mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-28 03:00:25 +08:00
3433 lines
124 KiB
C
3433 lines
124 KiB
C
/*
|
|
* Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2017 NXP
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* o Redistributions of source code must retain the above copyright notice, this list
|
|
* of conditions and the following disclaimer.
|
|
*
|
|
* o Redistributions in binary form must reproduce the above copyright notice, this
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
* other materials provided with the distribution.
|
|
*
|
|
* o Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fsl_flash.h"
|
|
|
|
/*******************************************************************************
|
|
* Definitions
|
|
******************************************************************************/
|
|
|
|
/*!
|
|
* @name Misc utility defines
|
|
* @{
|
|
*/
|
|
/*! @brief Alignment utility. */
|
|
#ifndef ALIGN_DOWN
|
|
#define ALIGN_DOWN(x, a) ((x) & (uint32_t)(-((int32_t)(a))))
|
|
#endif
|
|
#ifndef ALIGN_UP
|
|
#define ALIGN_UP(x, a) (-((int32_t)((uint32_t)(-((int32_t)(x))) & (uint32_t)(-((int32_t)(a))))))
|
|
#endif
|
|
|
|
/*! @brief Join bytes to word utility. */
|
|
#define B1P4(b) (((uint32_t)(b)&0xFFU) << 24)
|
|
#define B1P3(b) (((uint32_t)(b)&0xFFU) << 16)
|
|
#define B1P2(b) (((uint32_t)(b)&0xFFU) << 8)
|
|
#define B1P1(b) ((uint32_t)(b)&0xFFU)
|
|
#define B2P3(b) (((uint32_t)(b)&0xFFFFU) << 16)
|
|
#define B2P2(b) (((uint32_t)(b)&0xFFFFU) << 8)
|
|
#define B2P1(b) ((uint32_t)(b)&0xFFFFU)
|
|
#define B3P2(b) (((uint32_t)(b)&0xFFFFFFU) << 8)
|
|
#define B3P1(b) ((uint32_t)(b)&0xFFFFFFU)
|
|
#define BYTES_JOIN_TO_WORD_1_3(x, y) (B1P4(x) | B3P1(y))
|
|
#define BYTES_JOIN_TO_WORD_2_2(x, y) (B2P3(x) | B2P1(y))
|
|
#define BYTES_JOIN_TO_WORD_3_1(x, y) (B3P2(x) | B1P1(y))
|
|
#define BYTES_JOIN_TO_WORD_1_1_2(x, y, z) (B1P4(x) | B1P3(y) | B2P1(z))
|
|
#define BYTES_JOIN_TO_WORD_1_2_1(x, y, z) (B1P4(x) | B2P2(y) | B1P1(z))
|
|
#define BYTES_JOIN_TO_WORD_2_1_1(x, y, z) (B2P3(x) | B1P2(y) | B1P1(z))
|
|
#define BYTES_JOIN_TO_WORD_1_1_1_1(x, y, z, w) (B1P4(x) | B1P3(y) | B1P2(z) | B1P1(w))
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @name Secondary flash configuration
|
|
* @{
|
|
*/
|
|
/*! @brief Indicates whether the secondary flash has its own protection register in flash module. */
|
|
#if defined(FSL_FEATURE_FLASH_HAS_MULTIPLE_FLASH) && defined(FTFE_FPROTS_PROTS_MASK)
|
|
#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER (1)
|
|
#else
|
|
#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER (0)
|
|
#endif
|
|
|
|
/*! @brief Indicates whether the secondary flash has its own Execute-Only access register in flash module. */
|
|
#if defined(FSL_FEATURE_FLASH_HAS_MULTIPLE_FLASH) && defined(FTFE_FACSSS_SGSIZE_S_MASK)
|
|
#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER (1)
|
|
#else
|
|
#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER (0)
|
|
#endif
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @name Flash cache ands speculation control defines
|
|
* @{
|
|
*/
|
|
#if defined(MCM_PLACR_CFCC_MASK) || defined(MCM_CPCR2_CCBC_MASK)
|
|
#define FLASH_CACHE_IS_CONTROLLED_BY_MCM (1)
|
|
#else
|
|
#define FLASH_CACHE_IS_CONTROLLED_BY_MCM (0)
|
|
#endif
|
|
#if defined(FMC_PFB0CR_CINV_WAY_MASK) || defined(FMC_PFB01CR_CINV_WAY_MASK)
|
|
#define FLASH_CACHE_IS_CONTROLLED_BY_FMC (1)
|
|
#else
|
|
#define FLASH_CACHE_IS_CONTROLLED_BY_FMC (0)
|
|
#endif
|
|
#if defined(MCM_PLACR_DFCS_MASK)
|
|
#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM (1)
|
|
#else
|
|
#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM (0)
|
|
#endif
|
|
#if defined(MSCM_OCMDR_OCM1_MASK) || defined(MSCM_OCMDR_OCMC1_MASK)
|
|
#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM (1)
|
|
#else
|
|
#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM (0)
|
|
#endif
|
|
#if defined(FMC_PFB0CR_S_INV_MASK) || defined(FMC_PFB0CR_S_B_INV_MASK) || defined(FMC_PFB01CR_S_INV_MASK) || \
|
|
defined(FMC_PFB01CR_S_B_INV_MASK)
|
|
#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC (1)
|
|
#else
|
|
#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC (0)
|
|
#endif
|
|
/*@}*/
|
|
|
|
/*! @brief Data flash IFR map Field*/
|
|
#if defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
|
|
#define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8003F8U
|
|
#else /* FSL_FEATURE_FLASH_IS_FTFL == 1 or FSL_FEATURE_FLASH_IS_FTFA = =1 */
|
|
#define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8000F8U
|
|
#endif
|
|
|
|
/*!
|
|
* @name Reserved FlexNVM size (For a variety of purposes) defines
|
|
* @{
|
|
*/
|
|
#define FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED 0xFFFFFFFFU
|
|
#define FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED 0xFFFFU
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @name Flash Program Once Field defines
|
|
* @{
|
|
*/
|
|
#if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA
|
|
/* FTFA parts(eg. K80, KL80, L5K) support both 4-bytes and 8-bytes unit size */
|
|
#define FLASH_PROGRAM_ONCE_MIN_ID_8BYTES \
|
|
0x10U /* Minimum Index indcating one of Progam Once Fields which is accessed in 8-byte records */
|
|
#define FLASH_PROGRAM_ONCE_MAX_ID_8BYTES \
|
|
0x13U /* Maximum Index indcating one of Progam Once Fields which is accessed in 8-byte records */
|
|
#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1
|
|
#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1
|
|
#elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
|
|
/* FTFE parts(eg. K65, KE18) only support 8-bytes unit size */
|
|
#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 0
|
|
#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1
|
|
#elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL
|
|
/* FTFL parts(eg. K20) only support 4-bytes unit size */
|
|
#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1
|
|
#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 0
|
|
#endif
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @name Flash security status defines
|
|
* @{
|
|
*/
|
|
#define FLASH_SECURITY_STATE_KEYEN 0x80U
|
|
#define FLASH_SECURITY_STATE_UNSECURED 0x02U
|
|
#define FLASH_NOT_SECURE 0x01U
|
|
#define FLASH_SECURE_BACKDOOR_ENABLED 0x02U
|
|
#define FLASH_SECURE_BACKDOOR_DISABLED 0x04U
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @name Flash controller command numbers
|
|
* @{
|
|
*/
|
|
#define FTFx_VERIFY_BLOCK 0x00U /*!< RD1BLK*/
|
|
#define FTFx_VERIFY_SECTION 0x01U /*!< RD1SEC*/
|
|
#define FTFx_PROGRAM_CHECK 0x02U /*!< PGMCHK*/
|
|
#define FTFx_READ_RESOURCE 0x03U /*!< RDRSRC*/
|
|
#define FTFx_PROGRAM_LONGWORD 0x06U /*!< PGM4*/
|
|
#define FTFx_PROGRAM_PHRASE 0x07U /*!< PGM8*/
|
|
#define FTFx_ERASE_BLOCK 0x08U /*!< ERSBLK*/
|
|
#define FTFx_ERASE_SECTOR 0x09U /*!< ERSSCR*/
|
|
#define FTFx_PROGRAM_SECTION 0x0BU /*!< PGMSEC*/
|
|
#define FTFx_GENERATE_CRC 0x0CU /*!< CRCGEN*/
|
|
#define FTFx_VERIFY_ALL_BLOCK 0x40U /*!< RD1ALL*/
|
|
#define FTFx_READ_ONCE 0x41U /*!< RDONCE or RDINDEX*/
|
|
#define FTFx_PROGRAM_ONCE 0x43U /*!< PGMONCE or PGMINDEX*/
|
|
#define FTFx_ERASE_ALL_BLOCK 0x44U /*!< ERSALL*/
|
|
#define FTFx_SECURITY_BY_PASS 0x45U /*!< VFYKEY*/
|
|
#define FTFx_SWAP_CONTROL 0x46U /*!< SWAP*/
|
|
#define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U /*!< ERSALLU*/
|
|
#define FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT 0x4AU /*!< RD1XA*/
|
|
#define FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT 0x4BU /*!< ERSXA*/
|
|
#define FTFx_PROGRAM_PARTITION 0x80U /*!< PGMPART)*/
|
|
#define FTFx_SET_FLEXRAM_FUNCTION 0x81U /*!< SETRAM*/
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @name Common flash register info defines
|
|
* @{
|
|
*/
|
|
#if defined(FTFA)
|
|
#define FTFx FTFA
|
|
#define FTFx_BASE FTFA_BASE
|
|
#define FTFx_FSTAT_CCIF_MASK FTFA_FSTAT_CCIF_MASK
|
|
#define FTFx_FSTAT_RDCOLERR_MASK FTFA_FSTAT_RDCOLERR_MASK
|
|
#define FTFx_FSTAT_ACCERR_MASK FTFA_FSTAT_ACCERR_MASK
|
|
#define FTFx_FSTAT_FPVIOL_MASK FTFA_FSTAT_FPVIOL_MASK
|
|
#define FTFx_FSTAT_MGSTAT0_MASK FTFA_FSTAT_MGSTAT0_MASK
|
|
#define FTFx_FSEC_SEC_MASK FTFA_FSEC_SEC_MASK
|
|
#define FTFx_FSEC_KEYEN_MASK FTFA_FSEC_KEYEN_MASK
|
|
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
|
|
#define FTFx_FCNFG_RAMRDY_MASK FTFA_FCNFG_RAMRDY_MASK
|
|
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
|
|
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
|
|
#define FTFx_FCNFG_EEERDY_MASK FTFA_FCNFG_EEERDY_MASK
|
|
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
|
|
#elif defined(FTFE)
|
|
#define FTFx FTFE
|
|
#define FTFx_BASE FTFE_BASE
|
|
#define FTFx_FSTAT_CCIF_MASK FTFE_FSTAT_CCIF_MASK
|
|
#define FTFx_FSTAT_RDCOLERR_MASK FTFE_FSTAT_RDCOLERR_MASK
|
|
#define FTFx_FSTAT_ACCERR_MASK FTFE_FSTAT_ACCERR_MASK
|
|
#define FTFx_FSTAT_FPVIOL_MASK FTFE_FSTAT_FPVIOL_MASK
|
|
#define FTFx_FSTAT_MGSTAT0_MASK FTFE_FSTAT_MGSTAT0_MASK
|
|
#define FTFx_FSEC_SEC_MASK FTFE_FSEC_SEC_MASK
|
|
#define FTFx_FSEC_KEYEN_MASK FTFE_FSEC_KEYEN_MASK
|
|
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
|
|
#define FTFx_FCNFG_RAMRDY_MASK FTFE_FCNFG_RAMRDY_MASK
|
|
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
|
|
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
|
|
#define FTFx_FCNFG_EEERDY_MASK FTFE_FCNFG_EEERDY_MASK
|
|
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
|
|
#elif defined(FTFL)
|
|
#define FTFx FTFL
|
|
#define FTFx_BASE FTFL_BASE
|
|
#define FTFx_FSTAT_CCIF_MASK FTFL_FSTAT_CCIF_MASK
|
|
#define FTFx_FSTAT_RDCOLERR_MASK FTFL_FSTAT_RDCOLERR_MASK
|
|
#define FTFx_FSTAT_ACCERR_MASK FTFL_FSTAT_ACCERR_MASK
|
|
#define FTFx_FSTAT_FPVIOL_MASK FTFL_FSTAT_FPVIOL_MASK
|
|
#define FTFx_FSTAT_MGSTAT0_MASK FTFL_FSTAT_MGSTAT0_MASK
|
|
#define FTFx_FSEC_SEC_MASK FTFL_FSEC_SEC_MASK
|
|
#define FTFx_FSEC_KEYEN_MASK FTFL_FSEC_KEYEN_MASK
|
|
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
|
|
#define FTFx_FCNFG_RAMRDY_MASK FTFL_FCNFG_RAMRDY_MASK
|
|
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
|
|
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
|
|
#define FTFx_FCNFG_EEERDY_MASK FTFL_FCNFG_EEERDY_MASK
|
|
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
|
|
#else
|
|
#error "Unknown flash controller"
|
|
#endif
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @name Common flash register access info defines
|
|
* @{
|
|
*/
|
|
#define FTFx_FCCOB3_REG (FTFx->FCCOB3)
|
|
#define FTFx_FCCOB5_REG (FTFx->FCCOB5)
|
|
#define FTFx_FCCOB6_REG (FTFx->FCCOB6)
|
|
#define FTFx_FCCOB7_REG (FTFx->FCCOB7)
|
|
|
|
#if defined(FTFA_FPROTH0_PROT_MASK) || defined(FTFE_FPROTH0_PROT_MASK) || defined(FTFL_FPROTH0_PROT_MASK)
|
|
#define FTFx_FPROT_HIGH_REG (FTFx->FPROTH3)
|
|
#define FTFx_FPROTH3_REG (FTFx->FPROTH3)
|
|
#define FTFx_FPROTH2_REG (FTFx->FPROTH2)
|
|
#define FTFx_FPROTH1_REG (FTFx->FPROTH1)
|
|
#define FTFx_FPROTH0_REG (FTFx->FPROTH0)
|
|
#endif
|
|
|
|
#if defined(FTFA_FPROTL0_PROT_MASK) || defined(FTFE_FPROTL0_PROT_MASK) || defined(FTFL_FPROTL0_PROT_MASK)
|
|
#define FTFx_FPROT_LOW_REG (FTFx->FPROTL3)
|
|
#define FTFx_FPROTL3_REG (FTFx->FPROTL3)
|
|
#define FTFx_FPROTL2_REG (FTFx->FPROTL2)
|
|
#define FTFx_FPROTL1_REG (FTFx->FPROTL1)
|
|
#define FTFx_FPROTL0_REG (FTFx->FPROTL0)
|
|
#elif defined(FTFA_FPROT0_PROT_MASK) || defined(FTFE_FPROT0_PROT_MASK) || defined(FTFL_FPROT0_PROT_MASK)
|
|
#define FTFx_FPROT_LOW_REG (FTFx->FPROT3)
|
|
#define FTFx_FPROTL3_REG (FTFx->FPROT3)
|
|
#define FTFx_FPROTL2_REG (FTFx->FPROT2)
|
|
#define FTFx_FPROTL1_REG (FTFx->FPROT1)
|
|
#define FTFx_FPROTL0_REG (FTFx->FPROT0)
|
|
#endif
|
|
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
|
|
#define FTFx_FPROTSH_REG (FTFx->FPROTSH)
|
|
#define FTFx_FPROTSL_REG (FTFx->FPROTSL)
|
|
#endif
|
|
|
|
#define FTFx_XACCH3_REG (FTFx->XACCH3)
|
|
#define FTFx_XACCL3_REG (FTFx->XACCL3)
|
|
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER
|
|
#define FTFx_XACCSH_REG (FTFx->XACCSH)
|
|
#define FTFx_XACCSL_REG (FTFx->XACCSL)
|
|
#endif
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @brief Enumeration for access segment property.
