rt-thread-official/bsp/ht32/libraries/ht32_drivers/drv_usart.c

373 lines
9.0 KiB
C

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-04-08 QT-one first version
*/
#include "drv_usart.h"
#ifdef RT_USING_SERIAL
#if !defined(BSP_USING_USART0) && !defined(BSP_USING_USART1) && \
!defined(BSP_USING_UART0) && !defined(BSP_USING_UART1) && \
!defined(BSP_USING_UART2) && !defined(BSP_USING_UART3)
#error "Please define at least one BSP_USING_UARTx"
#endif
struct ht32_usart
{
char *name;
HT_USART_TypeDef *usart_x;
IRQn_Type irq;
struct rt_serial_device serial;
};
enum
{
#ifdef BSP_USING_USART0
USART0_INDEX,
#endif
#ifdef BSP_USING_USART1
USART1_INDEX,
#endif
#ifdef BSP_USING_UART0
UART0_INDEX,
#endif
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
};
static struct ht32_usart usart_config[] =
{
#ifdef BSP_USING_USART0
{
.name = BSP_USING_USART0_NAME,
.usart_x = HT_USART0,
.irq = USART0_IRQn,
.serial = RT_NULL
},
#endif
#ifdef BSP_USING_USART1
{
.name = BSP_USING_USART1_NAME,
.usart_x = HT_USART1,
.irq = USART1_IRQn,
.serial = RT_NULL
},
#endif
#ifdef BSP_USING_UART0
{
.name = BSP_USING_UART0_NAME,
.usart_x = HT_UART0,
.irq = UART0_IRQn,
.serial = RT_NULL
},
#endif
#ifdef BSP_USING_UART1
{
.name = BSP_USING_UART1_NAME,
.usart_x = HT_UART1,
.irq = UART1_IRQn,
.serial = RT_NULL
},
#endif
#ifdef BSP_USING_UART2
{
.name = BSP_USING_UART2_NAME,
.usart_x = HT_UART2,
.irq = UART0_UART2_IRQn,
.serial = RT_NULL
},
#endif
#ifdef BSP_USING_UART3
{
.name = BSP_USING_UART3_NAME,
.usart_x = HT_UART3,
.irq = UART1_UART3_IRQn,
.serial = RT_NULL
},
#endif
};
static rt_err_t ht32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
CKCU_PeripClockConfig_TypeDef CKCUClock = {{0}};
USART_InitTypeDef USART_InitStructure = {0};
struct ht32_usart *usart_instance = (struct ht32_usart *)serial->parent.user_data;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
CKCUClock.Bit.AFIO = 1;
if ((usart_instance->usart_x) == HT_UART0)
CKCUClock.Bit.UART0 = 1;
#if defined(HT_USART0)
else if ((usart_instance->usart_x) == HT_USART0)
CKCUClock.Bit.USART0 = 1;
#endif
#if defined(HT_USART1)
else if ((usart_instance->usart_x) == HT_USART1)
CKCUClock.Bit.USART1 = 1;
#endif
#if defined(HT_UART1)
else if ((usart_instance->usart_x) == HT_UART1)
CKCUClock.Bit.UART1 = 1;
#endif
#if defined(HT_UART2)
else if ((usart_instance->usart_x) == HT_UART2)
CKCUClock.Bit.UART2 = 1;
#endif
#if defined(HT_UART3)
else if ((usart_instance->usart_x) == HT_UART3)
CKCUClock.Bit.UART3 = 1;
#endif
CKCU_PeripClockConfig(CKCUClock, ENABLE);
/* UART gpio init */
ht32_usart_gpio_init((void *)usart_instance->usart_x);
/* baud rate */
USART_InitStructure.USART_BaudRate = (cfg->baud_rate);
/* data width */
switch (cfg->data_bits)
{
case DATA_BITS_7:
USART_InitStructure.USART_WordLength = USART_WORDLENGTH_7B;
break;
case DATA_BITS_8:
USART_InitStructure.USART_WordLength = USART_WORDLENGTH_8B;
break;
case DATA_BITS_9:
USART_InitStructure.USART_WordLength = USART_WORDLENGTH_9B;
break;
default:
USART_InitStructure.USART_WordLength = USART_WORDLENGTH_8B;
break;
}
/* stop bit */
switch (cfg->stop_bits)
{
case STOP_BITS_1:
USART_InitStructure.USART_StopBits = USART_STOPBITS_1;
break;
case STOP_BITS_2:
USART_InitStructure.USART_StopBits = USART_STOPBITS_2;
break;
default:
USART_InitStructure.USART_StopBits = USART_STOPBITS_1;
break;
}
switch (cfg->parity)
{
case PARITY_NONE:
USART_InitStructure.USART_Parity = USART_PARITY_NO;
break;
case PARITY_ODD:
USART_InitStructure.USART_Parity = USART_PARITY_ODD;
break;
case PARITY_EVEN:
USART_InitStructure.USART_Parity = USART_PARITY_EVEN;
break;
default:
