rt-thread-official/bsp/stm32/libraries/HAL_Drivers/drv_crypto.c

742 lines
20 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-10 Ernest 1st version
* 2020-10-14 Dozingfiretruck Porting for stm32wbxx
* 2020-11-26 thread-liu add hash
* 2020-11-26 thread-liu add cryp
* 2020-12-11 WKJay fix build problem
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <stdlib.h>
#include <string.h>
#include "drv_crypto.h"
#include "board.h"
#include "drv_config.h"
struct stm32_hwcrypto_device
{
struct rt_hwcrypto_device dev;
struct rt_mutex mutex;
};
#if defined(BSP_USING_CRC)
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
static struct hwcrypto_crc_cfg crc_backup_cfg;
static int reverse_bit(rt_uint32_t n)
{
n = ((n >> 1) & 0x55555555) | ((n << 1) & 0xaaaaaaaa);
n = ((n >> 2) & 0x33333333) | ((n << 2) & 0xcccccccc);
n = ((n >> 4) & 0x0f0f0f0f) | ((n << 4) & 0xf0f0f0f0);
n = ((n >> 8) & 0x00ff00ff) | ((n << 8) & 0xff00ff00);
n = ((n >> 16) & 0x0000ffff) | ((n << 16) & 0xffff0000);
return n;
}
#endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
static rt_uint32_t _crc_update(struct hwcrypto_crc *ctx, const rt_uint8_t *in, rt_size_t length)
{
rt_uint32_t result = 0;
struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
#if defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
CRC_HandleTypeDef *HW_TypeDef = (CRC_HandleTypeDef *)(ctx->parent.contex);
#endif
rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
if (memcmp(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg)) != 0)
{
if (HW_TypeDef->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_DISABLE)
{
HW_TypeDef->Init.GeneratingPolynomial = ctx ->crc_cfg.poly;
}
else
{
HW_TypeDef->Init.GeneratingPolynomial = DEFAULT_CRC32_POLY;
}
switch (ctx ->crc_cfg.flags)
{
case 0:
HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
break;
case CRC_FLAG_REFIN:
HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
break;
case CRC_FLAG_REFOUT:
HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
break;
case CRC_FLAG_REFIN|CRC_FLAG_REFOUT:
HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
break;
default :
goto _exit;
}
switch(ctx ->crc_cfg.width)
{
#if defined(CRC_POLYLENGTH_7B) && defined(CRC_POLYLENGTH_8B) && defined(CRC_POLYLENGTH_16B) && defined(CRC_POLYLENGTH_32B)
case 7:
HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_7B;
break;
case 8:
HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_8B;
break;
case 16:
HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_16B;
break;
case 32:
HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_32B;
break;
default :
goto _exit;
#else
case 32:
HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_32B;
break;
default :
goto _exit;
#endif /* defined(CRC_POLYLENGTH_7B) && defined(CRC_POLYLENGTH_8B) && defined(CRC_POLYLENGTH_16B) && defined(CRC_POLYLENGTH_32B) */
}
if (HW_TypeDef->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_DISABLE)
{
HW_TypeDef->Init.InitValue = ctx ->crc_cfg.last_val;
}
if (HAL_CRC_Init(HW_TypeDef) != HAL_OK)
{
goto _exit;
}
memcpy(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg));
}
if (HAL_CRC_STATE_READY != HAL_CRC_GetState(HW_TypeDef))
{
goto _exit;