|
|
*/
|
|
enum _flash_access_segment_property
|
|
{
|
|
kFLASH_AccessSegmentBase = 256UL,
|
|
};
|
|
|
|
/*!
|
|
* @brief Enumeration for flash config area.
|
|
*/
|
|
enum _flash_config_area_range
|
|
{
|
|
kFLASH_ConfigAreaStart = 0x400U,
|
|
kFLASH_ConfigAreaEnd = 0x40FU
|
|
};
|
|
|
|
/*!
|
|
* @name Flash register access type defines
|
|
* @{
|
|
*/
|
|
#define FTFx_REG8_ACCESS_TYPE volatile uint8_t *
|
|
#define FTFx_REG32_ACCESS_TYPE volatile uint32_t *
|
|
/*@}*/
|
|
|
|
/*!
|
|
* @brief MCM cache register access info defines.
|
|
*/
|
|
#if defined(MCM_PLACR_CFCC_MASK)
|
|
#define MCM_CACHE_CLEAR_MASK MCM_PLACR_CFCC_MASK
|
|
#define MCM_CACHE_CLEAR_SHIFT MCM_PLACR_CFCC_SHIFT
|
|
#if defined(MCM)
|
|
#define MCM0_CACHE_REG MCM->PLACR
|
|
#elif defined(MCM0)
|
|
#define MCM0_CACHE_REG MCM0->PLACR
|
|
#endif
|
|
#if defined(MCM1)
|
|
#define MCM1_CACHE_REG MCM1->PLACR
|
|
#endif
|
|
#elif defined(MCM_CPCR2_CCBC_MASK)
|
|
#define MCM_CACHE_CLEAR_MASK MCM_CPCR2_CCBC_MASK
|
|
#define MCM_CACHE_CLEAR_SHIFT MCM_CPCR2_CCBC_SHIFT
|
|
#if defined(MCM)
|
|
#define MCM0_CACHE_REG MCM->CPCR2
|
|
#elif defined(MCM0)
|
|
#define MCM0_CACHE_REG MCM0->CPCR2
|
|
#endif
|
|
#if defined(MCM1)
|
|
#define MCM1_CACHE_REG MCM1->CPCR2
|
|
#endif
|
|
#endif
|
|
|
|
/*!
|
|
* @brief MSCM cache register access info defines.
|
|
*/
|
|
#if defined(MSCM_OCMDR_OCM1_MASK)
|
|
#define MSCM_SPECULATION_DISABLE_MASK MSCM_OCMDR_OCM1_MASK
|
|
#define MSCM_SPECULATION_DISABLE_SHIFT MSCM_OCMDR_OCM1_SHIFT
|
|
#define MSCM_SPECULATION_DISABLE(x) MSCM_OCMDR_OCM1(x)
|
|
#elif defined(MSCM_OCMDR_OCMC1_MASK)
|
|
#define MSCM_SPECULATION_DISABLE_MASK MSCM_OCMDR_OCMC1_MASK
|
|
#define MSCM_SPECULATION_DISABLE_SHIFT MSCM_OCMDR_OCMC1_SHIFT
|
|
#define MSCM_SPECULATION_DISABLE(x) MSCM_OCMDR_OCMC1(x)
|
|
#endif
|
|
|
|
/*!
|
|
* @brief MSCM prefetch speculation defines.
|
|
*/
|
|
#define MSCM_OCMDR_OCMC1_DFDS_MASK (0x10U)
|
|
#define MSCM_OCMDR_OCMC1_DFCS_MASK (0x20U)
|
|
|
|
#define MSCM_OCMDR_OCMC1_DFDS_SHIFT (4U)
|
|
#define MSCM_OCMDR_OCMC1_DFCS_SHIFT (5U)
|
|
|
|
/*!
|
|
* @brief Flash size encoding rule.
|
|
*/
|
|
#define FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2 (0x00U)
|
|
#define FLASH_MEMORY_SIZE_ENCODING_RULE_K3 (0x01U)
|
|
|
|
#if defined(K32W042S1M2_M0P_SERIES) || defined(K32W042S1M2_M4_SERIES)
|
|
#define FLASH_MEMORY_SIZE_ENCODING_RULE (FLASH_MEMORY_SIZE_ENCODING_RULE_K3)
|
|
#else
|
|
#define FLASH_MEMORY_SIZE_ENCODING_RULE (FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2)
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
* Prototypes
|
|
******************************************************************************/
|
|
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
/*! @brief Copy flash_run_command() to RAM*/
|
|
static void copy_flash_run_command(uint32_t *flashRunCommand);
|
|
/*! @brief Copy flash_cache_clear_command() to RAM*/
|
|
static void copy_flash_common_bit_operation(uint32_t *flashCommonBitOperation);
|
|
/*! @brief Check whether flash execute-in-ram functions are ready*/
|
|
static status_t flash_check_execute_in_ram_function_info(flash_config_t *config);
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
|
|
/*! @brief Internal function Flash command sequence. Called by driver APIs only*/
|
|
static status_t flash_command_sequence(flash_config_t *config);
|
|
|
|
/*! @brief Perform the cache clear to the flash*/
|
|
void flash_cache_clear(flash_config_t *config);
|
|
|
|
/*! @brief Process the cache to the flash*/
|
|
static void flash_cache_clear_process(flash_config_t *config, flash_cache_clear_process_t process);
|
|
|
|
/*! @brief Validates the range and alignment of the given address range.*/
|
|
static status_t flash_check_range(flash_config_t *config,
|
|
uint32_t startAddress,
|
|
uint32_t lengthInBytes,
|
|
uint32_t alignmentBaseline);
|
|
/*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/
|
|
static status_t flash_get_matched_operation_info(flash_config_t *config,
|
|
uint32_t address,
|
|
flash_operation_config_t *info);
|
|
/*! @brief Validates the given user key for flash erase APIs.*/
|
|
static status_t flash_check_user_key(uint32_t key);
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
/*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/
|
|
static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config);
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
|
|
/*! @brief Validates the range of the given resource address.*/
|
|
static status_t flash_check_resource_range(uint32_t start,
|
|
uint32_t lengthInBytes,
|
|
uint32_t alignmentBaseline,
|
|
flash_read_resource_option_t option);
|
|
#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
|
|
/*! @brief Validates the gived swap control option.*/
|
|
static status_t flash_check_swap_control_option(flash_swap_control_option_t option);
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
|
|
/*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/
|
|
static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address);
|
|
#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
|
|
/*! @brief Validates the gived flexram function option.*/
|
|
static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option);
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
|
|
|
|
/*! @brief Gets the flash protection information (region size, region count).*/
|
|
static status_t flash_get_protection_info(flash_config_t *config, flash_protection_config_t *info);
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
|
|
/*! @brief Gets the flash Execute-Only access information (Segment size, Segment count).*/
|
|
static status_t flash_get_access_info(flash_config_t *config, flash_access_config_t *info);
|
|
#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
|
|
|
|
#if FLASH_CACHE_IS_CONTROLLED_BY_MCM
|
|
/*! @brief Performs the cache clear to the flash by MCM.*/
|
|
void mcm_flash_cache_clear(flash_config_t *config);
|
|
#endif /* FLASH_CACHE_IS_CONTROLLED_BY_MCM */
|
|
|
|
#if FLASH_CACHE_IS_CONTROLLED_BY_FMC
|
|
/*! @brief Performs the cache clear to the flash by FMC.*/
|
|
void fmc_flash_cache_clear(void);
|
|
#endif /* FLASH_CACHE_IS_CONTROLLED_BY_FMC */
|
|
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
|
|
/*! @brief Sets the prefetch speculation buffer to the flash by MSCM.*/
|
|
void mscm_flash_prefetch_speculation_enable(bool enable);
|
|
#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM */
|
|
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
|
|
/*! @brief Performs the prefetch speculation buffer clear to the flash by FMC.*/
|
|
void fmc_flash_prefetch_speculation_clear(void);
|
|
#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC */
|
|
|
|
/*******************************************************************************
|
|
* Variables
|
|
******************************************************************************/
|
|
|
|
/*! @brief Access to FTFx->FCCOB */
|
|
volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFx_FCCOB3_REG;
|
|
/*! @brief Access to FTFx->FPROT */
|
|
volatile uint32_t *const kFPROTL = (volatile uint32_t *)&FTFx_FPROT_LOW_REG;
|
|
#if defined(FTFx_FPROT_HIGH_REG)
|
|
volatile uint32_t *const kFPROTH = (volatile uint32_t *)&FTFx_FPROT_HIGH_REG;
|
|
#endif
|
|
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
|
|
volatile uint8_t *const kFPROTSL = (volatile uint8_t *)&FTFx_FPROTSL_REG;
|
|
volatile uint8_t *const kFPROTSH = (volatile uint8_t *)&FTFx_FPROTSH_REG;
|
|
#endif
|
|
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
/*! @brief A function pointer used to point to relocated flash_run_command() */
|
|
static void (*callFlashRunCommand)(FTFx_REG8_ACCESS_TYPE ftfx_fstat);
|
|
/*! @brief A function pointer used to point to relocated flash_common_bit_operation() */
|
|
static void (*callFlashCommonBitOperation)(FTFx_REG32_ACCESS_TYPE base,
|
|
uint32_t bitMask,
|
|
uint32_t bitShift,
|
|
uint32_t bitValue);
|
|
|
|
/*!
|
|
* @brief Position independent code of flash_run_command()
|
|
*
|
|
* Note1: The prototype of C function is shown as below:
|
|
* @code
|
|
* void flash_run_command(FTFx_REG8_ACCESS_TYPE ftfx_fstat)
|
|
* {
|
|
* // clear CCIF bit
|
|
* *ftfx_fstat = FTFx_FSTAT_CCIF_MASK;
|
|
*
|
|
* // Check CCIF bit of the flash status register, wait till it is set.
|
|
* // IP team indicates that this loop will always complete.
|
|
* while (!((*ftfx_fstat) & FTFx_FSTAT_CCIF_MASK))
|
|
* {
|
|
* }
|
|
* }
|
|
* @endcode
|
|
* Note2: The binary code is generated by IAR 7.70.1
|
|
*/
|
|
const static uint16_t s_flashRunCommandFunctionCode[] = {
|
|
0x2180, /* MOVS R1, #128 ; 0x80 */
|
|
0x7001, /* STRB R1, [R0] */
|
|
/* @4: */
|
|
0x7802, /* LDRB R2, [R0] */
|
|
0x420a, /* TST R2, R1 */
|
|
0xd0fc, /* BEQ.N @4 */
|
|
0x4770 /* BX LR */
|
|
};
|
|
|
|
/*!
|
|
* @brief Position independent code of flash_common_bit_operation()
|
|
*
|
|
* Note1: The prototype of C function is shown as below:
|
|
* @code
|
|
* void flash_common_bit_operation(FTFx_REG32_ACCESS_TYPE base, uint32_t bitMask, uint32_t bitShift, uint32_t
|
|
* bitValue)
|
|
* {
|
|
* if (bitMask)
|
|
* {
|
|
* uint32_t value = (((uint32_t)(((uint32_t)(bitValue)) << bitShift)) & bitMask);
|
|
* *base = (*base & (~bitMask)) | value;
|
|
* }
|
|
*
|
|
* __ISB();
|
|
* __DSB();
|
|
* }
|
|
* @endcode
|
|
* Note2: The binary code is generated by IAR 7.70.1
|
|
*/
|
|
const static uint16_t s_flashCommonBitOperationFunctionCode[] = {
|
|
0xb510, /* PUSH {R4, LR} */
|
|
0x2900, /* CMP R1, #0 */
|
|
0xd005, /* BEQ.N @12 */
|
|
0x6804, /* LDR R4, [R0] */
|
|
0x438c, /* BICS R4, R4, R1 */
|
|
0x4093, /* LSLS R3, R3, R2 */
|
|
0x4019, /* ANDS R1, R1, R3 */
|
|
0x4321, /* ORRS R1, R1, R4 */
|
|
0x6001, /* STR R1, [R0] */
|
|
/* @12: */
|
|
0xf3bf, 0x8f6f, /* ISB */
|
|
0xf3bf, 0x8f4f, /* DSB */
|
|
0xbd10 /* POP {R4, PC} */
|
|
};
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
|
|
#if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED)
|
|
/*! @brief A static buffer used to hold flash_run_command() */
|
|
static uint32_t s_flashRunCommand[kFLASH_ExecuteInRamFunctionMaxSizeInWords];
|
|
/*! @brief A static buffer used to hold flash_common_bit_operation() */
|
|
static uint32_t s_flashCommonBitOperation[kFLASH_ExecuteInRamFunctionMaxSizeInWords];
|
|
/*! @brief Flash execute-in-ram function information */
|
|
static flash_execute_in_ram_function_config_t s_flashExecuteInRamFunctionInfo;
|
|
#endif
|
|
|
|
/*!
|
|
* @brief Table of pflash sizes.
|
|
*
|
|
* The index into this table is the value of the SIM_FCFG1.PFSIZE bitfield.
