rt-thread-official/components/drivers/wlan/wlan_lwip.c

505 lines
13 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-08-14 tyx the first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <wlan_dev.h>
#include <wlan_prot.h>
#include <wlan_workqueue.h>
#ifdef RT_USING_LWIP
#include <netif/ethernetif.h>
#include <lwip/netifapi.h>
#ifdef LWIP_USING_DHCPD
#include <dhcp_server.h>
#endif
#define DBG_TAG "WLAN.lwip"
#ifdef RT_WLAN_LWIP_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* RT_WLAN_LWIP_DEBUG */
#include <rtdbg.h>
#ifndef IPADDR_STRLEN_MAX
#define IPADDR_STRLEN_MAX (32)
#endif
struct lwip_prot_des
{
struct rt_wlan_prot prot;
struct eth_device eth;
rt_int8_t connected_flag;
struct rt_timer timer;
struct rt_work work;
};
static void netif_is_ready(struct rt_work *work, void *parameter)
{
ip_addr_t ip_addr_zero = { 0 };
struct rt_wlan_device *wlan = parameter;
struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot;
struct eth_device *eth_dev = &lwip_prot->eth;
rt_base_t level;
struct rt_wlan_buff buff;
rt_uint32_t ip_addr[4];
char str[IPADDR_STRLEN_MAX];
rt_timer_stop(&lwip_prot->timer);
if (ip_addr_cmp(&(eth_dev->netif->ip_addr), &ip_addr_zero) != 0)
{
rt_timer_start(&lwip_prot->timer);
goto exit;
}
rt_memset(&ip_addr, 0, sizeof(ip_addr));
#if LWIP_IPV4 && LWIP_IPV6
if (eth_dev->netif->ip_addr.type == IPADDR_TYPE_V4)
{
ip_addr[0] = ip4_addr_get_u32(&eth_dev->netif->ip_addr.u_addr.ip4);
buff.data = &ip_addr[0];
buff.len = sizeof(ip_addr[0]);
}
else if (eth_dev->netif->ip_addr.type == IPADDR_TYPE_V6)
{
*(ip6_addr_t *)(&ip_addr[0]) = eth_dev->netif->ip_addr.u_addr.ip6;
buff.data = ip_addr;
buff.len = sizeof(ip_addr);
}
else
{
LOG_W("F:%s L:%d ip addr type not support", __FUNCTION__, __LINE__);
}
#else
#if LWIP_IPV4
ip_addr[0] = ip4_addr_get_u32(&eth_dev->netif->ip_addr);
buff.data = &ip_addr[0];
buff.len = sizeof(ip_addr[0]);
#else
*(ip_addr_t *)(&ip_addr[0]) = eth_dev->netif->ip_addr;
buff.data = ip_addr;
buff.len = sizeof(ip_addr);
#endif
#endif
if (rt_wlan_prot_ready(wlan, &buff) != 0)
{
rt_timer_start(&lwip_prot->timer);
goto exit;
}
rt_memset(str, 0, IPADDR_STRLEN_MAX);
rt_enter_critical();
rt_memcpy(str, ipaddr_ntoa(&(eth_dev->netif->ip_addr)), IPADDR_STRLEN_MAX);
rt_exit_critical();
LOG_I("Got IP address : %s", str);
exit:
level = rt_hw_interrupt_disable();
rt_memset(work, 0, sizeof(struct rt_work));
rt_hw_interrupt_enable(level);
}
static void timer_callback(void *parameter)
{
struct rt_workqueue *workqueue;
struct rt_wlan_device *wlan = parameter;
struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot;
struct rt_work *work = &lwip_prot->work;
rt_base_t level;
workqueue = rt_wlan_get_workqueue();
if (workqueue != RT_NULL)
{
level = rt_hw_interrupt_disable();
rt_work_init(work, netif_is_ready, parameter);