USART_InitStructure.USART_Parity = USART_PARITY_NO;
break;
}
/* UART mode */
USART_InitStructure.USART_Mode = USART_MODE_NORMAL;
/* UART init */
USART_Init((usart_instance->usart_x), &USART_InitStructure);
/*UART enable */
USART_TxCmd((usart_instance->usart_x), ENABLE);
USART_RxCmd((usart_instance->usart_x), ENABLE);
return RT_EOK;
}
static rt_err_t ht32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct ht32_usart *usart;
RT_ASSERT(serial != RT_NULL);
usart = (struct ht32_usart *) serial->parent.user_data;
RT_ASSERT(usart != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
NVIC_DisableIRQ(usart->irq);
USART_IntConfig(usart->usart_x, USART_INT_RXDR, DISABLE);
break;
case RT_DEVICE_CTRL_SET_INT:
NVIC_EnableIRQ(usart->irq);
USART_IntConfig(usart->usart_x, USART_INT_RXDR, ENABLE);
break;
}
return RT_EOK;
}
static int ht32_putc(struct rt_serial_device *serial, char c)
{
struct ht32_usart *usart;
RT_ASSERT(serial != RT_NULL);
usart = (struct ht32_usart *) serial->parent.user_data;
RT_ASSERT(usart != RT_NULL);
while ((usart->usart_x->SR & USART_FLAG_TXC) == 0);
usart->usart_x->DR = (u8)c;
return 1;
}
static int ht32_getc(struct rt_serial_device *serial)
{
int ch;
struct ht32_usart *usart;
RT_ASSERT(serial != RT_NULL);
usart = (struct ht32_usart *) serial->parent.user_data;
RT_ASSERT(usart != RT_NULL);
ch = -1;
if (USART_GetFlagStatus(usart->usart_x, USART_FLAG_RXDR) != RESET)
{
ch = USART_ReceiveData(usart->usart_x);
}
return ch;
}
static rt_ssize_t ht32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
{
return -RT_ERROR;
}
static const struct rt_uart_ops ht32_usart_ops =
{
.configure = ht32_configure,
.control = ht32_control,
.putc = ht32_putc,
.getc = ht32_getc,
.dma_transmit = ht32_dma_transmit,
};
int rt_hw_usart_init(void)
{
rt_size_t obj_num;
int index;
obj_num = sizeof(usart_config) / sizeof(struct ht32_usart);
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
rt_err_t result = 0;
for (index = 0; index < obj_num; index++)
{
usart_config[index].serial.ops = &ht32_usart_ops;
usart_config[index].serial.config = config;
/* register uart device */
result = rt_hw_serial_register(&usart_config[index].serial,
usart_config[index].name,
RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX |
RT_DEVICE_FLAG_INT_TX,
&usart_config[index]);
RT_ASSERT(result == RT_EOK);
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_usart_init);
static void usart_isr(struct rt_serial_device *serial)
{
struct ht32_usart *usart = (struct ht32_usart *)serial->parent.user_data;
RT_ASSERT(usart != RT_NULL);
if ((USART_GetFlagStatus(usart->usart_x, USART_FLAG_RXDR) != RESET) && ((usart->usart_x->IER & USART_INT_RXDR) != RESET))
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
}
#ifdef BSP_USING_USART0
void USART0_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&usart_config[USART0_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_USART1
void USART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&usart_config[USART1_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART0
void UART0_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&usart_config[UART0_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART1
void UART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&usart_config[UART1_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART2
void UART2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&usart_config[UART2_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART3
void UART3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
usart_isr(&usart_config[UART3_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#endif /* RT_USING_SERIAL */