|
|
*
|
|
* The values in this table have been right shifted 10 bits so that they will all fit within
|
|
* an 16-bit integer. To get the actual flash density, you must left shift the looked up value
|
|
* by 10 bits.
|
|
*
|
|
* Elements of this table have a value of 0 in cases where the PFSIZE bitfield value is
|
|
* reserved.
|
|
*
|
|
* Code to use the table:
|
|
* @code
|
|
* uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT;
|
|
* flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
|
|
* @endcode
|
|
*/
|
|
#if (FLASH_MEMORY_SIZE_ENCODING_RULE == FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2)
|
|
const uint16_t kPFlashDensities[] = {
|
|
8, /* 0x0 - 8192, 8KB */
|
|
16, /* 0x1 - 16384, 16KB */
|
|
24, /* 0x2 - 24576, 24KB */
|
|
32, /* 0x3 - 32768, 32KB */
|
|
48, /* 0x4 - 49152, 48KB */
|
|
64, /* 0x5 - 65536, 64KB */
|
|
96, /* 0x6 - 98304, 96KB */
|
|
128, /* 0x7 - 131072, 128KB */
|
|
192, /* 0x8 - 196608, 192KB */
|
|
256, /* 0x9 - 262144, 256KB */
|
|
384, /* 0xa - 393216, 384KB */
|
|
512, /* 0xb - 524288, 512KB */
|
|
768, /* 0xc - 786432, 768KB */
|
|
1024, /* 0xd - 1048576, 1MB */
|
|
1536, /* 0xe - 1572864, 1.5MB */
|
|
/* 2048, 0xf - 2097152, 2MB */
|
|
};
|
|
#elif(FLASH_MEMORY_SIZE_ENCODING_RULE == FLASH_MEMORY_SIZE_ENCODING_RULE_K3)
|
|
const uint16_t kPFlashDensities[] = {
|
|
0, /* 0x0 - undefined */
|
|
0, /* 0x1 - undefined */
|
|
0, /* 0x2 - undefined */
|
|
0, /* 0x3 - undefined */
|
|
0, /* 0x4 - undefined */
|
|
0, /* 0x5 - undefined */
|
|
0, /* 0x6 - undefined */
|
|
0, /* 0x7 - undefined */
|
|
0, /* 0x8 - undefined */
|
|
0, /* 0x9 - undefined */
|
|
256, /* 0xa - 262144, 256KB */
|
|
0, /* 0xb - undefined */
|
|
1024, /* 0xc - 1048576, 1MB */
|
|
0, /* 0xd - undefined */
|
|
0, /* 0xe - undefined */
|
|
0, /* 0xf - undefined */
|
|
};
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
* Code
|
|
******************************************************************************/
|
|
|
|
status_t FLASH_Init(flash_config_t *config)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED
|
|
if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
|
|
{
|
|
/* calculate the flash density from SIM_FCFG1.PFSIZE */
|
|
#if defined(SIM_FCFG1_CORE1_PFSIZE_MASK)
|
|
uint32_t flashDensity;
|
|
uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_CORE1_PFSIZE_MASK) >> SIM_FCFG1_CORE1_PFSIZE_SHIFT;
|
|
if (pfsize == 0xf)
|
|
{
|
|
flashDensity = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE;
|
|
}
|
|
else
|
|
{
|
|
flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
|
|
}
|
|
config->PFlashTotalSize = flashDensity;
|
|
#else
|
|
/* Unused code to solve MISRA-C issue*/
|
|
config->PFlashBlockBase = kPFlashDensities[0];
|
|
config->PFlashTotalSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE;
|
|
#endif
|
|
config->PFlashBlockBase = FSL_FEATURE_FLASH_PFLASH_1_START_ADDRESS;
|
|
config->PFlashBlockCount = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT;
|
|
config->PFlashSectorSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SECTOR_SIZE;
|
|
}
|
|
else
|
|
#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */
|
|
{
|
|
uint32_t flashDensity;
|
|
|
|
/* calculate the flash density from SIM_FCFG1.PFSIZE */
|
|
#if defined(SIM_FCFG1_CORE0_PFSIZE_MASK)
|
|
uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_CORE0_PFSIZE_MASK) >> SIM_FCFG1_CORE0_PFSIZE_SHIFT;
|
|
#elif defined(SIM_FCFG1_PFSIZE_MASK)
|
|
uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT;
|
|
#else
|
|
#error "Unknown flash size"
|
|
#endif
|
|
/* PFSIZE=0xf means that on customer parts the IFR was not correctly programmed.
|
|
* We just use the pre-defined flash size in feature file here to support pre-production parts */
|
|
if (pfsize == 0xf)
|
|
{
|
|
flashDensity = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_BLOCK_SIZE;
|
|
}
|
|
else
|
|
{
|
|
flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
|
|
}
|
|
|
|
/* fill out a few of the structure members */
|
|
config->PFlashBlockBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS;
|
|
config->PFlashTotalSize = flashDensity;
|
|
config->PFlashBlockCount = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT;
|
|
config->PFlashSectorSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_SECTOR_SIZE;
|
|
}
|
|
|
|
{
|
|
#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER
|
|
if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
|
|
{
|
|
config->PFlashAccessSegmentSize = kFLASH_AccessSegmentBase << FTFx->FACSSS;
|
|
config->PFlashAccessSegmentCount = FTFx->FACSNS;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
config->PFlashAccessSegmentSize = kFLASH_AccessSegmentBase << FTFx->FACSS;
|
|
config->PFlashAccessSegmentCount = FTFx->FACSN;
|
|
}
|
|
#else
|
|
config->PFlashAccessSegmentSize = 0;
|
|
config->PFlashAccessSegmentCount = 0;
|
|
#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
|
|
}
|
|
|
|
config->PFlashCallback = NULL;
|
|
|
|
/* copy required flash commands to RAM */
|
|
#if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED)
|
|
if (kStatus_FLASH_Success != flash_check_execute_in_ram_function_info(config))
|
|
{
|
|
s_flashExecuteInRamFunctionInfo.activeFunctionCount = 0;
|
|
s_flashExecuteInRamFunctionInfo.flashRunCommand = s_flashRunCommand;
|
|
s_flashExecuteInRamFunctionInfo.flashCommonBitOperation = s_flashCommonBitOperation;
|
|
config->flashExecuteInRamFunctionInfo = &s_flashExecuteInRamFunctionInfo.activeFunctionCount;
|
|
FLASH_PrepareExecuteInRamFunctions(config);
|
|
}
|
|
#endif
|
|
|
|
config->FlexRAMBlockBase = FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS;
|
|
config->FlexRAMTotalSize = FSL_FEATURE_FLASH_FLEX_RAM_SIZE;
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
{
|
|
status_t returnCode;
|
|
config->DFlashBlockBase = FSL_FEATURE_FLASH_FLEX_NVM_START_ADDRESS;
|
|
returnCode = flash_update_flexnvm_memory_partition_status(config);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return returnCode;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
status_t FLASH_SetCallback(flash_config_t *config, flash_callback_t callback)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
config->PFlashCallback = callback;
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
status_t FLASH_PrepareExecuteInRamFunctions(flash_config_t *config)
|
|
{
|
|
flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo;
|
|
|
|
copy_flash_run_command(flashExecuteInRamFunctionInfo->flashRunCommand);
|
|
copy_flash_common_bit_operation(flashExecuteInRamFunctionInfo->flashCommonBitOperation);
|
|
flashExecuteInRamFunctionInfo->activeFunctionCount = kFLASH_ExecuteInRamFunctionTotalNum;
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
|
|
status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)
|
|
{
|
|
status_t returnCode;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* preparing passing parameter to erase all flash blocks */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK, 0xFFFFFFU);
|
|
|
|
/* Validate the user key */
|
|
returnCode = flash_check_user_key(key);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
flash_cache_clear(config);
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
/* Data flash IFR will be erased by erase all command, so we need to
|
|
* update FlexNVM memory partition status synchronously */
|
|
if (returnCode == kStatus_FLASH_Success)
|
|
{
|
|
returnCode = flash_update_flexnvm_memory_partition_status(config);
|
|
}
|
|
#endif
|
|
|
|
return returnCode;
|
|
}
|
|
|
|
status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
|
|
{
|
|
uint32_t sectorSize;
|
|
flash_operation_config_t flashOperationInfo;
|
|
uint32_t endAddress; /* storing end address */
|
|
uint32_t numberOfSectors; /* number of sectors calculated by endAddress */
|
|
status_t returnCode;
|
|
|
|
flash_get_matched_operation_info(config, start, &flashOperationInfo);
|
|
|
|
/* Check the supplied address range. */
|
|
returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectorCmdAddressAligment);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
/* Validate the user key */
|
|
returnCode = flash_check_user_key(key);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
start = flashOperationInfo.convertedAddress;
|
|
sectorSize = flashOperationInfo.activeSectorSize;
|
|
|
|
/* calculating Flash end address */
|
|
endAddress = start + lengthInBytes - 1;
|
|
|
|
/* re-calculate the endAddress and align it to the start of the next sector
|
|
* which will be used in the comparison below */
|
|
if (endAddress % sectorSize)
|
|
{
|
|
numberOfSectors = endAddress / sectorSize + 1;
|
|
endAddress = numberOfSectors * sectorSize - 1;
|
|
}
|
|
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
|
|
|
|
/* the start address will increment to the next sector address
|
|
* until it reaches the endAdddress */
|
|
while (start <= endAddress)
|
|
{
|
|
/* preparing passing parameter to erase a flash block */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_SECTOR, start);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
/* calling flash callback function if it is available */
|
|
if (config->PFlashCallback)
|
|
{
|
|
config->PFlashCallback();
|
|
}
|
|
|
|
/* checking the success of command execution */
|
|
if (kStatus_FLASH_Success != returnCode)
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* Increment to the next sector */
|
|
start += sectorSize;
|
|
}
|
|
}
|
|
|
|
flash_cache_clear(config);
|
|
|
|
return (returnCode);
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD) && FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD
|
|
status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)
|
|
{
|
|
status_t returnCode;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Prepare passing parameter to erase all flash blocks (unsecure). */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK_UNSECURE, 0xFFFFFFU);
|
|
|
|
/* Validate the user key */
|
|
returnCode = flash_check_user_key(key);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
flash_cache_clear(config);
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
/* Data flash IFR will be erased by erase all unsecure command, so we need to
|
|
* update FlexNVM memory partition status synchronously */
|
|
if (returnCode == kStatus_FLASH_Success)
|
|
{
|
|
returnCode = flash_update_flexnvm_memory_partition_status(config);
|
|
}
|
|
#endif
|
|
|
|
return returnCode;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD */
|
|
|
|
status_t FLASH_EraseAllExecuteOnlySegments(flash_config_t *config, uint32_t key)
|
|
{
|
|
status_t returnCode;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* preparing passing parameter to erase all execute-only segments
|
|
* 1st element for the FCCOB register */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT, 0xFFFFFFU);
|
|
|
|
/* Validate the user key */
|
|
returnCode = flash_check_user_key(key);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
flash_cache_clear(config);
|
|
|
|
return returnCode;
|
|
}
|
|
|
|
status_t FLASH_Program(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes)
|
|
{
|
|
status_t returnCode;
|
|
flash_operation_config_t flashOperationInfo;
|
|
|
|
if (src == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
flash_get_matched_operation_info(config, start, &flashOperationInfo);
|
|
|
|
/* Check the supplied address range. */
|
|
returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.blockWriteUnitSize);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
start = flashOperationInfo.convertedAddress;
|
|
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
|
|
|
|
while (lengthInBytes > 0)
|
|
{
|
|
/* preparing passing parameter to program the flash block */
|
|
kFCCOBx[1] = *src++;
|
|
if (4 == flashOperationInfo.blockWriteUnitSize)
|
|
{
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_LONGWORD, start);
|
|
}
|
|
else if (8 == flashOperationInfo.blockWriteUnitSize)
|
|
{
|
|
kFCCOBx[2] = *src++;
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_PHRASE, start);
|
|
}
|
|
else
|
|
{
|
|
}
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
/* calling flash callback function if it is available */
|
|
if (config->PFlashCallback)
|
|
{
|
|
config->PFlashCallback();
|
|
}
|
|
|
|
/* checking for the success of command execution */
|
|
if (kStatus_FLASH_Success != returnCode)
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* update start address for next iteration */
|
|
start += flashOperationInfo.blockWriteUnitSize;
|
|
|
|
/* update lengthInBytes for next iteration */
|
|
lengthInBytes -= flashOperationInfo.blockWriteUnitSize;
|
|
}
|
|
}
|
|
|
|
flash_cache_clear(config);
|
|
|
|
return (returnCode);
|
|
}
|
|
|
|
status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint32_t *src, uint32_t lengthInBytes)
|
|
{
|
|
status_t returnCode;
|
|
|
|
if ((config == NULL) || (src == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* pass paramters to FTFx */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_PROGRAM_ONCE, index, 0xFFFFU);
|
|
|
|
kFCCOBx[1] = *src;
|
|
|
|
/* Note: Have to seperate the first index from the rest if it equals 0
|
|
* to avoid a pointless comparison of unsigned int to 0 compiler warning */
|
|
#if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT
|
|
#if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT
|
|
if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) ||
|
|
/* Range check */
|
|
((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) &&
|
|
(lengthInBytes == 8))
|
|
#endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */
|
|
{
|
|
kFCCOBx[2] = *(src + 1);
|
|
}
|
|
#endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */
|
|
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
flash_cache_clear(config);
|
|
|
|
return returnCode;
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD
|
|
status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes)
|
|
{
|
|
status_t returnCode;
|
|
uint32_t sectorSize;
|
|
flash_operation_config_t flashOperationInfo;
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
|
|
bool needSwitchFlexRamMode = false;
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
|
|
|
|
if (src == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
flash_get_matched_operation_info(config, start, &flashOperationInfo);
|
|
|
|
/* Check the supplied address range. */
|
|
returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectionCmdAddressAligment);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
start = flashOperationInfo.convertedAddress;
|
|
sectorSize = flashOperationInfo.activeSectorSize;
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
|
|
/* Switch function of FlexRAM if needed */
|
|
if (!(FTFx->FCNFG & FTFx_FCNFG_RAMRDY_MASK))
|
|
{
|
|
needSwitchFlexRamMode = true;
|
|
|
|
returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableAsRam);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return kStatus_FLASH_SetFlexramAsRamError;
|
|
}
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
|
|
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
|
|
|
|
while (lengthInBytes > 0)
|
|
{
|
|
/* Make sure the write operation doesn't span two sectors */
|
|
uint32_t endAddressOfCurrentSector = ALIGN_UP(start, sectorSize);
|
|
uint32_t lengthTobeProgrammedOfCurrentSector;
|
|
uint32_t currentOffset = 0;
|
|
|
|
if (endAddressOfCurrentSector == start)
|
|
{
|
|
endAddressOfCurrentSector += sectorSize;
|
|
}
|
|
|
|
