4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 21:39:51 +08:00
linyuanbo_breo_server 776398d4d6 feat : 完成PWM驱动移植与自测
1. 添加PWM测试代码
2. 修正PWM驱动周期与脉冲错误问题
2021-08-24 07:35:33 +00:00

521 lines
16 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-20 breo.com first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "n32g45x.h"
#include "n32_msp.h"
#ifdef BSP_USING_UART
void n32_msp_usart_init(void *Instance)
{
GPIO_InitType GPIO_InitCtlStruct;
USART_Module *USARTx = (USART_Module *)Instance;
GPIO_InitStruct(&GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Speed = GPIO_Speed_50MHz;
#ifdef BSP_USING_UART1
if(USART1 == USARTx)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_USART1, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_9;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitCtlStruct.Pin = GPIO_PIN_10;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
}
#endif
#ifdef BSP_USING_UART2
if(USART2 == USARTx)
{
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_USART2, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_2;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitCtlStruct.Pin = GPIO_PIN_3;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
}
#endif
#ifdef BSP_USING_UART3
if(USART3 == USARTx)
{
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_USART3, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_10;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitCtlStruct.Pin = GPIO_PIN_11;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
}
#endif
#ifdef BSP_USING_UART4
if(UART4 == USARTx)
{
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_UART4, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_10;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitCtlStruct.Pin = GPIO_PIN_11;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
}
#endif
/* Add others */
}
#endif /* BSP_USING_SERIAL */
#ifdef BSP_USING_SPI
void n32_msp_spi_init(void *Instance)
{
GPIO_InitType GPIO_InitCtlStruct;
SPI_Module *SPIx = (SPI_Module *)Instance;
GPIO_InitStruct(&GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Speed = GPIO_Speed_50MHz;
#ifdef BSP_USING_SPI1
if(SPI1 == SPIx)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_SPI1, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_4;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_5 | GPIO_PIN_7;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitCtlStruct.Pin = GPIO_PIN_6;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
}
#endif
#ifdef BSP_USING_SPI2
if(SPI2 == SPIx)
{
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_SPI2, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_12;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_13 | GPIO_PIN_15;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitCtlStruct.Pin = GPIO_PIN_14;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
}
#endif
/* Add others */
}
#endif /* BSP_USING_SPI */
#ifdef BSP_USING_SDIO
void n32_msp_sdio_init(void *Instance)
{
GPIO_InitType GPIO_InitCtlStructure;
SDIO_Module *SDIOx = (SDIO_Module *)Instance;
GPIO_InitStruct(&GPIO_InitCtlStructure);
GPIO_InitCtlStructure.GPIO_Speed = GPIO_Speed_50MHz;
if(SDIO == SDIOx)
{
/* if used dma ... */
RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_DMA2, ENABLE);
RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_SDIO, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOC | RCC_APB2_PERIPH_GPIOD, ENABLE);
GPIO_InitCtlStructure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12;
GPIO_InitCtlStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitPeripheral(GPIOC, &GPIO_InitCtlStructure);
GPIO_InitCtlStructure.Pin = GPIO_PIN_2;
GPIO_InitCtlStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitPeripheral(GPIOD, &GPIO_InitCtlStructure);
}
}
#endif /* BSP_USING_SDIO */
#ifdef BSP_USING_PWM
void n32_msp_tim_init(void *Instance)
{
GPIO_InitType GPIO_InitCtlStructure;
GPIO_InitStruct(&GPIO_InitCtlStructure);
TIM_Module *TIMx = (TIM_Module *)Instance;
if(TIMx == TIM1)
{
/* TIM1 clock enable */
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_TIM1, ENABLE);