}
#else
if (ctx->crc_cfg.flags != 0 || ctx->crc_cfg.last_val != 0xFFFFFFFF || ctx->crc_cfg.xorout != 0 || length % 4 != 0)
{
goto _exit;
}
length /= 4;
#endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
result = HAL_CRC_Accumulate(ctx->parent.contex, (rt_uint32_t *)in, length);
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
if (HW_TypeDef->Init.OutputDataInversionMode)
{
ctx ->crc_cfg.last_val = reverse_bit(result);
}
else
{
ctx ->crc_cfg.last_val = result;
}
crc_backup_cfg.last_val = ctx ->crc_cfg.last_val;
result = (result ? result ^ (ctx ->crc_cfg.xorout) : result);
#endif /* defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
_exit:
rt_mutex_release(&stm32_hw_dev->mutex);
return result;
}
static const struct hwcrypto_crc_ops crc_ops =
{
.update = _crc_update,
};
#endif /* BSP_USING_CRC */
#if defined(BSP_USING_RNG)
static rt_uint32_t _rng_rand(struct hwcrypto_rng *ctx)
{
rt_uint32_t gen_random = 0;
RNG_HandleTypeDef *HW_TypeDef = (RNG_HandleTypeDef *)(ctx->parent.contex);
if (HAL_OK == HAL_RNG_GenerateRandomNumber(HW_TypeDef, &gen_random))
{
return gen_random ;
}
return 0;
}
static const struct hwcrypto_rng_ops rng_ops =
{
.update = _rng_rand,
};
#endif /* BSP_USING_RNG */
#if defined(BSP_USING_HASH)
static rt_err_t _hash_update(struct hwcrypto_hash *ctx, const rt_uint8_t *in, rt_size_t length)
{
rt_uint32_t tickstart = 0;
rt_uint32_t result = RT_EOK;
struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
#if defined(SOC_SERIES_STM32MP1)
HASH_HandleTypeDef *HW_TypeDef = (HASH_HandleTypeDef *)(ctx->parent.contex);
/* Start HASH computation using DMA transfer */
switch (ctx->parent.type)
{
case HWCRYPTO_TYPE_SHA224:
result = HAL_HASHEx_SHA224_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
break;
case HWCRYPTO_TYPE_SHA256:
result = HAL_HASHEx_SHA256_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
break;
case HWCRYPTO_TYPE_MD5:
result = HAL_HASH_MD5_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
break;
case HWCRYPTO_TYPE_SHA1:
result = HAL_HASH_SHA1_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
break;
default :
rt_kprintf("not support hash type: %x", ctx->parent.type);
break;
}
if (result != HAL_OK)
{
goto _exit;
}
/* Wait for DMA transfer to complete */
tickstart = rt_tick_get();
while (HAL_HASH_GetState(HW_TypeDef) == HAL_HASH_STATE_BUSY)
{
if (rt_tick_get() - tickstart > 0xFFFF)
{
result = -RT_ETIMEOUT;
goto _exit;
}
}
#endif
_exit:
rt_mutex_release(&stm32_hw_dev->mutex);
return result;
}
static rt_err_t _hash_finish(struct hwcrypto_hash *ctx, rt_uint8_t *out, rt_size_t length)
{
rt_uint32_t result = RT_EOK;
struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
#if defined(SOC_SERIES_STM32MP1)
HASH_HandleTypeDef *HW_TypeDef = (HASH_HandleTypeDef *)(ctx->parent.contex);
/* Get the computed digest value */
switch (ctx->parent.type)
{
case HWCRYPTO_TYPE_SHA224:
result = HAL_HASHEx_SHA224_Finish(HW_TypeDef, (uint8_t *)out, length);
break;
case HWCRYPTO_TYPE_SHA256:
result = HAL_HASHEx_SHA256_Finish(HW_TypeDef, (uint8_t *)out, length);
break;
case HWCRYPTO_TYPE_MD5:
result = HAL_HASH_MD5_Finish(HW_TypeDef, (uint8_t *)out, length);
break;