if (lengthInBytes + start > endAddressOfCurrentSector)
|
|
{
|
|
lengthTobeProgrammedOfCurrentSector = endAddressOfCurrentSector - start;
|
|
}
|
|
else
|
|
{
|
|
lengthTobeProgrammedOfCurrentSector = lengthInBytes;
|
|
}
|
|
|
|
/* Program Current Sector */
|
|
while (lengthTobeProgrammedOfCurrentSector > 0)
|
|
{
|
|
/* Make sure the program size doesn't exceeds Acceleration RAM size */
|
|
uint32_t programSizeOfCurrentPass;
|
|
uint32_t numberOfPhases;
|
|
|
|
if (lengthTobeProgrammedOfCurrentSector > kFLASH_AccelerationRamSize)
|
|
{
|
|
programSizeOfCurrentPass = kFLASH_AccelerationRamSize;
|
|
}
|
|
else
|
|
{
|
|
programSizeOfCurrentPass = lengthTobeProgrammedOfCurrentSector;
|
|
}
|
|
|
|
/* Copy data to FlexRAM */
|
|
memcpy((void *)FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS, src + currentOffset / 4, programSizeOfCurrentPass);
|
|
/* Set start address of the data to be programmed */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_SECTION, start + currentOffset);
|
|
/* Set program size in terms of FEATURE_FLASH_SECTION_CMD_ADDRESS_ALIGMENT */
|
|
numberOfPhases = programSizeOfCurrentPass / flashOperationInfo.sectionCmdAddressAligment;
|
|
|
|
kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_2(numberOfPhases, 0xFFFFU);
|
|
|
|
/* Peform command sequence */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
/* calling flash callback function if it is available */
|
|
if (config->PFlashCallback)
|
|
{
|
|
config->PFlashCallback();
|
|
}
|
|
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
flash_cache_clear(config);
|
|
return returnCode;
|
|
}
|
|
|
|
lengthTobeProgrammedOfCurrentSector -= programSizeOfCurrentPass;
|
|
currentOffset += programSizeOfCurrentPass;
|
|
}
|
|
|
|
src += currentOffset / 4;
|
|
start += currentOffset;
|
|
lengthInBytes -= currentOffset;
|
|
}
|
|
|
|
flash_cache_clear(config);
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
|
|
/* Restore function of FlexRAM if needed. */
|
|
if (needSwitchFlexRamMode)
|
|
{
|
|
returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableForEeprom);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return kStatus_FLASH_RecoverFlexramAsEepromError;
|
|
}
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
|
|
|
|
return returnCode;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD */
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
status_t FLASH_EepromWrite(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
|
|
{
|
|
status_t returnCode;
|
|
bool needSwitchFlexRamMode = false;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Validates the range of the given address */
|
|
if ((start < config->FlexRAMBlockBase) ||
|
|
((start + lengthInBytes) > (config->FlexRAMBlockBase + config->EEpromTotalSize)))
|
|
{
|
|
return kStatus_FLASH_AddressError;
|
|
}
|
|
|
|
returnCode = kStatus_FLASH_Success;
|
|
|
|
/* Switch function of FlexRAM if needed */
|
|
if (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK))
|
|
{
|
|
needSwitchFlexRamMode = true;
|
|
|
|
returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableForEeprom);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return kStatus_FLASH_SetFlexramAsEepromError;
|
|
}
|
|
}
|
|
|
|
/* Write data to FlexRAM when it is used as EEPROM emulator */
|
|
while (lengthInBytes > 0)
|
|
{
|
|
if ((!(start & 0x3U)) && (lengthInBytes >= 4))
|
|
{
|
|
*(uint32_t *)start = *(uint32_t *)src;
|
|
start += 4;
|
|
src += 4;
|
|
lengthInBytes -= 4;
|
|
}
|
|
else if ((!(start & 0x1U)) && (lengthInBytes >= 2))
|
|
{
|
|
*(uint16_t *)start = *(uint16_t *)src;
|
|
start += 2;
|
|
src += 2;
|
|
lengthInBytes -= 2;
|
|
}
|
|
else
|
|
{
|
|
*(uint8_t *)start = *src;
|
|
start += 1;
|
|
src += 1;
|
|
lengthInBytes -= 1;
|
|
}
|
|
/* Wait till EEERDY bit is set */
|
|
while (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK))
|
|
{
|
|
}
|
|
|
|
/* Check for protection violation error */
|
|
if (FTFx->FSTAT & FTFx_FSTAT_FPVIOL_MASK)
|
|
{
|
|
return kStatus_FLASH_ProtectionViolation;
|
|
}
|
|
}
|
|
|
|
/* Switch function of FlexRAM if needed */
|
|
if (needSwitchFlexRamMode)
|
|
{
|
|
returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableAsRam);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return kStatus_FLASH_RecoverFlexramAsRamError;
|
|
}
|
|
}
|
|
|
|
return returnCode;
|
|
}
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
|
|
status_t FLASH_ReadResource(
|
|
flash_config_t *config, uint32_t start, uint32_t *dst, uint32_t lengthInBytes, flash_read_resource_option_t option)
|
|
{
|
|
status_t returnCode;
|
|
flash_operation_config_t flashOperationInfo;
|
|
|
|
if ((config == NULL) || (dst == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
flash_get_matched_operation_info(config, start, &flashOperationInfo);
|
|
|
|
/* Check the supplied address range. */
|
|
returnCode =
|
|
flash_check_resource_range(start, lengthInBytes, flashOperationInfo.resourceCmdAddressAligment, option);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
while (lengthInBytes > 0)
|
|
{
|
|
/* preparing passing parameter */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_READ_RESOURCE, start);
|
|
if (flashOperationInfo.resourceCmdAddressAligment == 4)
|
|
{
|
|
kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
|
|
}
|
|
else if (flashOperationInfo.resourceCmdAddressAligment == 8)
|
|
{
|
|
kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
|
|
}
|
|
else
|
|
{
|
|
}
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
if (kStatus_FLASH_Success != returnCode)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* fetch data */
|
|
*dst++ = kFCCOBx[1];
|
|
if (flashOperationInfo.resourceCmdAddressAligment == 8)
|
|
{
|
|
*dst++ = kFCCOBx[2];
|
|
}
|
|
/* update start address for next iteration */
|
|
start += flashOperationInfo.resourceCmdAddressAligment;
|
|
/* update lengthInBytes for next iteration */
|
|
lengthInBytes -= flashOperationInfo.resourceCmdAddressAligment;
|
|
}
|
|
|
|
return (returnCode);
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
|
|
|
|
status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint32_t *dst, uint32_t lengthInBytes)
|
|
{
|
|
status_t returnCode;
|
|
|
|
if ((config == NULL) || (dst == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* pass paramters to FTFx */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_READ_ONCE, index, 0xFFFFU);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
if (kStatus_FLASH_Success == returnCode)
|
|
{
|
|
*dst = kFCCOBx[1];
|
|
/* Note: Have to seperate the first index from the rest if it equals 0
|
|
* to avoid a pointless comparison of unsigned int to 0 compiler warning */
|
|
#if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT
|
|
#if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT
|
|
if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) ||
|
|
/* Range check */
|
|
((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) &&
|
|
(lengthInBytes == 8))
|
|
#endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */
|
|
{
|
|
*(dst + 1) = kFCCOBx[2];
|
|
}
|
|
#endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */
|
|
}
|
|
|
|
return returnCode;
|
|
}
|
|
|
|
status_t FLASH_GetSecurityState(flash_config_t *config, flash_security_state_t *state)
|
|
{
|
|
/* store data read from flash register */
|
|
uint8_t registerValue;
|
|
|
|
if ((config == NULL) || (state == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Get flash security register value */
|
|
registerValue = FTFx->FSEC;
|
|
|
|
/* check the status of the flash security bits in the security register */
|
|
if (FLASH_SECURITY_STATE_UNSECURED == (registerValue & FTFx_FSEC_SEC_MASK))
|
|
{
|
|
/* Flash in unsecured state */
|
|
*state = kFLASH_SecurityStateNotSecure;
|
|
}
|
|
else
|
|
{
|
|
/* Flash in secured state
|
|
* check for backdoor key security enable bit */
|
|
if (FLASH_SECURITY_STATE_KEYEN == (registerValue & FTFx_FSEC_KEYEN_MASK))
|
|
{
|
|
/* Backdoor key security enabled */
|
|
*state = kFLASH_SecurityStateBackdoorEnabled;
|
|
}
|
|
else
|
|
{
|
|
/* Backdoor key security disabled */
|
|
*state = kFLASH_SecurityStateBackdoorDisabled;
|
|
}
|
|
}
|
|
|
|
return (kStatus_FLASH_Success);
|
|
}
|
|
|
|
status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)
|
|
{
|
|
uint8_t registerValue; /* registerValue */
|
|
status_t returnCode; /* return code variable */
|
|
|
|
if ((config == NULL) || (backdoorKey == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* set the default return code as kStatus_Success */
|
|
returnCode = kStatus_FLASH_Success;
|
|
|
|
/* Get flash security register value */
|
|
registerValue = FTFx->FSEC;
|
|
|
|
/* Check to see if flash is in secure state (any state other than 0x2)
|
|
* If not, then skip this since flash is not secure */
|
|
if (0x02 != (registerValue & 0x03))
|
|
{
|
|
/* preparing passing parameter to erase a flash block */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SECURITY_BY_PASS, 0xFFFFFFU);
|
|
kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[0], backdoorKey[1], backdoorKey[2], backdoorKey[3]);
|
|
kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[4], backdoorKey[5], backdoorKey[6], backdoorKey[7]);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
}
|
|
|
|
return (returnCode);
|
|
}
|
|
|
|
status_t FLASH_VerifyEraseAll(flash_config_t *config, flash_margin_value_t margin)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* preparing passing parameter to verify all block command */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_BLOCK, margin, 0xFFFFU);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
return flash_command_sequence(config);
|
|
}
|
|
|
|
status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_margin_value_t margin)
|
|
{
|
|
/* Check arguments. */
|
|
uint32_t blockSize;
|
|
flash_operation_config_t flashOperationInfo;
|
|
uint32_t nextBlockStartAddress;
|
|
uint32_t remainingBytes;
|
|
status_t returnCode;
|
|
|
|
flash_get_matched_operation_info(config, start, &flashOperationInfo);
|
|
|
|
returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectionCmdAddressAligment);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
flash_get_matched_operation_info(config, start, &flashOperationInfo);
|
|
start = flashOperationInfo.convertedAddress;
|
|
blockSize = flashOperationInfo.activeBlockSize;
|
|
|
|
nextBlockStartAddress = ALIGN_UP(start, blockSize);
|
|
if (nextBlockStartAddress == start)
|
|
{
|
|
nextBlockStartAddress += blockSize;
|
|
}
|
|
|
|
remainingBytes = lengthInBytes;
|
|
|
|
while (remainingBytes)
|
|
{
|
|
uint32_t numberOfPhrases;
|
|
uint32_t verifyLength = nextBlockStartAddress - start;
|
|
if (verifyLength > remainingBytes)
|
|
{
|
|
verifyLength = remainingBytes;
|
|
}
|
|
|
|
numberOfPhrases = verifyLength / flashOperationInfo.sectionCmdAddressAligment;
|
|
|
|
/* Fill in verify section command parameters. */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_VERIFY_SECTION, start);
|
|
kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_1_1(numberOfPhrases, margin, 0xFFU);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
remainingBytes -= verifyLength;
|
|
start += verifyLength;
|
|
nextBlockStartAddress += blockSize;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
status_t FLASH_VerifyProgram(flash_config_t *config,
|
|
uint32_t start,
|
|
uint32_t lengthInBytes,
|
|
const uint32_t *expectedData,
|
|
flash_margin_value_t margin,
|
|
uint32_t *failedAddress,
|
|
uint32_t *failedData)
|
|
{
|
|
status_t returnCode;
|
|
flash_operation_config_t flashOperationInfo;
|
|
|
|
if (expectedData == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
flash_get_matched_operation_info(config, start, &flashOperationInfo);
|
|
|
|
returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.checkCmdAddressAligment);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
start = flashOperationInfo.convertedAddress;
|
|
|
|
while (lengthInBytes)
|
|
{
|
|
/* preparing passing parameter to program check the flash block */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_CHECK, start);
|
|
kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(margin, 0xFFFFFFU);
|
|
kFCCOBx[2] = *expectedData;
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
/* checking for the success of command execution */
|
|
if (kStatus_FLASH_Success != returnCode)
|
|
{
|
|
if (failedAddress)
|
|
{
|
|
*failedAddress = start;
|
|
}
|
|
if (failedData)
|
|
{
|
|
*failedData = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
lengthInBytes -= flashOperationInfo.checkCmdAddressAligment;
|
|
expectedData += flashOperationInfo.checkCmdAddressAligment / sizeof(*expectedData);
|
|
start += flashOperationInfo.checkCmdAddressAligment;
|
|
}
|
|
|
|
return (returnCode);
|
|
}
|
|
|
|
status_t FLASH_VerifyEraseAllExecuteOnlySegments(flash_config_t *config, flash_margin_value_t margin)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* preparing passing parameter to verify erase all execute-only segments command */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT, margin, 0xFFFFU);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
return flash_command_sequence(config);
|
|
}
|
|
|
|
status_t FLASH_IsProtected(flash_config_t *config,
|
|
uint32_t start,
|
|
uint32_t lengthInBytes,
|
|
flash_protection_state_t *protection_state)
|
|
{
|
|
uint32_t endAddress; /* end address for protection check */
|
|
uint32_t regionCheckedCounter; /* increments each time the flash address was checked for
|
|
* protection status */
|
|
uint32_t regionCounter; /* incrementing variable used to increment through the flash
|
|
* protection regions */
|
|
uint32_t protectStatusCounter; /* increments each time a flash region was detected as protected */
|
|
|
|
uint8_t flashRegionProtectStatus[FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT]; /* array of the protection
|
|
* status for each
|
|
* protection region */
|
|
uint32_t flashRegionAddress[FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT +
|
|
1]; /* array of the start addresses for each flash
|
|
* protection region. Note this is REGION_COUNT+1
|
|
* due to requiring the next start address after
|
|
* the end of flash for loop-check purposes below */
|
|
flash_protection_config_t flashProtectionInfo; /* flash protection information */
|
|
status_t returnCode;
|
|
|
|
if (protection_state == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Check the supplied address range. */
|
|
returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
/* Get necessary flash protection information. */
|
|
returnCode = flash_get_protection_info(config, &flashProtectionInfo);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
/* calculating Flash end address */
|
|
endAddress = start + lengthInBytes;
|
|
|
|
/* populate the flashRegionAddress array with the start address of each flash region */
|
|
regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
|
|
|
|
/* populate up to 33rd element of array, this is the next address after end of flash array */
|
|
while (regionCounter <= flashProtectionInfo.regionCount)
|
|
{
|
|
flashRegionAddress[regionCounter] =
|
|
flashProtectionInfo.regionBase + flashProtectionInfo.regionSize * regionCounter;
|
|
regionCounter++;
|
|
}
|
|
|
|
/* populate flashRegionProtectStatus array with status information
|
|
* Protection status for each region is stored in the FPROT[3:0] registers
|
|
* Each bit represents one region of flash
|
|
* 4 registers * 8-bits-per-register = 32-bits (32-regions)
