rt-thread-official/components/drivers/pm/pm.c

899 lines
21 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2012-06-02 Bernard the first version
* 2018-08-02 Tanek split run and sleep modes, support custom mode
* 2019-04-28 Zero-Free improve PM mode and device ops interface
* 2020-11-23 zhangsz update pm mode select
* 2020-11-27 zhangsz update pm 2.0
*/
#include <rthw.h>
#include <rtthread.h>
#include <drivers/pm.h>
#ifdef RT_USING_PM
static struct rt_pm _pm;
/* default mode : system power on */
static rt_uint8_t _pm_default_sleep = RT_PM_DEFAULT_SLEEP_MODE;
/* default deepsleep mode : tick-less mode */
static rt_uint8_t _pm_default_deepsleep = RT_PM_DEFAULT_DEEPSLEEP_MODE;
static struct rt_pm_notify _pm_notify;
static rt_uint8_t _pm_init_flag = 0;
#define RT_PM_TICKLESS_THRESH (2)
RT_WEAK rt_uint32_t rt_pm_enter_critical(rt_uint8_t sleep_mode)
{
return rt_hw_interrupt_disable();
}
RT_WEAK void rt_pm_exit_critical(rt_uint32_t ctx, rt_uint8_t sleep_mode)
{
rt_hw_interrupt_enable(ctx);
}
/**
* This function will suspend all registered devices
*/
static int _pm_device_suspend(rt_uint8_t mode)
{
int index, ret = RT_EOK;
for (index = 0; index < _pm.device_pm_number; index++)
{
if (_pm.device_pm[index].ops->suspend != RT_NULL)
{
ret = _pm.device_pm[index].ops->suspend(_pm.device_pm[index].device, mode);
if(ret != RT_EOK)
break;
}
}
return ret;
}
/**
* This function will resume all registered devices
*/
static void _pm_device_resume(rt_uint8_t mode)
{
int index;
for (index = 0; index < _pm.device_pm_number; index++)
{
if (_pm.device_pm[index].ops->resume != RT_NULL)
{
_pm.device_pm[index].ops->resume(_pm.device_pm[index].device, mode);
}
}
}
/**
* This function will update the frequency of all registered devices
*/
static void _pm_device_frequency_change(rt_uint8_t mode)
{
rt_uint32_t index;
/* make the frequency change */
for (index = 0; index < _pm.device_pm_number; index ++)
{
if (_pm.device_pm[index].ops->frequency_change != RT_NULL)
_pm.device_pm[index].ops->frequency_change(_pm.device_pm[index].device, mode);
}
}
/**
* This function will update the system clock frequency when idle
*/
static void _pm_frequency_scaling(struct rt_pm *pm)
{
rt_base_t level;
if (pm->flags & RT_PM_FREQUENCY_PENDING)
{
level = rt_hw_interrupt_disable();
/* change system runing mode */
pm->ops->run(pm, pm->run_mode);
/* changer device frequency */
_pm_device_frequency_change(pm->run_mode);
pm->flags &= ~RT_PM_FREQUENCY_PENDING;
rt_hw_interrupt_enable(level);
}
}
/**
* This function selects the sleep mode according to the rt_pm_request/rt_pm_release count.
*/
static rt_uint8_t _pm_select_sleep_mode(struct rt_pm *pm)
{
int index;
rt_uint8_t mode;
mode = _pm_default_deepsleep;
for (index = PM_SLEEP_MODE_NONE; index < PM_SLEEP_MODE_MAX; index ++)
{
if (pm->modes[index])
{
mode = index;
break;
}
}
pm->sleep_mode = mode;
return mode;
}
/**
* pm module request delay sleep.
*/
void rt_pm_module_delay_sleep(rt_uint8_t module_id, rt_tick_t timeout)
{
rt_base_t level;
struct rt_pm *pm;
if (_pm_init_flag == 0)
return;
if (module_id > (PM_MODULE_MAX_ID - 1))
return;
level = rt_hw_interrupt_disable();
pm = &_pm;
pm->module_status[module_id].busy_flag = RT_TRUE;
pm->module_status[module_id].timeout = timeout;
pm->module_status[module_id].start_time = rt_tick_get();
rt_hw_interrupt_enable(level);
}
/**
* This function check if all modules in idle status.