case HWCRYPTO_TYPE_SHA1:
result = HAL_HASH_SHA1_Finish(HW_TypeDef, (uint8_t *)out, length);
break;
default :
rt_kprintf("not support hash type: %x", ctx->parent.type);
break;
}
if (result != HAL_OK)
{
goto _exit;
}
#endif
_exit:
rt_mutex_release(&stm32_hw_dev->mutex);
return result;
}
static const struct hwcrypto_hash_ops hash_ops =
{
.update = _hash_update,
.finish = _hash_finish
};
#endif /* BSP_USING_HASH */
#if defined(BSP_USING_CRYP)
static rt_err_t _cryp_crypt(struct hwcrypto_symmetric *ctx,
struct hwcrypto_symmetric_info *info)
{
rt_uint32_t result = RT_EOK;
rt_uint32_t tickstart = 0;
struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
#if defined(SOC_SERIES_STM32MP1)
CRYP_HandleTypeDef *HW_TypeDef = (CRYP_HandleTypeDef *)(ctx->parent.contex);
switch (ctx->parent.type)
{
case HWCRYPTO_TYPE_AES_ECB:
HW_TypeDef->Init.Algorithm = CRYP_AES_ECB;
break;
case HWCRYPTO_TYPE_AES_CBC:
HW_TypeDef->Init.Algorithm = CRYP_AES_CBC;
break;
case HWCRYPTO_TYPE_AES_CTR:
HW_TypeDef->Init.Algorithm = CRYP_AES_CTR;
break;
case HWCRYPTO_TYPE_DES_ECB:
HW_TypeDef->Init.Algorithm = CRYP_DES_ECB;
break;
case HWCRYPTO_TYPE_DES_CBC:
HW_TypeDef->Init.Algorithm = CRYP_DES_CBC;
break;
default :
rt_kprintf("not support cryp type: %x", ctx->parent.type);
break;
}
HAL_CRYP_DeInit(HW_TypeDef);
HW_TypeDef->Init.DataType = CRYP_DATATYPE_8B;
HW_TypeDef->Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_BYTE;
HW_TypeDef->Init.KeySize = CRYP_KEYSIZE_128B;
HW_TypeDef->Init.pKey = (uint32_t*)ctx->key;
result = HAL_CRYP_Init(HW_TypeDef);
if (result != HAL_OK)
{
/* Initialization Error */
goto _exit;
}
if (info->mode == HWCRYPTO_MODE_ENCRYPT)
{
result = HAL_CRYP_Encrypt_DMA(HW_TypeDef, (uint32_t *)info->in, info->length, (uint32_t *)info->out);
}
else if (info->mode == HWCRYPTO_MODE_DECRYPT)
{
result = HAL_CRYP_Decrypt_DMA(HW_TypeDef, (uint32_t *)info->in, info->length, (uint32_t *)info->out);
}
else
{
rt_kprintf("error cryp mode : %02x!\n", info->mode);
result = -RT_ERROR;
goto _exit;
}
if (result != HAL_OK)
{
goto _exit;
}
tickstart = rt_tick_get();
while (HAL_CRYP_GetState(HW_TypeDef) != HAL_CRYP_STATE_READY)
{
if (rt_tick_get() - tickstart > 0xFFFF)
{
result = -RT_ETIMEOUT;
goto _exit;
}
}
#endif
if (result != HAL_OK)
{
goto _exit;
}
_exit:
rt_mutex_release(&stm32_hw_dev->mutex);
return result;
}
static const struct hwcrypto_symmetric_ops cryp_ops =
{
.crypt = _cryp_crypt
};
#endif
static rt_err_t _crypto_create(struct rt_hwcrypto_ctx *ctx)
{
rt_err_t res = RT_EOK;
switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
{
#if defined(BSP_USING_RNG)
case HWCRYPTO_TYPE_RNG:
{
__HAL_RCC_RNG_CLK_ENABLE();
RNG_HandleTypeDef *hrng = rt_calloc(1, sizeof(RNG_HandleTypeDef));
if (RT_NULL == hrng)
{
res = -RT_ERROR;
break;
}
#if defined(SOC_SERIES_STM32MP1)
hrng->Instance = RNG2;
#else
hrng->Instance = RNG;
#endif
HAL_RNG_Init(hrng);
ctx->contex = hrng;
((struct hwcrypto_rng *)ctx)->ops = &rng_ops;
break;
}
#endif /* BSP_USING_RNG */
#if defined(BSP_USING_CRC)
case HWCRYPTO_TYPE_CRC:
{
CRC_HandleTypeDef *hcrc = rt_calloc(1, sizeof(CRC_HandleTypeDef));
if (RT_NULL == hcrc)
{
res = -RT_ERROR;
break;
}
#if defined(SOC_SERIES_STM32MP1)