|
|
* The convention is:
|
|
* FPROT3[bit 0] is the first protection region (start of flash memory)
|
|
* FPROT0[bit 7] is the last protection region (end of flash memory)
|
|
* regionCounter is used to determine which FPROT[3:0] register to check for protection status
|
|
* Note: FPROT=1 means NOT protected, FPROT=0 means protected */
|
|
regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
|
|
while (regionCounter < flashProtectionInfo.regionCount)
|
|
{
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
|
|
if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
|
|
{
|
|
if (regionCounter < 8)
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTSL_REG >> regionCounter) & (0x01u);
|
|
}
|
|
else if ((regionCounter >= 8) && (regionCounter < 16))
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTSH_REG >> (regionCounter - 8)) & (0x01u);
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* Note: So far protection region count may be 16/20/24/32/64 */
|
|
if (regionCounter < 8)
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL3_REG >> regionCounter) & (0x01u);
|
|
}
|
|
else if ((regionCounter >= 8) && (regionCounter < 16))
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL2_REG >> (regionCounter - 8)) & (0x01u);
|
|
}
|
|
#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT > 16)
|
|
#if (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 20)
|
|
else if ((regionCounter >= 16) && (regionCounter < 20))
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL1_REG >> (regionCounter - 16)) & (0x01u);
|
|
}
|
|
#else
|
|
else if ((regionCounter >= 16) && (regionCounter < 24))
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL1_REG >> (regionCounter - 16)) & (0x01u);
|
|
}
|
|
#endif /* (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 20) */
|
|
#endif
|
|
#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT > 24)
|
|
else if ((regionCounter >= 24) && (regionCounter < 32))
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL0_REG >> (regionCounter - 24)) & (0x01u);
|
|
}
|
|
#endif
|
|
#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && \
|
|
(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 64)
|
|
else if (regionCounter < 40)
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH3_REG >> (regionCounter - 32)) & (0x01u);
|
|
}
|
|
else if (regionCounter < 48)
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH2_REG >> (regionCounter - 40)) & (0x01u);
|
|
}
|
|
else if (regionCounter < 56)
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH1_REG >> (regionCounter - 48)) & (0x01u);
|
|
}
|
|
else if (regionCounter < 64)
|
|
{
|
|
flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH0_REG >> (regionCounter - 56)) & (0x01u);
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
regionCounter++;
|
|
}
|
|
|
|
/* loop through the flash regions and check
|
|
* desired flash address range for protection status
|
|
* loop stops when it is detected that start has exceeded the endAddress */
|
|
regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
|
|
regionCheckedCounter = 0;
|
|
protectStatusCounter = 0; /* make sure protectStatusCounter is initialized to 0 first */
|
|
while (start < endAddress)
|
|
{
|
|
/* check to see if the address falls within this protection region
|
|
* Note that if the entire flash is to be checked, the last protection
|
|
* region checked would consist of the last protection start address and
|
|
* the start address following the end of flash */
|
|
if ((start >= flashRegionAddress[regionCounter]) && (start < flashRegionAddress[regionCounter + 1]))
|
|
{
|
|
/* increment regionCheckedCounter to indicate this region was checked */
|
|
regionCheckedCounter++;
|
|
|
|
/* check the protection status of this region
|
|
* Note: FPROT=1 means NOT protected, FPROT=0 means protected */
|
|
if (!flashRegionProtectStatus[regionCounter])
|
|
{
|
|
/* increment protectStatusCounter to indicate this region is protected */
|
|
protectStatusCounter++;
|
|
}
|
|
start += flashProtectionInfo.regionSize; /* increment to an address within the next region */
|
|
}
|
|
regionCounter++; /* increment regionCounter to check for the next flash protection region */
|
|
}
|
|
|
|
/* if protectStatusCounter == 0, then no region of the desired flash region is protected */
|
|
if (protectStatusCounter == 0)
|
|
{
|
|
*protection_state = kFLASH_ProtectionStateUnprotected;
|
|
}
|
|
/* if protectStatusCounter == regionCheckedCounter, then each region checked was protected */
|
|
else if (protectStatusCounter == regionCheckedCounter)
|
|
{
|
|
*protection_state = kFLASH_ProtectionStateProtected;
|
|
}
|
|
/* if protectStatusCounter != regionCheckedCounter, then protection status is mixed
|
|
* In other words, some regions are protected while others are unprotected */
|
|
else
|
|
{
|
|
*protection_state = kFLASH_ProtectionStateMixed;
|
|
}
|
|
|
|
return (returnCode);
|
|
}
|
|
|
|
status_t FLASH_IsExecuteOnly(flash_config_t *config,
|
|
uint32_t start,
|
|
uint32_t lengthInBytes,
|
|
flash_execute_only_access_state_t *access_state)
|
|
{
|
|
#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
|
|
flash_access_config_t flashAccessInfo; /* flash Execute-Only information */
|
|
#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
|
|
status_t returnCode;
|
|
|
|
if (access_state == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Check the supplied address range. */
|
|
returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
|
|
/* Get necessary flash Execute-Only information. */
|
|
returnCode = flash_get_access_info(config, &flashAccessInfo);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
{
|
|
uint32_t executeOnlySegmentCounter = 0;
|
|
|
|
/* calculating end address */
|
|
uint32_t endAddress = start + lengthInBytes;
|
|
|
|
/* Aligning start address and end address */
|
|
uint32_t alignedStartAddress = ALIGN_DOWN(start, flashAccessInfo.SegmentSize);
|
|
uint32_t alignedEndAddress = ALIGN_UP(endAddress, flashAccessInfo.SegmentSize);
|
|
|
|
uint32_t segmentIndex = 0;
|
|
uint32_t maxSupportedExecuteOnlySegmentCount =
|
|
(alignedEndAddress - alignedStartAddress) / flashAccessInfo.SegmentSize;
|
|
|
|
while (start < endAddress)
|
|
{
|
|
uint32_t xacc;
|
|
|
|
segmentIndex = (start - flashAccessInfo.SegmentBase) / flashAccessInfo.SegmentSize;
|
|
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER
|
|
if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
|
|
{
|
|
/* For secondary flash, The two XACCS registers allow up to 16 restricted segments of equal memory size.
|
|
*/
|
|
if (segmentIndex < 8)
|
|
{
|
|
xacc = *(const volatile uint8_t *)&FTFx_XACCSL_REG;
|
|
}
|
|
else if (segmentIndex < flashAccessInfo.SegmentCount)
|
|
{
|
|
xacc = *(const volatile uint8_t *)&FTFx_XACCSH_REG;
|
|
segmentIndex -= 8;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* For primary flash, The eight XACC registers allow up to 64 restricted segments of equal memory size.
|
|
*/
|
|
if (segmentIndex < 32)
|
|
{
|
|
xacc = *(const volatile uint32_t *)&FTFx_XACCL3_REG;
|
|
}
|
|
else if (segmentIndex < flashAccessInfo.SegmentCount)
|
|
{
|
|
xacc = *(const volatile uint32_t *)&FTFx_XACCH3_REG;
|
|
segmentIndex -= 32;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Determine if this address range is in a execute-only protection flash segment. */
|
|
if ((~xacc) & (1u << segmentIndex))
|
|
{
|
|
executeOnlySegmentCounter++;
|
|
}
|
|
|
|
start += flashAccessInfo.SegmentSize;
|
|
}
|
|
|
|
if (executeOnlySegmentCounter < 1u)
|
|
{
|
|
*access_state = kFLASH_AccessStateUnLimited;
|
|
}
|
|
else if (executeOnlySegmentCounter < maxSupportedExecuteOnlySegmentCount)
|
|
{
|
|
*access_state = kFLASH_AccessStateMixed;
|
|
}
|
|
else
|
|
{
|
|
*access_state = kFLASH_AccessStateExecuteOnly;
|
|
}
|
|
}
|
|
#else
|
|
*access_state = kFLASH_AccessStateUnLimited;
|
|
#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
|
|
|
|
return (returnCode);
|
|
}
|
|
|
|
status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value)
|
|
{
|
|
if ((config == NULL) || (value == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
switch (whichProperty)
|
|
{
|
|
case kFLASH_PropertyPflashSectorSize:
|
|
*value = config->PFlashSectorSize;
|
|
break;
|
|
|
|
case kFLASH_PropertyPflashTotalSize:
|
|
*value = config->PFlashTotalSize;
|
|
break;
|
|
|
|
case kFLASH_PropertyPflashBlockSize:
|
|
*value = config->PFlashTotalSize / FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT;
|
|
break;
|
|
|
|
case kFLASH_PropertyPflashBlockCount:
|
|
*value = (uint32_t)config->PFlashBlockCount;
|
|
break;
|
|
|
|
case kFLASH_PropertyPflashBlockBaseAddr:
|
|
*value = config->PFlashBlockBase;
|
|
break;
|
|
|
|
case kFLASH_PropertyPflashFacSupport:
|
|
#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL)
|
|
*value = FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL;
|
|
#else
|
|
*value = 0;
|
|
#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
|
|
break;
|
|
|
|
case kFLASH_PropertyPflashAccessSegmentSize:
|
|
*value = config->PFlashAccessSegmentSize;
|
|
break;
|
|
|
|
case kFLASH_PropertyPflashAccessSegmentCount:
|
|
*value = config->PFlashAccessSegmentCount;
|
|
break;
|
|
|
|
case kFLASH_PropertyFlexRamBlockBaseAddr:
|
|
*value = config->FlexRAMBlockBase;
|
|
break;
|
|
|
|
case kFLASH_PropertyFlexRamTotalSize:
|
|
*value = config->FlexRAMTotalSize;
|
|
break;
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
case kFLASH_PropertyDflashSectorSize:
|
|
*value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE;
|
|
break;
|
|
case kFLASH_PropertyDflashTotalSize:
|
|
*value = config->DFlashTotalSize;
|
|
break;
|
|
case kFLASH_PropertyDflashBlockSize:
|
|
*value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SIZE;
|
|
break;
|
|
case kFLASH_PropertyDflashBlockCount:
|
|
*value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT;
|
|
break;
|
|
case kFLASH_PropertyDflashBlockBaseAddr:
|
|
*value = config->DFlashBlockBase;
|
|
break;
|
|
case kFLASH_PropertyEepromTotalSize:
|
|
*value = config->EEpromTotalSize;
|
|
break;
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
|
|
default: /* catch inputs that are not recognized */
|
|
return kStatus_FLASH_UnknownProperty;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
status_t FLASH_SetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t value)
|
|
{
|
|
status_t status = kStatus_FLASH_Success;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
switch (whichProperty)
|
|
{
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED
|
|
case kFLASH_PropertyFlashMemoryIndex:
|
|
if ((value != (uint32_t)kFLASH_MemoryIndexPrimaryFlash) &&
|
|
(value != (uint32_t)kFLASH_MemoryIndexSecondaryFlash))
|
|
{
|
|
return kStatus_FLASH_InvalidPropertyValue;
|
|
}
|
|
config->FlashMemoryIndex = (uint8_t)value;
|
|
break;
|
|
#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */
|
|
|
|
case kFLASH_PropertyFlashCacheControllerIndex:
|
|
if ((value != (uint32_t)kFLASH_CacheControllerIndexForCore0) &&
|
|
(value != (uint32_t)kFLASH_CacheControllerIndexForCore1))
|
|
{
|
|
return kStatus_FLASH_InvalidPropertyValue;
|
|
}
|
|
config->FlashCacheControllerIndex = (uint8_t)value;
|
|
break;
|
|
|
|
case kFLASH_PropertyPflashSectorSize:
|
|
case kFLASH_PropertyPflashTotalSize:
|
|
case kFLASH_PropertyPflashBlockSize:
|
|
case kFLASH_PropertyPflashBlockCount:
|
|
case kFLASH_PropertyPflashBlockBaseAddr:
|
|
case kFLASH_PropertyPflashFacSupport:
|
|
case kFLASH_PropertyPflashAccessSegmentSize:
|
|
case kFLASH_PropertyPflashAccessSegmentCount:
|
|
case kFLASH_PropertyFlexRamBlockBaseAddr:
|
|
case kFLASH_PropertyFlexRamTotalSize:
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
case kFLASH_PropertyDflashSectorSize:
|
|
case kFLASH_PropertyDflashTotalSize:
|
|
case kFLASH_PropertyDflashBlockSize:
|
|
case kFLASH_PropertyDflashBlockCount:
|
|
case kFLASH_PropertyDflashBlockBaseAddr:
|
|
case kFLASH_PropertyEepromTotalSize:
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
status = kStatus_FLASH_ReadOnlyProperty;
|
|
break;
|
|
default: /* catch inputs that are not recognized */
|
|
status = kStatus_FLASH_UnknownProperty;
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
|
|
status_t FLASH_SetFlexramFunction(flash_config_t *config, flash_flexram_function_option_t option)
|
|
{
|
|
status_t status;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
status = flasn_check_flexram_function_option_range(option);
|
|
if (status != kStatus_FLASH_Success)
|
|
{
|
|
return status;
|
|
}
|
|
|
|
/* preparing passing parameter to verify all block command */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_SET_FLEXRAM_FUNCTION, option, 0xFFFFU);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
return flash_command_sequence(config);
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
|
|
status_t FLASH_SwapControl(flash_config_t *config,
|
|
uint32_t address,
|
|
flash_swap_control_option_t option,
|
|
flash_swap_state_config_t *returnInfo)
|
|
{
|
|
status_t returnCode;
|
|
|
|
if ((config == NULL) || (returnInfo == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
if (address & (FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT - 1))
|
|
{
|
|
return kStatus_FLASH_AlignmentError;
|
|
}
|
|
|
|
/* Make sure address provided is in the lower half of Program flash but not in the Flash Configuration Field */
|
|
if ((address >= (config->PFlashTotalSize / 2)) ||
|
|
((address >= kFLASH_ConfigAreaStart) && (address <= kFLASH_ConfigAreaEnd)))
|
|
{
|
|
return kStatus_FLASH_SwapIndicatorAddressError;
|
|
}
|
|
|
|
/* Check the option. */
|
|
returnCode = flash_check_swap_control_option(option);
|
|
if (returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SWAP_CONTROL, address);
|
|
kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
|
|
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
returnInfo->flashSwapState = (flash_swap_state_t)FTFx_FCCOB5_REG;
|
|
returnInfo->currentSwapBlockStatus = (flash_swap_block_status_t)FTFx_FCCOB6_REG;
|
|
returnInfo->nextSwapBlockStatus = (flash_swap_block_status_t)FTFx_FCCOB7_REG;
|
|
|
|
return returnCode;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
|
|
status_t FLASH_Swap(flash_config_t *config, uint32_t address, flash_swap_function_option_t option)
|
|
{
|
|
flash_swap_state_config_t returnInfo;
|
|
status_t returnCode;
|
|
|
|
memset(&returnInfo, 0xFFU, sizeof(returnInfo));
|
|
|
|
do
|
|
{
|
|
returnCode = FLASH_SwapControl(config, address, kFLASH_SwapControlOptionReportStatus, &returnInfo);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
if (kFLASH_SwapFunctionOptionDisable == option)
|
|
{
|
|
if (returnInfo.flashSwapState == kFLASH_SwapStateDisabled)
|
|
{
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
else if (returnInfo.flashSwapState == kFLASH_SwapStateUninitialized)
|
|
{
|
|
/* The swap system changed to the DISABLED state with Program flash block 0
|
|
* located at relative flash address 0x0_0000 */
|
|
returnCode = FLASH_SwapControl(config, address, kFLASH_SwapControlOptionDisableSystem, &returnInfo);
|
|
}
|
|
else
|
|
{
|
|
/* Swap disable should be requested only when swap system is in the uninitialized state */
|
|
return kStatus_FLASH_SwapSystemNotInUninitialized;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* When first swap: the initial swap state is Uninitialized, flash swap inidicator address is unset,
|
|
* the swap procedure should be Uninitialized -> Update-Erased -> Complete.