*/
static rt_bool_t _pm_device_check_idle(void)
{
struct rt_pm *pm;
if (_pm_init_flag == 0)
return RT_TRUE;
pm = &_pm;
for (int i = 0; i < PM_MODULE_MAX_ID; i++)
{
if (pm->module_status[i].busy_flag == RT_TRUE)
{
if (rt_tick_get() - pm->module_status[i].start_time > pm->module_status[i].timeout)
{
pm->module_status[i].busy_flag = RT_FALSE;
pm->module_status[i].timeout = 0x00;
}
}
if (pm->module_status[i].busy_flag == RT_TRUE)
{
return RT_FALSE;
}
}
return RT_TRUE;
}
/**
* This function changes the power sleep mode base on the result of selection
*/
static void _pm_change_sleep_mode(struct rt_pm *pm)
{
rt_tick_t timeout_tick, delta_tick;
rt_base_t level;
int ret = RT_EOK;
level = rt_pm_enter_critical(pm->sleep_mode);
/* module busy request */
if (_pm_device_check_idle() == RT_FALSE)
{
pm->ops->sleep(pm, PM_SLEEP_MODE_NONE);
rt_pm_exit_critical(level, pm->sleep_mode);
return;
}
if (_pm.sleep_mode == PM_SLEEP_MODE_NONE)
{
pm->ops->sleep(pm, PM_SLEEP_MODE_NONE);
rt_pm_exit_critical(level, pm->sleep_mode);
}
else
{
/* Notify app will enter sleep mode */
if (_pm_notify.notify)
_pm_notify.notify(RT_PM_ENTER_SLEEP, pm->sleep_mode, _pm_notify.data);
/* Suspend all peripheral device */
ret = _pm_device_suspend(pm->sleep_mode);
if (ret != RT_EOK)
{
_pm_device_resume(pm->sleep_mode);
if (_pm_notify.notify)
_pm_notify.notify(RT_PM_EXIT_SLEEP, pm->sleep_mode, _pm_notify.data);
rt_pm_exit_critical(level, pm->sleep_mode);
return;
}
/* Tickless*/
if (pm->timer_mask & (0x01 << pm->sleep_mode))
{
timeout_tick = rt_timer_next_timeout_tick();
if (timeout_tick == RT_TICK_MAX)
{
if (pm->ops->timer_start)
{
pm->ops->timer_start(pm, RT_TICK_MAX);
}
}
else
{
timeout_tick = timeout_tick - rt_tick_get();
if (timeout_tick < RT_PM_TICKLESS_THRESH)
{
pm->sleep_mode = PM_SLEEP_MODE_IDLE;
}
else
{
pm->ops->timer_start(pm, timeout_tick);
}
}
}
/* enter lower power state */
pm->ops->sleep(pm, pm->sleep_mode);
/* wake up from lower power state*/
if (pm->timer_mask & (0x01 << pm->sleep_mode))
{
delta_tick = pm->ops->timer_get_tick(pm);
pm->ops->timer_stop(pm);
if (delta_tick)
{
rt_tick_set(rt_tick_get() + delta_tick);
}
}
/* resume all device */
_pm_device_resume(pm->sleep_mode);
if (_pm_notify.notify)
_pm_notify.notify(RT_PM_EXIT_SLEEP, pm->sleep_mode, _pm_notify.data);
rt_pm_exit_critical(level, pm->sleep_mode);
if (pm->timer_mask & (0x01 << pm->sleep_mode))
{
if (delta_tick)
{
rt_timer_check();
}
}
}
}
/**
* This function will enter corresponding power mode.
*/
void rt_system_power_manager(void)
{
if (_pm_init_flag == 0)
return;
/* CPU frequency scaling according to the runing mode settings */
_pm_frequency_scaling(&_pm);
/* Low Power Mode Processing */
_pm_change_sleep_mode(&_pm);
}
/**
* Upper application or device driver requests the system
* stall in corresponding power mode.
*
* @param parameter the parameter of run mode or sleep mode
*/
void rt_pm_request(rt_uint8_t mode)
{
rt_base_t level;
struct rt_pm *pm;
if (_pm_init_flag == 0)
return;
if (mode > (PM_SLEEP_MODE_MAX - 1))
return;
level = rt_hw_interrupt_disable();
pm = &_pm;
if (pm->modes[mode] < 255)
pm->modes[mode] ++;
_pm_select_sleep_mode(pm);
rt_hw_interrupt_enable(level);
}
/**
* Upper application or device driver releases the stall
* of corresponding power mode.
*
* @param parameter the parameter of run mode or sleep mode
*
*/
void rt_pm_release(rt_uint8_t mode)
{
rt_ubase_t level;
struct rt_pm *pm;
if (_pm_init_flag == 0)
return;
if (mode > (PM_SLEEP_MODE_MAX - 1))
return;
level = rt_hw_interrupt_disable();
pm = &_pm;
if (pm->modes[mode] > 0)
pm->modes[mode] --;
_pm_select_sleep_mode(pm);
rt_hw_interrupt_enable(level);
}
/**
* Upper application or device driver releases all the stall
* of corresponding power mode.