rt_hw_interrupt_enable(level);
if (rt_workqueue_dowork(workqueue, work) != RT_EOK)
{
level = rt_hw_interrupt_disable();
rt_memset(work, 0, sizeof(struct rt_work));
rt_hw_interrupt_enable(level);
}
}
}
static void netif_set_connected(void *parameter)
{
struct rt_wlan_device *wlan = parameter;
struct lwip_prot_des *lwip_prot = wlan->prot;
struct eth_device *eth_dev = &lwip_prot->eth;
if (lwip_prot->connected_flag)
{
if (wlan->mode == RT_WLAN_STATION)
{
LOG_D("F:%s L:%d dhcp start run", __FUNCTION__, __LINE__);
netifapi_netif_common(eth_dev->netif, netif_set_link_up, NULL);
#ifdef RT_LWIP_DHCP
dhcp_start(eth_dev->netif);
#endif
rt_timer_start(&lwip_prot->timer);
}
else if (wlan->mode == RT_WLAN_AP)
{
LOG_D("F:%s L:%d dhcpd start run", __FUNCTION__, __LINE__);
netifapi_netif_common(eth_dev->netif, netif_set_link_up, NULL);
#ifdef LWIP_USING_DHCPD
{
char netif_name[8];
int i;
rt_memset(netif_name, 0, sizeof(netif_name));
for (i = 0; i < sizeof(eth_dev->netif->name); i++)
{
netif_name[i] = eth_dev->netif->name[i];
}
dhcpd_start(netif_name);
}
#endif
}
}
else
{
if (wlan->mode == RT_WLAN_STATION)
{
LOG_D("F:%s L:%d dhcp stop run", __FUNCTION__, __LINE__);
netifapi_netif_common(eth_dev->netif, netif_set_link_down, NULL);
#ifdef RT_LWIP_DHCP
{
ip_addr_t ip_addr = { 0 };
dhcp_stop(eth_dev->netif);
netif_set_addr(eth_dev->netif, &ip_addr, &ip_addr, &ip_addr);
}
#endif
rt_timer_stop(&lwip_prot->timer);
}
else if (wlan->mode == RT_WLAN_AP)
{
LOG_D("F:%s L:%d dhcpd stop run", __FUNCTION__, __LINE__);
netifapi_netif_common(eth_dev->netif, netif_set_link_down, NULL);
}
}
}
static void rt_wlan_lwip_event_handle(struct rt_wlan_prot *port, struct rt_wlan_device *wlan, int event)
{
struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot;
rt_bool_t flag_old;
flag_old = lwip_prot->connected_flag;
switch (event)
{
case RT_WLAN_PROT_EVT_CONNECT:
{
LOG_D("event: CONNECT");
lwip_prot->connected_flag = RT_TRUE;
break;
}
case RT_WLAN_PROT_EVT_DISCONNECT:
{
LOG_D("event: DISCONNECT");
lwip_prot->connected_flag = RT_FALSE;
break;
}
case RT_WLAN_PROT_EVT_AP_START:
{
LOG_D("event: AP_START");
lwip_prot->connected_flag = RT_TRUE;
break;
}
case RT_WLAN_PROT_EVT_AP_STOP:
{
LOG_D("event: AP_STOP");
lwip_prot->connected_flag = RT_FALSE;
break;
}
case RT_WLAN_PROT_EVT_AP_ASSOCIATED:
{
LOG_D("event: ASSOCIATED");
break;
}
case RT_WLAN_PROT_EVT_AP_DISASSOCIATED:
{
LOG_D("event: DISASSOCIATED");
break;
}
default :
{
LOG_D("event: UNKNOWN");
break;
}
}
if (flag_old != lwip_prot->connected_flag)
{
rt_wlan_workqueue_dowork(netif_set_connected, wlan);
// netif_set_connected(wlan);
}
}
static rt_err_t rt_wlan_lwip_protocol_control(rt_device_t device, int cmd, void *args)
{
struct eth_device *eth_dev = (struct eth_device *)device;
struct rt_wlan_device *wlan;
rt_err_t err = RT_EOK;