|
|
* After the first swap has been completed, the flash swap inidicator address cannot be modified
|
|
* unless EraseAllBlocks command is issued, the swap procedure is changed to Update -> Update-Erased ->
|
|
* Complete. */
|
|
switch (returnInfo.flashSwapState)
|
|
{
|
|
case kFLASH_SwapStateUninitialized:
|
|
/* If current swap mode is Uninitialized, Initialize Swap to Initialized/READY state. */
|
|
returnCode =
|
|
FLASH_SwapControl(config, address, kFLASH_SwapControlOptionIntializeSystem, &returnInfo);
|
|
break;
|
|
case kFLASH_SwapStateReady:
|
|
/* Validate whether the address provided to the swap system is matched to
|
|
* swap indicator address in the IFR */
|
|
returnCode = flash_validate_swap_indicator_address(config, address);
|
|
if (returnCode == kStatus_FLASH_Success)
|
|
{
|
|
/* If current swap mode is Initialized/Ready, Initialize Swap to UPDATE state. */
|
|
returnCode =
|
|
FLASH_SwapControl(config, address, kFLASH_SwapControlOptionSetInUpdateState, &returnInfo);
|
|
}
|
|
break;
|
|
case kFLASH_SwapStateUpdate:
|
|
/* If current swap mode is Update, Erase indicator sector in non active block
|
|
* to proceed swap system to update-erased state */
|
|
returnCode = FLASH_Erase(config, address + (config->PFlashTotalSize >> 1),
|
|
FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT, kFLASH_ApiEraseKey);
|
|
break;
|
|
case kFLASH_SwapStateUpdateErased:
|
|
/* If current swap mode is Update or Update-Erased, progress Swap to COMPLETE State */
|
|
returnCode =
|
|
FLASH_SwapControl(config, address, kFLASH_SwapControlOptionSetInCompleteState, &returnInfo);
|
|
break;
|
|
case kFLASH_SwapStateComplete:
|
|
break;
|
|
case kFLASH_SwapStateDisabled:
|
|
/* When swap system is in disabled state, We need to clear swap system back to uninitialized
|
|
* by issuing EraseAllBlocks command */
|
|
returnCode = kStatus_FLASH_SwapSystemNotInUninitialized;
|
|
break;
|
|
default:
|
|
returnCode = kStatus_FLASH_InvalidArgument;
|
|
break;
|
|
}
|
|
}
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
break;
|
|
}
|
|
} while (!((kFLASH_SwapStateComplete == returnInfo.flashSwapState) && (kFLASH_SwapFunctionOptionEnable == option)));
|
|
|
|
return returnCode;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD
|
|
status_t FLASH_ProgramPartition(flash_config_t *config,
|
|
flash_partition_flexram_load_option_t option,
|
|
uint32_t eepromDataSizeCode,
|
|
uint32_t flexnvmPartitionCode)
|
|
{
|
|
status_t returnCode;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* eepromDataSizeCode[7:6], flexnvmPartitionCode[7:4] should be all 1'b0
|
|
* or it will cause access error. */
|
|
/* eepromDataSizeCode &= 0x3FU; */
|
|
/* flexnvmPartitionCode &= 0x0FU; */
|
|
|
|
/* preparing passing parameter to program the flash block */
|
|
kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_2_1(FTFx_PROGRAM_PARTITION, 0xFFFFU, option);
|
|
kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_2(eepromDataSizeCode, flexnvmPartitionCode, 0xFFFFU);
|
|
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
|
|
|
|
/* calling flash command sequence function to execute the command */
|
|
returnCode = flash_command_sequence(config);
|
|
|
|
flash_cache_clear(config);
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
/* Data flash IFR will be updated by program partition command during reset sequence,
|
|
* so we just set reserved values for partitioned FlexNVM size here */
|
|
config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED;
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif
|
|
|
|
return (returnCode);
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD */
|
|
|
|
status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_protection_status_t *protectStatus)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
|
|
if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
|
|
{
|
|
*kFPROTSL = protectStatus->valueLow32b.prots16b.protsl;
|
|
if (protectStatus->valueLow32b.prots16b.protsl != *kFPROTSL)
|
|
{
|
|
return kStatus_FLASH_CommandFailure;
|
|
}
|
|
|
|
*kFPROTSH = protectStatus->valueLow32b.prots16b.protsh;
|
|
if (protectStatus->valueLow32b.prots16b.protsh != *kFPROTSH)
|
|
{
|
|
return kStatus_FLASH_CommandFailure;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
*kFPROTL = protectStatus->valueLow32b.protl32b;
|
|
if (protectStatus->valueLow32b.protl32b != *kFPROTL)
|
|
{
|
|
return kStatus_FLASH_CommandFailure;
|
|
}
|
|
|
|
#if defined(FTFx_FPROT_HIGH_REG)
|
|
*kFPROTH = protectStatus->valueHigh32b.proth32b;
|
|
if (protectStatus->valueHigh32b.proth32b != *kFPROTH)
|
|
{
|
|
return kStatus_FLASH_CommandFailure;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_protection_status_t *protectStatus)
|
|
{
|
|
if ((config == NULL) || (protectStatus == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
|
|
if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
|
|
{
|
|
protectStatus->valueLow32b.prots16b.protsl = *kFPROTSL;
|
|
protectStatus->valueLow32b.prots16b.protsh = *kFPROTSH;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
protectStatus->valueLow32b.protl32b = *kFPROTL;
|
|
#if defined(FTFx_FPROT_HIGH_REG)
|
|
protectStatus->valueHigh32b.proth32b = *kFPROTH;
|
|
#endif
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
status_t FLASH_DflashSetProtection(flash_config_t *config, uint8_t protectStatus)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED))
|
|
{
|
|
return kStatus_FLASH_CommandNotSupported;
|
|
}
|
|
|
|
FTFx->FDPROT = protectStatus;
|
|
|
|
if (FTFx->FDPROT != protectStatus)
|
|
{
|
|
return kStatus_FLASH_CommandFailure;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
status_t FLASH_DflashGetProtection(flash_config_t *config, uint8_t *protectStatus)
|
|
{
|
|
if ((config == NULL) || (protectStatus == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED))
|
|
{
|
|
return kStatus_FLASH_CommandNotSupported;
|
|
}
|
|
|
|
*protectStatus = FTFx->FDPROT;
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
status_t FLASH_EepromSetProtection(flash_config_t *config, uint8_t protectStatus)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED))
|
|
{
|
|
return kStatus_FLASH_CommandNotSupported;
|
|
}
|
|
|
|
FTFx->FEPROT = protectStatus;
|
|
|
|
if (FTFx->FEPROT != protectStatus)
|
|
{
|
|
return kStatus_FLASH_CommandFailure;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
status_t FLASH_EepromGetProtection(flash_config_t *config, uint8_t *protectStatus)
|
|
{
|
|
if ((config == NULL) || (protectStatus == NULL))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED))
|
|
{
|
|
return kStatus_FLASH_CommandNotSupported;
|
|
}
|
|
|
|
*protectStatus = FTFx->FEPROT;
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
|
|
status_t FLASH_PflashSetPrefetchSpeculation(flash_prefetch_speculation_status_t *speculationStatus)
|
|
{
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM
|
|
{
|
|
FTFx_REG32_ACCESS_TYPE regBase;
|
|
#if defined(MCM)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&MCM->PLACR;
|
|
#elif defined(MCM0)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&MCM0->PLACR;
|
|
#endif
|
|
if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionDisable)
|
|
{
|
|
if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
|
|
{
|
|
return kStatus_FLASH_InvalidSpeculationOption;
|
|
}
|
|
else
|
|
{
|
|
*regBase |= MCM_PLACR_DFCS_MASK;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*regBase &= ~MCM_PLACR_DFCS_MASK;
|
|
if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
|
|
{
|
|
*regBase |= MCM_PLACR_EFDS_MASK;
|
|
}
|
|
else
|
|
{
|
|
*regBase &= ~MCM_PLACR_EFDS_MASK;
|
|
}
|
|
}
|
|
}
|
|
#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
|
|
{
|
|
FTFx_REG32_ACCESS_TYPE regBase;
|
|
uint32_t b0dpeMask, b0ipeMask;
|
|
#if defined(FMC_PFB01CR_B0DPE_MASK)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR;
|
|
b0dpeMask = FMC_PFB01CR_B0DPE_MASK;
|
|
b0ipeMask = FMC_PFB01CR_B0IPE_MASK;
|
|
#elif defined(FMC_PFB0CR_B0DPE_MASK)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR;
|
|
b0dpeMask = FMC_PFB0CR_B0DPE_MASK;
|
|
b0ipeMask = FMC_PFB0CR_B0IPE_MASK;
|
|
#endif
|
|
if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionEnable)
|
|
{
|
|
*regBase |= b0ipeMask;
|
|
}
|
|
else
|
|
{
|
|
*regBase &= ~b0ipeMask;
|
|
}
|
|
if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
|
|
{
|
|
*regBase |= b0dpeMask;
|
|
}
|
|
else
|
|
{
|
|
*regBase &= ~b0dpeMask;
|
|
}
|
|
|
|
/* Invalidate Prefetch Speculation Buffer */
|
|
#if defined(FMC_PFB01CR_S_INV_MASK)
|
|
FMC->PFB01CR |= FMC_PFB01CR_S_INV_MASK;
|
|
#elif defined(FMC_PFB01CR_S_B_INV_MASK)
|
|
FMC->PFB01CR |= FMC_PFB01CR_S_B_INV_MASK;
|
|
#elif defined(FMC_PFB0CR_S_INV_MASK)
|
|
FMC->PFB0CR |= FMC_PFB0CR_S_INV_MASK;
|
|
#elif defined(FMC_PFB0CR_S_B_INV_MASK)
|
|
FMC->PFB0CR |= FMC_PFB0CR_S_B_INV_MASK;
|
|
#endif
|
|
}
|
|
#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
|
|
{
|
|
FTFx_REG32_ACCESS_TYPE regBase;
|
|
uint32_t flashSpeculationMask, dataPrefetchMask;
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[0];
|
|
flashSpeculationMask = MSCM_OCMDR_OCMC1_DFCS_MASK;
|
|
dataPrefetchMask = MSCM_OCMDR_OCMC1_DFDS_MASK;
|
|
|
|
if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionDisable)
|
|
{
|
|
if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
|
|
{
|
|
return kStatus_FLASH_InvalidSpeculationOption;
|
|
}
|
|
else
|
|
{
|
|
*regBase |= flashSpeculationMask;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*regBase &= ~flashSpeculationMask;
|
|
if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
|
|
{
|
|
*regBase &= ~dataPrefetchMask;
|
|
}
|
|
else
|
|
{
|
|
*regBase |= dataPrefetchMask;
|
|
}
|
|
}
|
|
}
|
|
#endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
status_t FLASH_PflashGetPrefetchSpeculation(flash_prefetch_speculation_status_t *speculationStatus)
|
|
{
|
|
memset(speculationStatus, 0, sizeof(flash_prefetch_speculation_status_t));
|
|
|
|
/* Assuming that all speculation options are enabled. */
|
|
speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionEnable;
|
|
speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionEnable;
|
|
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM
|
|
{
|
|
uint32_t value;
|
|
#if defined(MCM)
|
|
value = MCM->PLACR;
|
|
#elif defined(MCM0)
|
|
value = MCM0->PLACR;
|
|
#endif
|
|
if (value & MCM_PLACR_DFCS_MASK)
|
|
{
|
|
/* Speculation buffer is off. */
|
|
speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable;
|
|
speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
|
|
}
|
|
else
|
|
{
|
|
/* Speculation buffer is on for instruction. */
|
|
if (!(value & MCM_PLACR_EFDS_MASK))
|
|
{
|
|
/* Speculation buffer is off for data. */
|
|
speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
|
|
}
|
|
}
|
|
}
|
|
#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
|
|
{
|
|
uint32_t value;
|
|
uint32_t b0dpeMask, b0ipeMask;
|
|
#if defined(FMC_PFB01CR_B0DPE_MASK)
|
|
value = FMC->PFB01CR;
|
|
b0dpeMask = FMC_PFB01CR_B0DPE_MASK;
|
|
b0ipeMask = FMC_PFB01CR_B0IPE_MASK;
|
|
#elif defined(FMC_PFB0CR_B0DPE_MASK)
|
|
value = FMC->PFB0CR;
|
|
b0dpeMask = FMC_PFB0CR_B0DPE_MASK;
|
|
b0ipeMask = FMC_PFB0CR_B0IPE_MASK;
|
|
#endif
|
|
if (!(value & b0dpeMask))
|
|
{
|
|
/* Do not prefetch in response to data references. */
|
|
speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
|
|
}
|
|
if (!(value & b0ipeMask))
|
|
{
|
|
/* Do not prefetch in response to instruction fetches. */
|
|
speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable;
|
|
}
|
|
}
|
|
#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
|
|
{
|
|
uint32_t value;
|
|
uint32_t flashSpeculationMask, dataPrefetchMask;
|
|
value = MSCM->OCMDR[0];
|
|
flashSpeculationMask = MSCM_OCMDR_OCMC1_DFCS_MASK;
|
|
dataPrefetchMask = MSCM_OCMDR_OCMC1_DFDS_MASK;
|
|
|
|
if (value & flashSpeculationMask)
|
|
{
|
|
/* Speculation buffer is off. */
|
|
speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable;
|
|
speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
|
|
}
|
|
else
|
|
{
|
|
/* Speculation buffer is on for instruction. */
|
|
if (value & dataPrefetchMask)
|
|
{
|
|
/* Speculation buffer is off for data. */
|
|
speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
/*!
