfully cleared.
* @retval KOSA_StatusError An incorrect parameter was passed.
*/
osa_status_t OSA_EventClear(osa_event_handle_t eventHandle, osa_event_flags_t flagsToClear);
/*!
* @brief Get event's flags.
*
* Get specified flags of an event object.
*
* @param eventHandle The event handle.
* The macro EVENT_HANDLE_BUFFER_GET is used to get the event buffer pointer,
* and should not be used before the macro EVENT_HANDLE_BUFFER_DEFINE is used.
* @param flagsMask The flags user want to get are specified by this parameter.
* @param pFlagsOfEvent The event flags are obtained by this parameter.
*
* @retval KOSA_StatusSuccess The event flags were successfully got.
* @retval KOSA_StatusError An incorrect parameter was passed.
*/
osa_status_t OSA_EventGet(osa_event_handle_t eventHandle,
osa_event_flags_t flagsMask,
osa_event_flags_t *pFlagsOfEvent);
/*!
* @brief Waits for specified event flags to be set.
*
* This function waits for a combination of flags to be set in an event object.
* Applications can wait for any/all bits to be set. Also this function could
* obtain the flags who wakeup the waiting task.
*
* @param eventHandle The event handle.
* @param flagsToWait Flags that to wait.
* @param waitAll Wait all flags or any flag to be set.
* @param millisec The maximum number of milliseconds to wait for the event.
* If the wait condition is not met, pass osaWaitForever_c will
* wait indefinitely, pass 0 will return KOSA_StatusTimeout
* immediately.
* @param pSetFlags Flags that wakeup the waiting task are obtained by this parameter.
*
* @retval KOSA_StatusSuccess The wait condition met and function returns successfully.
* @retval KOSA_StatusTimeout Has not met wait condition within timeout.
* @retval KOSA_StatusError An incorrect parameter was passed.
*
* @note Please pay attention to the flags bit width, FreeRTOS uses the most
* significant 8 bis as control bits, so do not wait these bits while using
* FreeRTOS.
*
*/
osa_status_t OSA_EventWait(osa_event_handle_t eventHandle,
osa_event_flags_t flagsToWait,
uint8_t waitAll,
uint32_t millisec,
osa_event_flags_t *pSetFlags);
/*!
* @brief Destroys a previously created event object.
*
* @param eventHandle The event handle.
*
* @retval KOSA_StatusSuccess The event is successfully destroyed.
* @retval KOSA_StatusError Event destruction failed.
*/
osa_status_t OSA_EventDestroy(osa_event_handle_t eventHandle);
/*!
* @brief Initializes a message queue.
*
* This function allocates memory for and initializes a message queue. Message queue elements are hardcoded as void*.
*
* Example below shows how to use this API to create the massage queue handle.
* @code
* OSA_MSGQ_HANDLE_DEFINE(msgqHandle);
* OSA_MsgQCreate((osa_msgq_handle_t)msgqHandle, 5U, sizeof(msg));
* @endcode
*
* @param msgqHandle Pointer to a memory space of size #(OSA_MSGQ_HANDLE_SIZE + msgNo*msgSize) on bare-matel
* and #(OSA_MSGQ_HANDLE_SIZE) on FreeRTOS allocated by the caller, message queue handle.
* The handle should be 4 byte aligned, because unaligned access doesn't be supported on some devices.
* You can define the handle in the following two ways:
* #OSA_MSGQ_HANDLE_DEFINE(msgqHandle);
* or
* For bm: uint32_t msgqHandle[((OSA_MSGQ_HANDLE_SIZE + msgNo*msgSize + sizeof(uint32_t) - 1U) / sizeof(uint32_t))];
* For freertos: uint32_t msgqHandle[((OSA_MSGQ_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))];
* @param msgNo :number of messages the message queue should accommodate.
* @param msgSize :size of a single message structure.
*
* @retval KOSA_StatusSuccess Message queue successfully Create.
* @retval KOSA_StatusError Message queue create failure.
*/
osa_status_t OSA_MsgQCreate(osa_msgq_handle_t msgqHandle, uint32_t msgNo, uint32_t msgSize);
/*!
* @brief Puts a message at the end of the queue.
*
* This function puts a message to the end of the message queue. If the queue
* is full, this function returns the KOSA_StatusError;
*
* @param msgqHandle Message Queue handler.
* @param pMessage Pointer to the message to be put into the queue.
*
* @retval KOSA_StatusSuccess Message successfully put into the queue.
* @retval KOSA_StatusError The queue was full or an invalid parameter was passed.
*/
osa_status_t OSA_MsgQPut(osa_msgq_handle_t msgqHandle, osa_msg_handle_t pMessage);
/*!
* @brief Reads and remove a message at the head of the queue.
*
* This function gets a message from the head of the message queue. If the
* queue is empty, timeout is used to wait.
*
* @param msgqHandle Message Queue handler.
* @param pMessage Pointer to a memory to save the message.
* @param millisec The number of milliseconds to wait for a message. If the
* queue is empty, pass osaWaitForever_c will wait indefinitely,
* pass 0 will return KOSA_StatusTimeout immediately.
*
* @retval KOSA_StatusSuccess Message successfully obtained from the queue.
* @retval KOSA_StatusTimeout The queue remains empty after timeout.
* @retval KOSA_StatusError Invalid parameter.
*/
osa_status_t OSA_MsgQGet(osa_msgq_handle_t msgqHandle, osa_msg_handle_t pMessage, uint32_t millisec);
/*!
* @brief Destroys a previously created queue.
*
* @param msgqHandle Message Queue handler.
*
* @retval KOSA_StatusSuccess The queue was successfully destroyed.
* @retval KOSA_StatusError Message queue destruction failed.
*/
osa_status_t OSA_MsgQDestroy(osa_msgq_handle_t msgqHandle);
/*!
* @brief Enable all interrupts.
*/
void OSA_InterruptEnable(void);
/*!
* @brief Disable all interrupts.
*/
void OSA_InterruptDisable(void);
/*!
* @brief Enable all interrupts using PRIMASK.
*/
void OSA_EnableIRQGlobal(void);
/*!
* @brief Disable all interrupts using PRIMASK.
*/
void OSA_DisableIRQGlobal(void);
/*!
* @brief Delays execution for a number of milliseconds.
*
* @param millisec The time in milliseconds to wait.
*/
void OSA_TimeDelay(uint32_t millisec);
/*!
* @brief This function gets current time in milliseconds.
*
* @retval current time in milliseconds
*/
uint32_t OSA_TimeGetMsec(void);
/*!
* @brief Installs the interrupt handler.
*
* @param IRQNumber IRQ number of the interrupt.
* @param handler The interrupt handler to install.
*/
void OSA_InstallIntHandler(uint32_t IRQNumber, void (*handler)(void));
/*! @}*/
#ifdef __cplusplus
}
#endif
/*! @}*/
#endif