*
* @param parameter the parameter of run mode or sleep mode
*
*/
void rt_pm_release_all(rt_uint8_t mode)
{
rt_ubase_t level;
struct rt_pm *pm;
if (_pm_init_flag == 0)
return;
if (mode > (PM_SLEEP_MODE_MAX - 1))
return;
level = rt_hw_interrupt_disable();
pm = &_pm;
pm->modes[mode] = 0;
_pm_select_sleep_mode(pm);
rt_hw_interrupt_enable(level);
}
/**
* Upper application or device driver requests the system
* stall in corresponding power mode.
*
* @param module_id the application or device module id
* @param mode the system power sleep mode
*/
void rt_pm_module_request(uint8_t module_id, rt_uint8_t mode)
{
rt_base_t level;
struct rt_pm *pm;
if (_pm_init_flag == 0)
return;
if (mode > (PM_SLEEP_MODE_MAX - 1))
return;
if (module_id > (PM_MODULE_MAX_ID - 1))
return;
level = rt_hw_interrupt_disable();
pm = &_pm;
pm->module_status[module_id].req_status = 0x01;
if (pm->modes[mode] < 255)
pm->modes[mode] ++;
_pm_select_sleep_mode(pm);
rt_hw_interrupt_enable(level);
}
/**
* Upper application or device driver releases the stall
* of corresponding power mode.
*
* @param module_id the application or device module id
* @param mode the system power sleep mode
*
*/
void rt_pm_module_release(uint8_t module_id, rt_uint8_t mode)
{
rt_ubase_t level;
struct rt_pm *pm;
if (_pm_init_flag == 0)
return;
if (mode > (PM_SLEEP_MODE_MAX - 1))
return;
if (module_id > (PM_MODULE_MAX_ID - 1))
return;
level = rt_hw_interrupt_disable();
pm = &_pm;
if (pm->modes[mode] > 0)
pm->modes[mode] --;
if (pm->modes[mode] == 0)
pm->module_status[module_id].req_status = 0x00;
_pm_select_sleep_mode(pm);
rt_hw_interrupt_enable(level);
}
/**
* Upper application or device driver releases all the stall
* of corresponding power mode.
*
* @param module_id the application or device module id
* @param mode the system power sleep mode
*
*/
void rt_pm_module_release_all(uint8_t module_id, rt_uint8_t mode)
{
rt_ubase_t level;
struct rt_pm *pm;
if (_pm_init_flag == 0)
return;
if (mode > (PM_SLEEP_MODE_MAX - 1))
return;
level = rt_hw_interrupt_disable();
pm = &_pm;
pm->modes[mode] = 0;
pm->module_status[module_id].req_status = 0x00;
_pm_select_sleep_mode(pm);
rt_hw_interrupt_enable(level);
}
/**
* Register a device with PM feature
*
* @param device the device with PM feature
* @param ops the PM ops for device
*/
void rt_pm_device_register(struct rt_device *device, const struct rt_device_pm_ops *ops)
{
rt_base_t level;
struct rt_device_pm *device_pm;
RT_DEBUG_NOT_IN_INTERRUPT;
level = rt_hw_interrupt_disable();
device_pm = (struct rt_device_pm *)RT_KERNEL_REALLOC(_pm.device_pm,
(_pm.device_pm_number + 1) * sizeof(struct rt_device_pm));
if (device_pm != RT_NULL)
{
_pm.device_pm = device_pm;
_pm.device_pm[_pm.device_pm_number].device = device;
_pm.device_pm[_pm.device_pm_number].ops = ops;
_pm.device_pm_number += 1;
}
rt_hw_interrupt_enable(level);
}
/**
* Unregister device from PM manager.
