4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 09:43:30 +08:00
2021-01-06 16:16:04 +08:00

428 lines
12 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-10-10 Tanek first version
*/
#include <rtthread.h>
#include <rthw.h>
#include <drivers/mmcsd_core.h>
#include <board.h>
#include <fsl_usdhc.h>
#include <fsl_gpio.h>
#include <fsl_iomuxc.h>
#include <finsh.h>
#define RT_USING_SDIO1
#define RT_USING_SDIO2
//#define DEBUG
#ifdef DEBUG
static int enable_log = 1;
#define MMCSD_DGB(fmt, ...) \
do \
{ \
if (enable_log) \
{ \
rt_kprintf(fmt, ##__VA_ARGS__); \
} \
} while (0)
#else
#define MMCSD_DGB(fmt, ...)
#endif
#define CACHE_LINESIZE (32)
#define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
#define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
#define IMXRT_MAX_FREQ (25UL * 1000UL * 1000UL)
#define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
#define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
#define USDHC_READ_BURST_LEN (8U) /*!< number of words USDHC read in a single burst */
#define USDHC_WRITE_BURST_LEN (8U) /*!< number of words USDHC write in a single burst */
#define USDHC_DATA_TIMEOUT (0xFU) /*!< data timeout counter value */
/* Read/write watermark level. The bigger value indicates DMA has higher read/write performance. */
#define USDHC_READ_WATERMARK_LEVEL (0x80U)
#define USDHC_WRITE_WATERMARK_LEVEL (0x80U)
/* DMA mode */
#define USDHC_DMA_MODE kUSDHC_DmaModeAdma2
/* Endian mode. */
#define USDHC_ENDIAN_MODE kUSDHC_EndianModeLittle
ALIGN(USDHC_ADMA2_ADDR_ALIGN) uint32_t g_usdhcAdma2Table[USDHC_ADMA_TABLE_WORDS] SECTION("NonCacheable");
struct imxrt_mmcsd
{
struct rt_mmcsd_host *host;
struct rt_mmcsd_req *req;
struct rt_mmcsd_cmd *cmd;
struct rt_timer timer;
rt_uint32_t *buf;
//USDHC_Type *base;
usdhc_host_t usdhc_host;
clock_div_t usdhc_div;
clock_ip_name_t ip_clock;
uint32_t *usdhc_adma2_table;
};
static void _mmcsd_gpio_init(struct imxrt_mmcsd *mmcsd)
{
CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */
}
static void SDMMCHOST_ErrorRecovery(USDHC_Type *base)
{
uint32_t status = 0U;
/* get host present status */
status = USDHC_GetPresentStatusFlags(base);
/* check command inhibit status flag */
if ((status & kUSDHC_CommandInhibitFlag) != 0U)
{
/* reset command line */
USDHC_Reset(base, kUSDHC_ResetCommand, 1000U);
}
/* check data inhibit status flag */
if ((status & kUSDHC_DataInhibitFlag) != 0U)
{
/* reset data line */
USDHC_Reset(base, kUSDHC_ResetData, 1000U);
}
}
static void _mmcsd_host_init(struct imxrt_mmcsd *mmcsd)
{
usdhc_host_t *usdhc_host = &mmcsd->usdhc_host;
/* Initializes SDHC. */
usdhc_host->config.dataTimeout = USDHC_DATA_TIMEOUT;
usdhc_host->config.endianMode = USDHC_ENDIAN_MODE;
usdhc_host->config.readWatermarkLevel = USDHC_READ_WATERMARK_LEVEL;
usdhc_host->config.writeWatermarkLevel = USDHC_WRITE_WATERMARK_LEVEL;
usdhc_host->config.readBurstLen = USDHC_READ_BURST_LEN;
usdhc_host->config.writeBurstLen = USDHC_WRITE_BURST_LEN;
USDHC_Init(usdhc_host->base, &(usdhc_host->config));
}
static void _mmcsd_clk_init(struct imxrt_mmcsd *mmcsd)
{
CLOCK_EnableClock(mmcsd->ip_clock);
CLOCK_SetDiv(mmcsd->usdhc_div, 5U);
}
static void _mmcsd_isr_init(struct imxrt_mmcsd *mmcsd)
{
//NVIC_SetPriority(USDHC1_IRQn, 5U);