|
|
* @brief Copy PIC of flash_run_command() to RAM
|
|
*/
|
|
static void copy_flash_run_command(uint32_t *flashRunCommand)
|
|
{
|
|
assert(sizeof(s_flashRunCommandFunctionCode) <= (kFLASH_ExecuteInRamFunctionMaxSizeInWords * 4));
|
|
|
|
/* Since the value of ARM function pointer is always odd, but the real start address
|
|
* of function memory should be even, that's why +1 operation exist. */
|
|
memcpy((void *)flashRunCommand, (void *)s_flashRunCommandFunctionCode, sizeof(s_flashRunCommandFunctionCode));
|
|
callFlashRunCommand = (void (*)(FTFx_REG8_ACCESS_TYPE ftfx_fstat))((uint32_t)flashRunCommand + 1);
|
|
}
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
|
|
/*!
|
|
* @brief Flash Command Sequence
|
|
*
|
|
* This function is used to perform the command write sequence to the flash.
|
|
*
|
|
* @param driver Pointer to storage for the driver runtime state.
|
|
* @return An error code or kStatus_FLASH_Success
|
|
*/
|
|
static status_t flash_command_sequence(flash_config_t *config)
|
|
{
|
|
uint8_t registerValue;
|
|
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
/* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */
|
|
FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK;
|
|
|
|
status_t returnCode = flash_check_execute_in_ram_function_info(config);
|
|
if (kStatus_FLASH_Success != returnCode)
|
|
{
|
|
return returnCode;
|
|
}
|
|
|
|
/* We pass the ftfx_fstat address as a parameter to flash_run_comamnd() instead of using
|
|
* pre-processed MICRO sentences or operating global variable in flash_run_comamnd()
|
|
* to make sure that flash_run_command() will be compiled into position-independent code (PIC). */
|
|
callFlashRunCommand((FTFx_REG8_ACCESS_TYPE)(&FTFx->FSTAT));
|
|
#else
|
|
/* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */
|
|
FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK;
|
|
|
|
/* clear CCIF bit */
|
|
FTFx->FSTAT = FTFx_FSTAT_CCIF_MASK;
|
|
|
|
/* Check CCIF bit of the flash status register, wait till it is set.
|
|
* IP team indicates that this loop will always complete. */
|
|
while (!(FTFx->FSTAT & FTFx_FSTAT_CCIF_MASK))
|
|
{
|
|
}
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
|
|
/* Check error bits */
|
|
/* Get flash status register value */
|
|
registerValue = FTFx->FSTAT;
|
|
|
|
/* checking access error */
|
|
if (registerValue & FTFx_FSTAT_ACCERR_MASK)
|
|
{
|
|
return kStatus_FLASH_AccessError;
|
|
}
|
|
/* checking protection error */
|
|
else if (registerValue & FTFx_FSTAT_FPVIOL_MASK)
|
|
{
|
|
return kStatus_FLASH_ProtectionViolation;
|
|
}
|
|
/* checking MGSTAT0 non-correctable error */
|
|
else if (registerValue & FTFx_FSTAT_MGSTAT0_MASK)
|
|
{
|
|
return kStatus_FLASH_CommandFailure;
|
|
}
|
|
else
|
|
{
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
}
|
|
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
/*!
|
|
* @brief Copy PIC of flash_common_bit_operation() to RAM
|
|
*
|
|
*/
|
|
static void copy_flash_common_bit_operation(uint32_t *flashCommonBitOperation)
|
|
{
|
|
assert(sizeof(s_flashCommonBitOperationFunctionCode) <= (kFLASH_ExecuteInRamFunctionMaxSizeInWords * 4));
|
|
|
|
/* Since the value of ARM function pointer is always odd, but the real start address
|
|
* of function memory should be even, that's why +1 operation exist. */
|
|
memcpy((void *)flashCommonBitOperation, (void *)s_flashCommonBitOperationFunctionCode,
|
|
sizeof(s_flashCommonBitOperationFunctionCode));
|
|
callFlashCommonBitOperation = (void (*)(FTFx_REG32_ACCESS_TYPE base, uint32_t bitMask, uint32_t bitShift,
|
|
uint32_t bitValue))((uint32_t)flashCommonBitOperation + 1);
|
|
/* Workround for some devices which doesn't need this function */
|
|
callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)0, 0, 0, 0);
|
|
}
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
|
|
#if FLASH_CACHE_IS_CONTROLLED_BY_MCM
|
|
/*! @brief Performs the cache clear to the flash by MCM.*/
|
|
void mcm_flash_cache_clear(flash_config_t *config)
|
|
{
|
|
FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)&MCM0_CACHE_REG;
|
|
|
|
#if defined(MCM0) && defined(MCM1)
|
|
if (config->FlashCacheControllerIndex == (uint8_t)kFLASH_CacheControllerIndexForCore1)
|
|
{
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&MCM1_CACHE_REG;
|
|
}
|
|
#endif
|
|
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
callFlashCommonBitOperation(regBase, MCM_CACHE_CLEAR_MASK, MCM_CACHE_CLEAR_SHIFT, 1U);
|
|
#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
*regBase |= MCM_CACHE_CLEAR_MASK;
|
|
|
|
/* Memory barriers for good measure.
|
|
* All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
|
|
__ISB();
|
|
__DSB();
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
}
|
|
#endif /* FLASH_CACHE_IS_CONTROLLED_BY_MCM */
|
|
|
|
#if FLASH_CACHE_IS_CONTROLLED_BY_FMC
|
|
/*! @brief Performs the cache clear to the flash by FMC.*/
|
|
void fmc_flash_cache_clear(void)
|
|
{
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)0;
|
|
#if defined(FMC_PFB01CR_CINV_WAY_MASK)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR;
|
|
callFlashCommonBitOperation(regBase, FMC_PFB01CR_CINV_WAY_MASK, FMC_PFB01CR_CINV_WAY_SHIFT, 0xFU);
|
|
#else
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR;
|
|
callFlashCommonBitOperation(regBase, FMC_PFB0CR_CINV_WAY_MASK, FMC_PFB0CR_CINV_WAY_SHIFT, 0xFU);
|
|
#endif
|
|
#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
#if defined(FMC_PFB01CR_CINV_WAY_MASK)
|
|
FMC->PFB01CR = (FMC->PFB01CR & ~FMC_PFB01CR_CINV_WAY_MASK) | FMC_PFB01CR_CINV_WAY(~0);
|
|
#else
|
|
FMC->PFB0CR = (FMC->PFB0CR & ~FMC_PFB0CR_CINV_WAY_MASK) | FMC_PFB0CR_CINV_WAY(~0);
|
|
#endif
|
|
/* Memory barriers for good measure.
|
|
* All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
|
|
__ISB();
|
|
__DSB();
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
}
|
|
#endif /* FLASH_CACHE_IS_CONTROLLED_BY_FMC */
|
|
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
|
|
/*! @brief Performs the prefetch speculation buffer clear to the flash by MSCM.*/
|
|
void mscm_flash_prefetch_speculation_enable(bool enable)
|
|
{
|
|
uint8_t setValue;
|
|
if (enable)
|
|
{
|
|
setValue = 0x0U;
|
|
}
|
|
else
|
|
{
|
|
setValue = 0x3U;
|
|
}
|
|
|
|
/* The OCMDR[0] is always used to prefetch main Pflash*/
|
|
/* For device with FlexNVM support, the OCMDR[1] is used to prefetch Dflash.
|
|
* For device with secondary flash support, the OCMDR[1] is used to prefetch secondary Pflash. */
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[0], MSCM_SPECULATION_DISABLE_MASK,
|
|
MSCM_SPECULATION_DISABLE_SHIFT, setValue);
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED || BL_HAS_SECONDARY_INTERNAL_FLASH
|
|
callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[1], MSCM_SPECULATION_DISABLE_MASK,
|
|
MSCM_SPECULATION_DISABLE_SHIFT, setValue);
|
|
#endif
|
|
#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
MSCM->OCMDR[0] |= MSCM_SPECULATION_DISABLE(setValue);
|
|
|
|
/* Memory barriers for good measure.
|
|
* All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
|
|
__ISB();
|
|
__DSB();
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED || BL_HAS_SECONDARY_INTERNAL_FLASH
|
|
MSCM->OCMDR[1] |= MSCM_SPECULATION_DISABLE(setValue);
|
|
|
|
/* Each cahce clear instaruction should be followed by below code*/
|
|
__ISB();
|
|
__DSB();
|
|
#endif
|
|
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
}
|
|
#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM */
|
|
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
|
|
/*! @brief Performs the prefetch speculation buffer clear to the flash by FMC.*/
|
|
void fmc_flash_prefetch_speculation_clear(void)
|
|
{
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)0;
|
|
#if defined(FMC_PFB01CR_S_INV_MASK)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR;
|
|
callFlashCommonBitOperation(regBase, FMC_PFB01CR_S_INV_MASK, FMC_PFB01CR_S_INV_SHIFT, 1U);
|
|
#elif defined(FMC_PFB01CR_S_B_INV_MASK)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR;
|
|
callFlashCommonBitOperation(regBase, FMC_PFB01CR_S_B_INV_MASK, FMC_PFB01CR_S_B_INV_SHIFT, 1U);
|
|
#elif defined(FMC_PFB0CR_S_INV_MASK)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR;
|
|
callFlashCommonBitOperation(regBase, FMC_PFB0CR_S_INV_MASK, FMC_PFB0CR_S_INV_SHIFT, 1U);
|
|
#elif defined(FMC_PFB0CR_S_B_INV_MASK)
|
|
regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR;
|
|
callFlashCommonBitOperation(regBase, FMC_PFB0CR_S_B_INV_MASK, FMC_PFB0CR_S_B_INV_SHIFT, 1U);
|
|
#endif
|
|
#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
#if defined(FMC_PFB01CR_S_INV_MASK)
|
|
FMC->PFB01CR |= FMC_PFB01CR_S_INV_MASK;
|
|
#elif defined(FMC_PFB01CR_S_B_INV_MASK)
|
|
FMC->PFB01CR |= FMC_PFB01CR_S_B_INV_MASK;
|
|
#elif defined(FMC_PFB0CR_S_INV_MASK)
|
|
FMC->PFB0CR |= FMC_PFB0CR_S_INV_MASK;
|
|
#elif defined(FMC_PFB0CR_S_B_INV_MASK)
|
|
FMC->PFB0CR |= FMC_PFB0CR_S_B_INV_MASK;
|
|
#endif
|
|
/* Memory barriers for good measure.
|
|
* All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
|
|
__ISB();
|
|
__DSB();
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
}
|
|
#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC */
|
|
|
|
/*!
|
|
* @brief Flash Cache Clear
|
|
*
|
|
* This function is used to perform the cache and prefetch speculation clear to the flash.
|
|
*/
|
|
void flash_cache_clear(flash_config_t *config)
|
|
{
|
|
flash_cache_clear_process(config, kFLASH_CacheClearProcessPost);
|
|
}
|
|
|
|
/*!
|
|
* @brief Flash Cache Clear Process
|
|
*
|
|
* This function is used to perform the cache and prefetch speculation clear process to the flash.