RT_ASSERT(eth_dev != RT_NULL);
LOG_D("F:%s L:%d device:0x%08x user_data:0x%08x", __FUNCTION__, __LINE__, eth_dev, eth_dev->parent.user_data);
switch (cmd)
{
case NIOCTL_GADDR:
/* get MAC address */
wlan = eth_dev->parent.user_data;
err = rt_device_control((rt_device_t)wlan, RT_WLAN_CMD_GET_MAC, args);
break;
default :
break;
}
return err;
}
static rt_err_t rt_wlan_lwip_protocol_recv(struct rt_wlan_device *wlan, void *buff, int len)
{
struct eth_device *eth_dev = &((struct lwip_prot_des *)wlan->prot)->eth;
struct pbuf *p = RT_NULL;
LOG_D("F:%s L:%d run", __FUNCTION__, __LINE__);
if (eth_dev == RT_NULL)
{
return -RT_ERROR;
}
#ifdef RT_WLAN_PROT_LWIP_PBUF_FORCE
{
p = buff;
if ((eth_dev->netif->input(p, eth_dev->netif)) != ERR_OK)
{
return -RT_ERROR;
}
return RT_EOK;
}
#else
{
int count = 0;
while (p == RT_NULL)
{
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p != RT_NULL)
break;
p = pbuf_alloc(PBUF_RAW, len, PBUF_RAM);
if (p != RT_NULL)
break;
LOG_D("F:%s L:%d wait for pbuf_alloc!", __FUNCTION__, __LINE__);
rt_thread_delay(1);
count++;
//wait for 10ms or give up!!
if (count >= 10)
{
LOG_W("F:%s L:%d pbuf allocate fail!!!", __FUNCTION__, __LINE__);
return -RT_ENOMEM;
}
}
/*copy data dat -> pbuf*/
pbuf_take(p, buff, len);
if ((eth_dev->netif->input(p, eth_dev->netif)) != ERR_OK)
{
LOG_D("F:%s L:%d IP input error", __FUNCTION__, __LINE__);
pbuf_free(p);
p = RT_NULL;
}
LOG_D("F:%s L:%d netif iput success! len:%d", __FUNCTION__, __LINE__, len);
return RT_EOK;
}
#endif
}
static rt_err_t rt_wlan_lwip_protocol_send(rt_device_t device, struct pbuf *p)
{
struct rt_wlan_device *wlan = ((struct eth_device *)device)->parent.user_data;
LOG_D("F:%s L:%d run", __FUNCTION__, __LINE__);
if (wlan == RT_NULL)
{
return RT_EOK;
}
#ifdef RT_WLAN_PROT_LWIP_PBUF_FORCE
{
rt_wlan_prot_transfer_dev(wlan, p, p->tot_len);
return RT_EOK;
}
#else
{
rt_uint8_t *frame;
/* sending data directly */
if (p->len == p->tot_len)
{
frame = (rt_uint8_t *)p->payload;
rt_wlan_prot_transfer_dev(wlan, frame, p->tot_len);
LOG_D("F:%s L:%d run len:%d", __FUNCTION__, __LINE__, p->tot_len);
return RT_EOK;
}
frame = rt_malloc(p->tot_len);
if (frame == RT_NULL)
{
LOG_E("F:%s L:%d malloc out_buf fail\n", __FUNCTION__, __LINE__);
return -RT_ENOMEM;
}
/*copy pbuf -> data dat*/
pbuf_copy_partial(p, frame, p->tot_len, 0);
/* send data */
rt_wlan_prot_transfer_dev(wlan, frame, p->tot_len);
LOG_D("F:%s L:%d run len:%d", __FUNCTION__, __LINE__, p->tot_len);
rt_free(frame);
return RT_EOK;
}
#endif
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops wlan_lwip_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
rt_wlan_lwip_protocol_control
};
#endif
static struct rt_wlan_prot *rt_wlan_lwip_protocol_register(struct rt_wlan_prot *prot, struct rt_wlan_device *wlan)
{