hcrc->Instance = CRC2;
#else
hcrc->Instance = CRC;
#endif
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
hcrc->Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE;
hcrc->Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE;
hcrc->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
hcrc->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
hcrc->InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
#else
if (HAL_CRC_Init(hcrc) != HAL_OK)
{
res = -RT_ERROR;
}
#endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
ctx->contex = hcrc;
((struct hwcrypto_crc *)ctx)->ops = &crc_ops;
break;
}
#endif /* BSP_USING_CRC */
#if defined(BSP_USING_HASH)
case HWCRYPTO_TYPE_MD5:
case HWCRYPTO_TYPE_SHA1:
case HWCRYPTO_TYPE_SHA2:
{
HASH_HandleTypeDef *hash = rt_calloc(1, sizeof(HASH_HandleTypeDef));
if (RT_NULL == hash)
{
res = -RT_ERROR;
break;
}
#if defined(SOC_SERIES_STM32MP1)
/* enable dma for hash */
__HAL_RCC_DMA2_CLK_ENABLE();
HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn);
hash->Init.DataType = HASH_DATATYPE_8B;
if (HAL_HASH_Init(hash) != HAL_OK)
{
res = -RT_ERROR;
}
#endif
ctx->contex = hash;
((struct hwcrypto_hash *)ctx)->ops = &hash_ops;
break;
}
#endif /* BSP_USING_HASH */
#if defined(BSP_USING_CRYP)
case HWCRYPTO_TYPE_AES:
case HWCRYPTO_TYPE_DES:
case HWCRYPTO_TYPE_3DES:
case HWCRYPTO_TYPE_RC4:
case HWCRYPTO_TYPE_GCM:
{
CRYP_HandleTypeDef *cryp = rt_calloc(1, sizeof(CRYP_HandleTypeDef));
if (RT_NULL == cryp)
{
res = -RT_ERROR;
break;
}
#if defined(SOC_SERIES_STM32MP1)
cryp->Instance = CRYP2;
/* enable dma for cryp */
__HAL_RCC_DMA2_CLK_ENABLE();
HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn);
HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn);
if (HAL_CRYP_Init(cryp) != HAL_OK)
{
res = -RT_ERROR;
}
#endif
ctx->contex = cryp;
((struct hwcrypto_symmetric *)ctx)->ops = &cryp_ops;
break;
}
#endif /* BSP_USING_CRYP */
default:
res = -RT_ERROR;
break;
}
return res;
}
static void _crypto_destroy(struct rt_hwcrypto_ctx *ctx)
{
switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
{
#if defined(BSP_USING_RNG)
case HWCRYPTO_TYPE_RNG:
break;
#endif /* BSP_USING_RNG */
#if defined(BSP_USING_CRC)
case HWCRYPTO_TYPE_CRC:
__HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex);
HAL_CRC_DeInit((CRC_HandleTypeDef *)(ctx->contex));
break;
#endif /* BSP_USING_CRC */
#if defined(BSP_USING_HASH)
case HWCRYPTO_TYPE_MD5:
case HWCRYPTO_TYPE_SHA1:
case HWCRYPTO_TYPE_SHA2:
__HAL_HASH_RESET_HANDLE_STATE((HASH_HandleTypeDef *)(ctx->contex));
HAL_HASH_DeInit((HASH_HandleTypeDef *)(ctx->contex));
break;
#endif /* BSP_USING_HASH */
#if defined(BSP_USING_CRYP)
case HWCRYPTO_TYPE_AES:
case HWCRYPTO_TYPE_DES:
case HWCRYPTO_TYPE_3DES:
case HWCRYPTO_TYPE_RC4:
case HWCRYPTO_TYPE_GCM:
HAL_CRYP_DeInit((CRYP_HandleTypeDef *)(ctx->contex));
break;
#endif /* BSP_USING_CRYP */
default:
break;
}
rt_free(ctx->contex);
}
static rt_err_t _crypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src)
{
rt_err_t res = RT_EOK;
switch (src->type & HWCRYPTO_MAIN_TYPE_MASK)
{
#if defined(BSP_USING_RNG)
case HWCRYPTO_TYPE_RNG:
if (des->contex && src->contex)
{
rt_memcpy(des->contex, src->contex, sizeof(RNG_HandleTypeDef));