|
|
*/
|
|
static void flash_cache_clear_process(flash_config_t *config, flash_cache_clear_process_t process)
|
|
{
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
status_t returnCode = flash_check_execute_in_ram_function_info(config);
|
|
if (kStatus_FLASH_Success != returnCode)
|
|
{
|
|
return;
|
|
}
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
|
|
/* We pass the ftfx register address as a parameter to flash_common_bit_operation() instead of using
|
|
* pre-processed MACROs or a global variable in flash_common_bit_operation()
|
|
* to make sure that flash_common_bit_operation() will be compiled into position-independent code (PIC). */
|
|
if (process == kFLASH_CacheClearProcessPost)
|
|
{
|
|
#if FLASH_CACHE_IS_CONTROLLED_BY_MCM
|
|
mcm_flash_cache_clear(config);
|
|
#endif
|
|
#if FLASH_CACHE_IS_CONTROLLED_BY_FMC
|
|
fmc_flash_cache_clear();
|
|
#endif
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
|
|
mscm_flash_prefetch_speculation_enable(true);
|
|
#endif
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
|
|
fmc_flash_prefetch_speculation_clear();
|
|
#endif
|
|
}
|
|
if (process == kFLASH_CacheClearProcessPre)
|
|
{
|
|
#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
|
|
mscm_flash_prefetch_speculation_enable(false);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if FLASH_DRIVER_IS_FLASH_RESIDENT
|
|
/*! @brief Check whether flash execute-in-ram functions are ready */
|
|
static status_t flash_check_execute_in_ram_function_info(flash_config_t *config)
|
|
{
|
|
flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo;
|
|
|
|
if ((config->flashExecuteInRamFunctionInfo) &&
|
|
(kFLASH_ExecuteInRamFunctionTotalNum == flashExecuteInRamFunctionInfo->activeFunctionCount))
|
|
{
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
return kStatus_FLASH_ExecuteInRamFunctionNotReady;
|
|
}
|
|
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
|
|
|
|
/*! @brief Validates the range and alignment of the given address range.*/
|
|
static status_t flash_check_range(flash_config_t *config,
|
|
uint32_t startAddress,
|
|
uint32_t lengthInBytes,
|
|
uint32_t alignmentBaseline)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Verify the start and length are alignmentBaseline aligned. */
|
|
if ((startAddress & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1)))
|
|
{
|
|
return kStatus_FLASH_AlignmentError;
|
|
}
|
|
|
|
/* check for valid range of the target addresses */
|
|
if (
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
((startAddress >= config->DFlashBlockBase) &&
|
|
((startAddress + lengthInBytes) <= (config->DFlashBlockBase + config->DFlashTotalSize))) ||
|
|
#endif
|
|
((startAddress >= config->PFlashBlockBase) &&
|
|
((startAddress + lengthInBytes) <= (config->PFlashBlockBase + config->PFlashTotalSize))))
|
|
{
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
return kStatus_FLASH_AddressError;
|
|
}
|
|
|
|
/*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/
|
|
static status_t flash_get_matched_operation_info(flash_config_t *config,
|
|
uint32_t address,
|
|
flash_operation_config_t *info)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Clean up info Structure*/
|
|
memset(info, 0, sizeof(flash_operation_config_t));
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
if ((address >= config->DFlashBlockBase) && (address <= (config->DFlashBlockBase + config->DFlashTotalSize)))
|
|
{
|
|
/* When required by the command, address bit 23 selects between program flash memory
|
|
* (=0) and data flash memory (=1).*/
|
|
info->convertedAddress = address - config->DFlashBlockBase + 0x800000U;
|
|
info->activeSectorSize = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE;
|
|
info->activeBlockSize = config->DFlashTotalSize / FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT;
|
|
|
|
info->blockWriteUnitSize = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_WRITE_UNIT_SIZE;
|
|
info->sectorCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_SECTOR_CMD_ADDRESS_ALIGMENT;
|
|
info->sectionCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_SECTION_CMD_ADDRESS_ALIGMENT;
|
|
info->resourceCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_RESOURCE_CMD_ADDRESS_ALIGMENT;
|
|
info->checkCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_CHECK_CMD_ADDRESS_ALIGMENT;
|
|
}
|
|
else
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
{
|
|
info->convertedAddress = address - config->PFlashBlockBase;
|
|
info->activeSectorSize = config->PFlashSectorSize;
|
|
info->activeBlockSize = config->PFlashTotalSize / config->PFlashBlockCount;
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED
|
|
if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
|
|
{
|
|
#if FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER || FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER
|
|
/* When required by the command, address bit 23 selects between main flash memory
|
|
* (=0) and secondary flash memory (=1).*/
|
|
info->convertedAddress += 0x800000U;
|
|
#endif
|
|
info->blockWriteUnitSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_WRITE_UNIT_SIZE;
|
|
}
|
|
else
|
|
#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */
|
|
{
|
|
info->blockWriteUnitSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE;
|
|
}
|
|
|
|
info->sectorCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT;
|
|
info->sectionCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_SECTION_CMD_ADDRESS_ALIGMENT;
|
|
info->resourceCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_RESOURCE_CMD_ADDRESS_ALIGMENT;
|
|
info->checkCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_CHECK_CMD_ADDRESS_ALIGMENT;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
/*! @brief Validates the given user key for flash erase APIs.*/
|
|
static status_t flash_check_user_key(uint32_t key)
|
|
{
|
|
/* Validate the user key */
|
|
if (key != kFLASH_ApiEraseKey)
|
|
{
|
|
return kStatus_FLASH_EraseKeyError;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
#if FLASH_SSD_IS_FLEXNVM_ENABLED
|
|
/*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/
|
|
static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config)
|
|
{
|
|
struct
|
|
{
|
|
uint32_t reserved0;
|
|
uint8_t FlexNVMPartitionCode;
|
|
uint8_t EEPROMDataSetSize;
|
|
uint16_t reserved1;
|
|
} dataIFRReadOut;
|
|
status_t returnCode;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
|
|
/* Get FlexNVM memory partition info from data flash IFR */
|
|
returnCode = FLASH_ReadResource(config, DFLASH_IFR_READRESOURCE_START_ADDRESS, (uint32_t *)&dataIFRReadOut,
|
|
sizeof(dataIFRReadOut), kFLASH_ResourceOptionFlashIfr);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return kStatus_FLASH_PartitionStatusUpdateFailure;
|
|
}
|
|
#else
|
|
#error "Cannot get FlexNVM memory partition info"
|
|
#endif
|
|
|
|
/* Fill out partitioned EEPROM size */
|
|
dataIFRReadOut.EEPROMDataSetSize &= 0x0FU;
|
|
switch (dataIFRReadOut.EEPROMDataSetSize)
|
|
{
|
|
case 0x00U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0000;
|
|
break;
|
|
case 0x01U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0001;
|
|
break;
|
|
case 0x02U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0010;
|
|
break;
|
|
case 0x03U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0011;
|
|
break;
|
|
case 0x04U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0100;
|
|
break;
|
|
case 0x05U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0101;
|
|
break;
|
|
case 0x06U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0110;
|
|
break;
|
|
case 0x07U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0111;
|
|
break;
|
|
case 0x08U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1000;
|
|
break;
|
|
case 0x09U:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1001;
|
|
break;
|
|
case 0x0AU:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1010;
|
|
break;
|
|
case 0x0BU:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1011;
|
|
break;
|
|
case 0x0CU:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1100;
|
|
break;
|
|
case 0x0DU:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1101;
|
|
break;
|
|
case 0x0EU:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1110;
|
|
break;
|
|
case 0x0FU:
|
|
config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1111;
|
|
break;
|
|
default:
|
|
config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED;
|
|
break;
|
|
}
|
|
|
|
/* Fill out partitioned DFlash size */
|
|
dataIFRReadOut.FlexNVMPartitionCode &= 0x0FU;
|
|
switch (dataIFRReadOut.FlexNVMPartitionCode)
|
|
{
|
|
case 0x00U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 */
|
|
break;
|
|
case 0x01U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 */
|
|
break;
|
|
case 0x02U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 */
|
|
break;
|
|
case 0x03U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 */
|
|
break;
|
|
case 0x04U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 */
|
|
break;
|
|
case 0x05U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 */
|
|
break;
|
|
case 0x06U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 */
|
|
break;
|
|
case 0x07U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 */
|
|
break;
|
|
case 0x08U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 */
|
|
break;
|
|
case 0x09U:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 */
|
|
break;
|
|
case 0x0AU:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 */
|
|
break;
|
|
case 0x0BU:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 */
|
|
break;
|
|
case 0x0CU:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 */
|
|
break;
|
|
case 0x0DU:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 */
|
|
break;
|
|
case 0x0EU:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 */
|
|
break;
|
|
case 0x0FU:
|
|
#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 != 0xFFFFFFFF)
|
|
config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111;
|
|
#else
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 */
|
|
break;
|
|
default:
|
|
config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
|
|
break;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
|
|
/*! @brief Validates the range of the given resource address.*/
|
|
static status_t flash_check_resource_range(uint32_t start,
|
|
uint32_t lengthInBytes,
|
|
uint32_t alignmentBaseline,
|
|
flash_read_resource_option_t option)
|
|
{
|
|
status_t status;
|
|
uint32_t maxReadbleAddress;
|
|
|
|
if ((start & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1)))
|
|
{
|
|
return kStatus_FLASH_AlignmentError;
|
|
}
|
|
|
|
status = kStatus_FLASH_Success;
|
|
|
|
maxReadbleAddress = start + lengthInBytes - 1;
|
|
if (option == kFLASH_ResourceOptionVersionId)
|
|
{
|
|
if ((start != kFLASH_ResourceRangeVersionIdStart) ||
|
|
((start + lengthInBytes - 1) != kFLASH_ResourceRangeVersionIdEnd))
|
|
{
|
|
status = kStatus_FLASH_InvalidArgument;
|
|
}
|
|
}
|
|
else if (option == kFLASH_ResourceOptionFlashIfr)
|
|
{
|
|
if (maxReadbleAddress < kFLASH_ResourceRangePflashIfrSizeInBytes)
|
|
{
|
|
}
|
|
#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
|
|
else if ((start >= kFLASH_ResourceRangePflashSwapIfrStart) &&
|
|
(maxReadbleAddress <= kFLASH_ResourceRangePflashSwapIfrEnd))
|
|
{
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
|
|
else if ((start >= kFLASH_ResourceRangeDflashIfrStart) &&
|
|
(maxReadbleAddress <= kFLASH_ResourceRangeDflashIfrEnd))
|
|
{
|
|
}
|
|
else
|
|
{
|
|
status = kStatus_FLASH_InvalidArgument;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
|
|
/*! @brief Validates the gived swap control option.*/
|
|
static status_t flash_check_swap_control_option(flash_swap_control_option_t option)
|
|
{
|
|
if ((option == kFLASH_SwapControlOptionIntializeSystem) || (option == kFLASH_SwapControlOptionSetInUpdateState) ||
|
|
(option == kFLASH_SwapControlOptionSetInCompleteState) || (option == kFLASH_SwapControlOptionReportStatus) ||
|
|
(option == kFLASH_SwapControlOptionDisableSystem))
|
|
{
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
|
|
/*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/
|
|
static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address)
|
|
{
|
|
flash_swap_ifr_field_data_t flashSwapIfrFieldData;
|
|
uint32_t swapIndicatorAddress;
|
|
|
|
status_t returnCode;
|
|
#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
|
|
returnCode =
|
|
FLASH_ReadResource(config, kFLASH_ResourceRangePflashSwapIfrStart, flashSwapIfrFieldData.flashSwapIfrData,
|
|
sizeof(flashSwapIfrFieldData.flashSwapIfrData), kFLASH_ResourceOptionFlashIfr);
|
|
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return returnCode;
|
|
}
|
|
#else
|
|
{
|
|
/* From RM, the actual info are stored in FCCOB6,7 */
|
|
uint32_t returnValue[2];
|
|
returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapAddr, returnValue, 4);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return returnCode;
|
|
}
|
|
flashSwapIfrFieldData.flashSwapIfrField.swapIndicatorAddress = (uint16_t)returnValue[0];
|
|
returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapEnable, returnValue, 4);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return returnCode;
|
|
}
|
|
flashSwapIfrFieldData.flashSwapIfrField.swapEnableWord = (uint16_t)returnValue[0];
|
|
returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapDisable, returnValue, 4);
|
|
if (returnCode != kStatus_FLASH_Success)
|
|
{
|
|
return returnCode;
|
|
}
|
|
flashSwapIfrFieldData.flashSwapIfrField.swapDisableWord = (uint16_t)returnValue[0];
|
|
}
|
|
#endif
|
|
|
|
/* The high bits value of Swap Indicator Address is stored in Program Flash Swap IFR Field,
|
|
* the low severval bit value of Swap Indicator Address is always 1'b0 */
|
|
swapIndicatorAddress = (uint32_t)flashSwapIfrFieldData.flashSwapIfrField.swapIndicatorAddress *
|
|
FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT;
|
|
if (address != swapIndicatorAddress)
|
|
{
|
|
return kStatus_FLASH_SwapIndicatorAddressError;
|
|
}
|
|
|
|
return returnCode;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
|
|
/*! @brief Validates the gived flexram function option.*/
|
|
static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option)
|
|
{
|
|
if ((option != kFLASH_FlexramFunctionOptionAvailableAsRam) &&
|
|
(option != kFLASH_FlexramFunctionOptionAvailableForEeprom))
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
|
|
|
|
/*! @brief Gets the flash protection information (region size, region count).*/
|
|
static status_t flash_get_protection_info(flash_config_t *config, flash_protection_config_t *info)
|
|
{
|
|
uint32_t pflashTotalSize;
|
|
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Clean up info Structure*/
|
|
memset(info, 0, sizeof(flash_protection_config_t));
|
|
|
|
/* Note: KW40 has a secondary flash, but it doesn't have independent protection register*/
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && (!FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER)
|
|
pflashTotalSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_BLOCK_SIZE +
|
|
FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE;
|
|
info->regionBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS;
|
|
#else
|
|
pflashTotalSize = config->PFlashTotalSize;
|
|
info->regionBase = config->PFlashBlockBase;
|
|
#endif
|
|
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
|
|
if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
|
|
{
|
|
info->regionCount = FSL_FEATURE_FLASH_PFLASH_1_PROTECTION_REGION_COUNT;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
info->regionCount = FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT;
|
|
}
|
|
|
|
/* Calculate the size of the flash protection region
|
|
* If the flash density is > 32KB, then protection region is 1/32 of total flash density
|
|
* Else if flash density is < 32KB, then flash protection region is set to 1KB */
|
|
if (pflashTotalSize > info->regionCount * 1024)
|
|
{
|
|
info->regionSize = (pflashTotalSize) / info->regionCount;
|
|
}
|
|
else
|
|
{
|
|
info->regionSize = 1024;
|
|
}
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
|
|
/*! @brief Gets the flash Execute-Only access information (Segment size, Segment count).*/
|
|
static status_t flash_get_access_info(flash_config_t *config, flash_access_config_t *info)
|
|
{
|
|
if (config == NULL)
|
|
{
|
|
return kStatus_FLASH_InvalidArgument;
|
|
}
|
|
|
|
/* Clean up info Structure*/
|
|
memset(info, 0, sizeof(flash_access_config_t));
|
|
|
|
/* Note: KW40 has a secondary flash, but it doesn't have independent access register*/
|
|
#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && (!FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER)
|
|
info->SegmentBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS;
|
|
#else
|
|
info->SegmentBase = config->PFlashBlockBase;
|
|
#endif
|
|
info->SegmentSize = config->PFlashAccessSegmentSize;
|
|
info->SegmentCount = config->PFlashAccessSegmentCount;
|
|
|
|
return kStatus_FLASH_Success;
|
|
}
|
|
#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
|