*
* @param device the device with PM feature
*/
void rt_pm_device_unregister(struct rt_device *device)
{
rt_ubase_t level;
rt_uint32_t index;
RT_DEBUG_NOT_IN_INTERRUPT;
level = rt_hw_interrupt_disable();
for (index = 0; index < _pm.device_pm_number; index ++)
{
if (_pm.device_pm[index].device == device)
{
/* remove current entry */
for (; index < _pm.device_pm_number - 1; index ++)
{
_pm.device_pm[index] = _pm.device_pm[index + 1];
}
_pm.device_pm[_pm.device_pm_number - 1].device = RT_NULL;
_pm.device_pm[_pm.device_pm_number - 1].ops = RT_NULL;
_pm.device_pm_number -= 1;
/* break out and not touch memory */
break;
}
}
rt_hw_interrupt_enable(level);
}
/**
* This function set notification callback for application
*/
void rt_pm_notify_set(void (*notify)(rt_uint8_t event, rt_uint8_t mode, void *data), void *data)
{
_pm_notify.notify = notify;
_pm_notify.data = data;
}
/**
* This function set default sleep mode when no pm_request
*/
void rt_pm_default_set(rt_uint8_t sleep_mode)
{
_pm_default_sleep = sleep_mode;
}
/**
* RT-Thread device interface for PM device
*/
static rt_size_t _rt_pm_device_read(rt_device_t dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_pm *pm;
rt_size_t length;
length = 0;
pm = (struct rt_pm *)dev;
RT_ASSERT(pm != RT_NULL);
if (pos < PM_SLEEP_MODE_MAX)
{
int mode;
mode = pm->modes[pos];
length = rt_snprintf(buffer, size, "%d", mode);
}
return length;
}
static rt_size_t _rt_pm_device_write(rt_device_t dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
unsigned char request;
if (size)
{
/* get request */
request = *(unsigned char *)buffer;
if (request == 0x01)
{
rt_pm_request(pos);
}
else if (request == 0x00)
{
rt_pm_release(pos);
}
}
return 1;
}
static rt_err_t _rt_pm_device_control(rt_device_t dev,
int cmd,
void *args)
{
rt_uint32_t mode;
switch (cmd)
{
case RT_PM_DEVICE_CTRL_REQUEST:
mode = (rt_uint32_t)args;
rt_pm_request(mode);
break;
case RT_PM_DEVICE_CTRL_RELEASE:
mode = (rt_uint32_t)args;
rt_pm_release(mode);
break;
}
return RT_EOK;
}
int rt_pm_run_enter(rt_uint8_t mode)
{
rt_base_t level;
struct rt_pm *pm;
if (_pm_init_flag == 0)
return -RT_EIO;
if (mode > PM_RUN_MODE_MAX)
return -RT_EINVAL;
level = rt_hw_interrupt_disable();
pm = &_pm;
if (mode < pm->run_mode)
{
/* change system runing mode */
pm->ops->run(pm, mode);
/* changer device frequency */
_pm_device_frequency_change(mode);
}
else
{
pm->flags |= RT_PM_FREQUENCY_PENDING;
}
pm->run_mode = mode;
rt_hw_interrupt_enable(level);
return RT_EOK;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops pm_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
_rt_pm_device_read,
_rt_pm_device_write,
_rt_pm_device_control,
};
#endif
/**
* This function will initialize power management.
*
* @param ops the PM operations.
* @param timer_mask indicates which mode has timer feature.
* @param user_data user data
*/
void rt_system_pm_init(const struct rt_pm_ops *ops,
rt_uint8_t timer_mask,
void *user_data)
{
struct rt_device *device;
struct rt_pm *pm;
pm = &_pm;
device = &(_pm.parent);
device->type = RT_Device_Class_PM;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = &pm_ops;
#else
device->init = RT_NULL;
device->open = RT_NULL;
device->close = RT_NULL;
device->read = _rt_pm_device_read;
device->write = _rt_pm_device_write;
device->control = _rt_pm_device_control;
#endif
device->user_data = user_data;
/* register PM device to the system */
rt_device_register(device, "pm", RT_DEVICE_FLAG_RDWR);
rt_memset(pm->modes, 0, sizeof(pm->modes));
pm->sleep_mode = _pm_default_sleep;
/* when system power on, set default sleep modes */
pm->modes[pm->sleep_mode] = 1;
pm->module_status[PM_POWER_ID].req_status = 1;
pm->run_mode = RT_PM_DEFAULT_RUN_MODE;
pm->timer_mask = timer_mask;
pm->ops = ops;
pm->device_pm = RT_NULL;
pm->device_pm_number = 0;
#if IDLE_THREAD_STACK_SIZE <= 256
#error "[pm.c ERR] IDLE Stack Size Too Small!"