}
static void _mmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct imxrt_mmcsd *mmcsd;
struct rt_mmcsd_cmd *cmd;
struct rt_mmcsd_data *data;
status_t error;
usdhc_adma_config_t dmaConfig;
usdhc_transfer_t fsl_content = {0};
usdhc_command_t fsl_command = {0};
usdhc_data_t fsl_data = {0};
rt_uint32_t *buf = NULL;
RT_ASSERT(host != RT_NULL);
RT_ASSERT(req != RT_NULL);
mmcsd = (struct imxrt_mmcsd *)host->private_data;
RT_ASSERT(mmcsd != RT_NULL);
cmd = req->cmd;
RT_ASSERT(cmd != RT_NULL);
MMCSD_DGB("\tcmd->cmd_code: %02d, cmd->arg: %08x, cmd->flags: %08x --> ", cmd->cmd_code, cmd->arg, cmd->flags);
data = cmd->data;
memset(&dmaConfig, 0, sizeof(usdhc_adma_config_t));
/* config adma */
dmaConfig.dmaMode = USDHC_DMA_MODE;
dmaConfig.burstLen = kUSDHC_EnBurstLenForINCR;
dmaConfig.admaTable = mmcsd->usdhc_adma2_table;
dmaConfig.admaTableWords = USDHC_ADMA_TABLE_WORDS;
fsl_command.index = cmd->cmd_code;
fsl_command.argument = cmd->arg;
if (cmd->cmd_code == STOP_TRANSMISSION)
fsl_command.type = kCARD_CommandTypeAbort;
else
fsl_command.type = kCARD_CommandTypeNormal;
switch (cmd->flags & RESP_MASK)
{
case RESP_NONE:
fsl_command.responseType = kCARD_ResponseTypeNone;
break;
case RESP_R1:
fsl_command.responseType = kCARD_ResponseTypeR1;
break;
case RESP_R1B:
fsl_command.responseType = kCARD_ResponseTypeR1b;
break;
case RESP_R2:
fsl_command.responseType = kCARD_ResponseTypeR2;
break;
case RESP_R3:
fsl_command.responseType = kCARD_ResponseTypeR3;
break;
case RESP_R4:
fsl_command.responseType = kCARD_ResponseTypeR4;
break;
case RESP_R6:
fsl_command.responseType = kCARD_ResponseTypeR6;
break;
case RESP_R7:
fsl_command.responseType = kCARD_ResponseTypeR7;
break;
case RESP_R5:
fsl_command.responseType = kCARD_ResponseTypeR5;
break;
default:
RT_ASSERT(NULL);
}
fsl_command.flags = 0;
fsl_content.command = &fsl_command;
if (data)
{
if (req->stop != NULL)
fsl_data.enableAutoCommand12 = true;
else
fsl_data.enableAutoCommand12 = false;
fsl_data.enableAutoCommand23 = false;
fsl_data.enableIgnoreError = false;
fsl_data.dataType = kUSDHC_TransferDataNormal; //todo : update data type
fsl_data.blockSize = data->blksize;
fsl_data.blockCount = data->blks;
MMCSD_DGB(" blksize:%d, blks:%d ", fsl_data.blockSize, fsl_data.blockCount);
if (((rt_uint32_t)data->buf & (CACHE_LINESIZE - 1)) || // align cache(32byte)
((rt_uint32_t)data->buf > 0x00000000 && (rt_uint32_t)data->buf < 0x00080000) /*|| // ITCM
((rt_uint32_t)data->buf >= 0x20000000 && (rt_uint32_t)data->buf < 0x20080000)*/) // DTCM
{
buf = rt_malloc_align(fsl_data.blockSize * fsl_data.blockCount, CACHE_LINESIZE);
RT_ASSERT(buf != RT_NULL);
MMCSD_DGB(" malloc buf: %p, data->buf:%p, %d ", buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
}
if ((cmd->cmd_code == WRITE_BLOCK) || (cmd->cmd_code == WRITE_MULTIPLE_BLOCK))
{
if (buf)
{
MMCSD_DGB(" write(data->buf to buf) ");
rt_memcpy(buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
fsl_data.txData = (uint32_t const *)buf;
}
else
{
fsl_data.txData = (uint32_t const *)data->buf;
}
fsl_data.rxData = NULL;
}
else
{
if (buf)
{
fsl_data.rxData = (uint32_t *)buf;
}
else
{
fsl_data.rxData = (uint32_t *)data->buf;
}
fsl_data.txData = NULL;
}
fsl_content.data = &fsl_data;
}
else
{
fsl_content.data = NULL;