}
break;
#endif /* BSP_USING_RNG */
#if defined(BSP_USING_CRC)
case HWCRYPTO_TYPE_CRC:
if (des->contex && src->contex)
{
rt_memcpy(des->contex, src->contex, sizeof(CRC_HandleTypeDef));
}
break;
#endif /* BSP_USING_CRC */
#if defined(BSP_USING_HASH)
case HWCRYPTO_TYPE_MD5:
case HWCRYPTO_TYPE_SHA1:
case HWCRYPTO_TYPE_SHA2:
if (des->contex && src->contex)
{
rt_memcpy(des->contex, src->contex, sizeof(HASH_HandleTypeDef));
}
break;
#endif /* BSP_USING_HASH */
#if defined(BSP_USING_CRYP)
case HWCRYPTO_TYPE_AES:
case HWCRYPTO_TYPE_DES:
case HWCRYPTO_TYPE_3DES:
case HWCRYPTO_TYPE_RC4:
case HWCRYPTO_TYPE_GCM:
if (des->contex && src->contex)
{
rt_memcpy(des->contex, src->contex, sizeof(CRYP_HandleTypeDef));
}
break;
#endif /* BSP_USING_CRYP */
default:
res = -RT_ERROR;
break;
}
return res;
}
static void _crypto_reset(struct rt_hwcrypto_ctx *ctx)
{
switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
{
#if defined(BSP_USING_RNG)
case HWCRYPTO_TYPE_RNG:
break;
#endif /* BSP_USING_RNG */
#if defined(BSP_USING_CRC)
case HWCRYPTO_TYPE_CRC:
__HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex);
break;
#endif /* BSP_USING_CRC */
#if defined(BSP_USING_HASH)
case HWCRYPTO_TYPE_MD5:
case HWCRYPTO_TYPE_SHA1:
case HWCRYPTO_TYPE_SHA2:
__HAL_HASH_RESET_HANDLE_STATE((HASH_HandleTypeDef *)(ctx->contex));
break;
#endif /* BSP_USING_HASH*/
#if defined(BSP_USING_CRYP)
case HWCRYPTO_TYPE_AES:
case HWCRYPTO_TYPE_DES:
case HWCRYPTO_TYPE_3DES:
case HWCRYPTO_TYPE_RC4:
case HWCRYPTO_TYPE_GCM:
break;
#endif /* BSP_USING_CRYP */
default:
break;
}
}
#if defined(HASH2_IN_DMA_INSTANCE)
void HASH2_DMA_IN_IRQHandler(void)
{
extern DMA_HandleTypeDef hdma_hash_in;
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&hdma_hash_in);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(CRYP2_IN_DMA_INSTANCE)
void CRYP2_DMA_IN_IRQHandler(void)
{
extern DMA_HandleTypeDef hdma_cryp_in;
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&hdma_cryp_in);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined (CRYP2_OUT_DMA_INSTANCE)
void CRYP2_DMA_OUT_IRQHandler(void)
{
extern DMA_HandleTypeDef hdma_cryp_out;
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&hdma_cryp_out);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
static const struct rt_hwcrypto_ops _ops =
{
.create = _crypto_create,
.destroy = _crypto_destroy,
.copy = _crypto_clone,
.reset = _crypto_reset,
};
int stm32_hw_crypto_device_init(void)
{
static struct stm32_hwcrypto_device _crypto_dev;
rt_uint32_t cpuid[3] = {0};
_crypto_dev.dev.ops = &_ops;
#if defined(BSP_USING_UDID)
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
cpuid[0] = HAL_GetUIDw0();
cpuid[1] = HAL_GetUIDw1();
#elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
cpuid[0] = HAL_GetREVID();
cpuid[1] = HAL_GetDEVID();
#endif
#endif /* BSP_USING_UDID */
_crypto_dev.dev.id = 0;
rt_memcpy(&_crypto_dev.dev.id, cpuid, 8);
_crypto_dev.dev.user_data = &_crypto_dev;
if (rt_hwcrypto_register(&_crypto_dev.dev, RT_HWCRYPTO_DEFAULT_NAME) != RT_EOK)
{
return -1;
}
rt_mutex_init(&_crypto_dev.mutex, RT_HWCRYPTO_DEFAULT_NAME, RT_IPC_FLAG_PRIO);
return 0;
}
INIT_DEVICE_EXPORT(stm32_hw_crypto_device_init);