#endif
_pm_init_flag = 1;
}
#ifdef RT_USING_FINSH
#include <finsh.h>
static const char *_pm_sleep_str[] = PM_SLEEP_MODE_NAMES;
static const char *_pm_run_str[] = PM_RUN_MODE_NAMES;
static void rt_pm_release_mode(int argc, char **argv)
{
int mode = 0;
if (argc >= 2)
{
mode = atoi(argv[1]);
}
rt_pm_release(mode);
}
MSH_CMD_EXPORT_ALIAS(rt_pm_release_mode, pm_release, release power management mode);
static void rt_pm_release_mode_all(int argc, char **argv)
{
int mode = 0;
if (argc >= 2)
{
mode = atoi(argv[1]);
}
rt_pm_release_all(mode);
}
MSH_CMD_EXPORT_ALIAS(rt_pm_release_mode_all, pm_release_all, release power management mode count);
static void rt_pm_request_mode(int argc, char **argv)
{
int mode = 0;
if (argc >= 2)
{
mode = atoi(argv[1]);
}
rt_pm_request(mode);
}
MSH_CMD_EXPORT_ALIAS(rt_pm_request_mode, pm_request, request power management mode);
static void rt_module_release_mode(int argc, char **argv)
{
int module = 0;
int mode = 0;
if (argc >= 3)
{
module = atoi(argv[1]);
mode = atoi(argv[2]);
}
rt_pm_module_release(module, mode);
}
MSH_CMD_EXPORT_ALIAS(rt_module_release_mode, pm_module_release, release module power mode);
static void rt_module_release_mode_all(int argc, char **argv)
{
int module = 0;
int mode = 0;
if (argc >= 3)
{
module = atoi(argv[1]);
mode = atoi(argv[2]);
}
rt_pm_module_release_all(module, mode);
}
MSH_CMD_EXPORT_ALIAS(rt_module_release_mode_all, pm_module_release_all, release power management mode count);
static void rt_module_request_mode(int argc, char **argv)
{
int module = 0;
int mode = 0;
if (argc >= 3)
{
module = atoi(argv[1]);
mode = atoi(argv[2]);
}
rt_pm_module_request(module, mode);
}
MSH_CMD_EXPORT_ALIAS(rt_module_request_mode, pm_module_request, request power management mode);
static void rt_module_delay_sleep(int argc, char **argv)
{
int module = 0;
unsigned int timeout = 0;
if (argc >= 3)
{
module = atoi(argv[1]);
timeout = atoi(argv[2]);
}
rt_pm_module_delay_sleep(module, timeout);
}
MSH_CMD_EXPORT_ALIAS(rt_module_delay_sleep, pm_module_delay, module request delay sleep);
static void rt_pm_run_mode_switch(int argc, char **argv)
{
int mode = 0;
if (argc >= 2)
{
mode = atoi(argv[1]);
}
rt_pm_run_enter(mode);
}
MSH_CMD_EXPORT_ALIAS(rt_pm_run_mode_switch, pm_run, switch power management run mode);
rt_uint32_t rt_pm_module_get_status(void)
{
rt_uint8_t index = 0;
struct rt_pm *pm;
rt_uint32_t req_status = 0x00;
pm = &_pm;
for (index = 0; index < PM_MODULE_MAX_ID; index ++)
{
if (pm->module_status[index].req_status == 0x01)
req_status |= 1<<index;
}
return req_status;
}
rt_uint8_t rt_pm_get_sleep_mode(void)
{
struct rt_pm *pm;
pm = &_pm;
return pm->sleep_mode;
}
static void rt_pm_dump_status(void)
{
rt_uint32_t index;
struct rt_pm *pm;
pm = &_pm;
rt_kprintf("| Power Management Mode | Counter | Timer |\n");
rt_kprintf("+-----------------------+---------+-------+\n");
for (index = 0; index < PM_SLEEP_MODE_MAX; index ++)
{
int has_timer = 0;
if (pm->timer_mask & (1 << index))
has_timer = 1;
rt_kprintf("| %021s | %7d | %5d |\n", _pm_sleep_str[index], pm->modes[index], has_timer);
}
rt_kprintf("+-----------------------+---------+-------+\n");
rt_kprintf("pm current sleep mode: %s\n", _pm_sleep_str[pm->sleep_mode]);
rt_kprintf("pm current run mode: %s\n", _pm_run_str[pm->run_mode]);
rt_kprintf("\n");
rt_kprintf("| module | busy | start time | timeout |\n");
rt_kprintf("+--------+------+------------+-----------+\n");
for (index = 0; index < PM_MODULE_MAX_ID; index ++)
{
if ((pm->module_status[index].busy_flag == RT_TRUE) ||
(pm->module_status[index].req_status != 0x00))
{
rt_kprintf("| %04d | %d | 0x%08x | 0x%08x |\n",
index, pm->module_status[index].busy_flag,
pm->module_status[index].start_time,
pm->module_status[index].timeout);
}
}
rt_kprintf("+--------+------+------------+-----------+\n");
}
FINSH_FUNCTION_EXPORT_ALIAS(rt_pm_dump_status, pm_dump, dump power management status);
MSH_CMD_EXPORT_ALIAS(rt_pm_dump_status, pm_dump, dump power management status);
#endif
#endif /* RT_USING_PM */