}
error = USDHC_TransferBlocking(mmcsd->usdhc_host.base, &dmaConfig, &fsl_content);
if (error == kStatus_Fail)
{
SDMMCHOST_ErrorRecovery(mmcsd->usdhc_host.base);
MMCSD_DGB(" ***USDHC_TransferBlocking error: %d*** --> \n", error);
cmd->err = -RT_ERROR;
}
if (buf)
{
if (fsl_data.rxData)
{
MMCSD_DGB("read copy buf to data->buf ");
rt_memcpy(data->buf, buf, fsl_data.blockSize * fsl_data.blockCount);
}
rt_free_align(buf);
}
if ((cmd->flags & RESP_MASK) == RESP_R2)
{
cmd->resp[3] = fsl_command.response[0];
cmd->resp[2] = fsl_command.response[1];
cmd->resp[1] = fsl_command.response[2];
cmd->resp[0] = fsl_command.response[3];
MMCSD_DGB(" resp 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
cmd->resp[0] = fsl_command.response[0];
MMCSD_DGB(" resp 0x%08X\n", cmd->resp[0]);
}
mmcsd_req_complete(host);
return;
}
static void _mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
struct imxrt_mmcsd *mmcsd;
unsigned int usdhc_clk;
unsigned int bus_width;
uint32_t src_clk;
RT_ASSERT(host != RT_NULL);
RT_ASSERT(host->private_data != RT_NULL);
RT_ASSERT(io_cfg != RT_NULL);
mmcsd = (struct imxrt_mmcsd *)host->private_data;
usdhc_clk = io_cfg->clock;
bus_width = io_cfg->bus_width;
if (usdhc_clk > IMXRT_MAX_FREQ)
usdhc_clk = IMXRT_MAX_FREQ;
src_clk = (CLOCK_GetSysPfdFreq(kCLOCK_Pfd2) / (CLOCK_GetDiv(mmcsd->usdhc_div) + 1U));
MMCSD_DGB("\tsrc_clk: %d, usdhc_clk: %d, bus_width: %d\n", src_clk, usdhc_clk, bus_width);
if (usdhc_clk)
{
USDHC_SetSdClock(mmcsd->usdhc_host.base, src_clk, usdhc_clk);
/* Change bus width */
if (bus_width == MMCSD_BUS_WIDTH_8)
USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth8Bit);
else if (bus_width == MMCSD_BUS_WIDTH_4)
USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth4Bit);
else if (bus_width == MMCSD_BUS_WIDTH_1)
USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth1Bit);
else
RT_ASSERT(RT_NULL);
}
}
#ifdef DEBUG
static void log_toggle(int en)
{
enable_log = en;
}
FINSH_FUNCTION_EXPORT(log_toggle, toglle log dumple);
#endif
static const struct rt_mmcsd_host_ops ops =
{
_mmc_request,
_mmc_set_iocfg,
RT_NULL,//_mmc_get_card_status,
RT_NULL,//_mmc_enable_sdio_irq,
};
rt_int32_t _imxrt_mci_init(void)
{
struct rt_mmcsd_host *host;
struct imxrt_mmcsd *mmcsd;
host = mmcsd_alloc_host();
if (!host)
{
return -RT_ERROR;
}
mmcsd = rt_malloc(sizeof(struct imxrt_mmcsd));
if (!mmcsd)
{
rt_kprintf("alloc mci failed\n");
goto err;
}
rt_memset(mmcsd, 0, sizeof(struct imxrt_mmcsd));
mmcsd->usdhc_host.base = USDHC1;
mmcsd->usdhc_div = kCLOCK_Usdhc1Div;
mmcsd->usdhc_adma2_table = g_usdhcAdma2Table;
host->ops = &ops;
host->freq_min = 375000;
host->freq_max = 25000000;
host->valid_ocr = VDD_32_33 | VDD_33_34;
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | \
MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
host->max_seg_size = 65535;
host->max_dma_segs = 2;
host->max_blk_size = 512;
host->max_blk_count = 4096;
mmcsd->host = host;
_mmcsd_clk_init(mmcsd);
_mmcsd_isr_init(mmcsd);
_mmcsd_gpio_init(mmcsd);
_mmcsd_host_init(mmcsd);
host->private_data = mmcsd;
mmcsd_change(host);
return 0;
err:
mmcsd_free_host(host);
return -RT_ENOMEM;
}
int imxrt_mci_init(void)
{
/* initilize sd card */
_imxrt_mci_init();
return 0;
}
INIT_DEVICE_EXPORT(imxrt_mci_init);