struct eth_device *eth = RT_NULL;
static rt_uint8_t id = 0;
char eth_name[4], timer_name[16];
rt_device_t device = RT_NULL;
struct lwip_prot_des *lwip_prot;
if (wlan == RT_NULL || prot == RT_NULL)
return RT_NULL;;
LOG_D("F:%s L:%d is run wlan:0x%08x", __FUNCTION__, __LINE__, wlan);
do
{
/* find ETH device name */
eth_name[0] = 'w';
eth_name[1] = '0' + id++;
eth_name[2] = '\0';
device = rt_device_find(eth_name);
}
while (device);
if (id > 9)
{
LOG_E("F:%s L:%d not find Empty name", __FUNCTION__, __LINE__, eth_name);
return RT_NULL;
}
if (rt_device_open((rt_device_t)wlan, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
{
LOG_E("F:%s L:%d open wlan failed", __FUNCTION__, __LINE__);
return RT_NULL;
}
lwip_prot = rt_malloc(sizeof(struct lwip_prot_des));
if (lwip_prot == RT_NULL)
{
LOG_E("F:%s L:%d malloc mem failed", __FUNCTION__, __LINE__);
rt_device_close((rt_device_t)wlan);
return RT_NULL;
}
rt_memset(lwip_prot, 0, sizeof(struct lwip_prot_des));
eth = &lwip_prot->eth;
#ifdef RT_USING_DEVICE_OPS
eth->parent.ops = &wlan_lwip_ops;
#else
eth->parent.init = RT_NULL;
eth->parent.open = RT_NULL;
eth->parent.close = RT_NULL;
eth->parent.read = RT_NULL;
eth->parent.write = RT_NULL;
eth->parent.control = rt_wlan_lwip_protocol_control;
#endif
eth->parent.user_data = wlan;
eth->eth_rx = RT_NULL;
eth->eth_tx = rt_wlan_lwip_protocol_send;
/* register ETH device */
if (eth_device_init(eth, eth_name) != RT_EOK)
{
LOG_E("eth device init failed");
rt_device_close((rt_device_t)wlan);
rt_free(lwip_prot);
return RT_NULL;
}
rt_memcpy(&lwip_prot->prot, prot, sizeof(struct rt_wlan_prot));
if (wlan->mode == RT_WLAN_STATION)
{
rt_sprintf(timer_name, "timer_%s", eth_name);
rt_timer_init(&lwip_prot->timer, timer_name, timer_callback, wlan, rt_tick_from_millisecond(1000),
RT_TIMER_FLAG_SOFT_TIMER | RT_TIMER_FLAG_ONE_SHOT);
}
netif_set_up(eth->netif);
LOG_I("eth device init ok name:%s", eth_name);
return &lwip_prot->prot;
}
static void rt_wlan_lwip_protocol_unregister(struct rt_wlan_prot *prot, struct rt_wlan_device *wlan)
{
/*TODO*/
LOG_D("F:%s L:%d is run wlan:0x%08x", __FUNCTION__, __LINE__, wlan);
}
static struct rt_wlan_prot_ops ops =
{
rt_wlan_lwip_protocol_recv,
rt_wlan_lwip_protocol_register,
rt_wlan_lwip_protocol_unregister
};
int rt_wlan_lwip_init(void)
{
static struct rt_wlan_prot prot;
rt_wlan_prot_event_t event;
rt_memset(&prot, 0, sizeof(prot));
rt_strncpy(&prot.name[0], RT_WLAN_PROT_LWIP, RT_WLAN_PROT_NAME_LEN);
prot.ops = &ops;
if (rt_wlan_prot_regisetr(&prot) != RT_EOK)
{
LOG_E("F:%s L:%d protocol regisetr failed", __FUNCTION__, __LINE__);
return -1;
}
for (event = RT_WLAN_PROT_EVT_INIT_DONE; event < RT_WLAN_PROT_EVT_MAX; event++)
{
rt_wlan_prot_event_register(&prot, event, rt_wlan_lwip_event_handle);
}
return 0;
}
INIT_PREV_EXPORT(rt_wlan_lwip_init);
#endif