/* GPIOA clock enable */
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
/* GPIOA Configuration:TIM1 Channel1 and Channel4 as alternate function push-pull */
GPIO_InitCtlStructure.Pin = GPIO_PIN_8 | GPIO_PIN_11;
GPIO_InitCtlStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStructure);
}
if(TIMx == TIM2)
{
/* TIM2 clock enable */
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM2, ENABLE);
/* GPIOA clock enable */
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
/* GPIOA Configuration:TIM2 Channel1 and Channel2 as alternate function push-pull */
GPIO_InitCtlStructure.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitCtlStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStructure);
}
if(TIMx == TIM3)
{
/* TIM3 clock enable */
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM3, ENABLE);
/* GPIOA clock enable */
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA|RCC_APB2_PERIPH_GPIOB, ENABLE);
GPIO_InitCtlStructure.Pin = GPIO_PIN_6 | GPIO_PIN_7;
GPIO_InitCtlStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStructure);
GPIO_InitCtlStructure.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStructure);
}
}
#endif /* BSP_USING_PWM */
#ifdef BSP_USING_ADC
void n32_msp_adc_init(void *Instance)
{
GPIO_InitType GPIO_InitCtlStruct;
GPIO_InitStruct(&GPIO_InitCtlStruct);
ADC_Module *ADCx = (ADC_Module *)Instance;
#ifdef BSP_USING_ADC1
if(ADCx == ADC1)
{
/* ADC1 & GPIO clock enable */
RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_ADC1, ENABLE);
ADC_ConfigClk(ADC_CTRL3_CKMOD_AHB,RCC_ADCHCLK_DIV8);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOC, ENABLE);
/* Configure ADC Channel as analog input */
GPIO_InitCtlStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitCtlStruct.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitPeripheral(GPIOC, &GPIO_InitCtlStruct);
}
#endif
#ifdef BSP_USING_ADC2
if(ADCx == ADC2)
{
/* ADC2 & GPIO clock enable */
RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_ADC2, ENABLE);
ADC_ConfigClk(ADC_CTRL3_CKMOD_AHB,RCC_ADCHCLK_DIV8);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOC, ENABLE);
/* Configure ADC Channel as analog input */
GPIO_InitCtlStruct.Pin = GPIO_PIN_1;
GPIO_InitCtlStruct.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitPeripheral(GPIOC, &GPIO_InitCtlStruct);
}
#endif
}
#endif /* BSP_USING_ADC */
#ifdef BSP_USING_HWTIMER
void n32_msp_hwtim_init(void *Instance)
{
TIM_Module *TIMx = (TIM_Module *)Instance;
#ifdef BSP_USING_HWTIM3
if(TIMx == TIM3)
{
/* TIM3 clock enable */
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM3, ENABLE);
}
#endif
#ifdef BSP_USING_HWTIM4
if(TIMx == TIM4)
{
/* TIM4 clock enable */
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM4, ENABLE);
}
#endif
#ifdef BSP_USING_HWTIM5
if(TIMx == TIM5)
{
/* TIM5 clock enable */
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM5, ENABLE);
}
#endif
#ifdef BSP_USING_HWTIM6
if(TIMx == TIM6)
{
/* TIM6 clock enable */
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM6, ENABLE);
}
#endif
#ifdef BSP_USING_HWTIM7
if(TIMx == TIM7)
{
/* TIM7 clock enable */
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM7, ENABLE);
}
#endif
}
#endif
#ifdef BSP_USING_CAN
void n32_msp_can_init(void *Instance)
{
GPIO_InitType GPIO_InitCtlStruct;
CAN_Module *CANx = (CAN_Module *)Instance;
GPIO_InitStruct(&GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Speed = GPIO_Speed_50MHz;
#ifdef BSP_USING_CAN1
if(CAN1 == CANx)
{
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_CAN1, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_12;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitCtlStruct.Pin = GPIO_PIN_11;
GPIO_InitPeripheral(GPIOA, &GPIO_InitCtlStruct);
}
#endif
#ifdef BSP_USING_CAN2
if(CAN2 == CANx)
{
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_CAN2, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_AFIO, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE);
// GPIO_PinsRemapConfig(AFIO_MAP6_CAN2_0001, ENABLE);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitCtlStruct.Pin = GPIO_PIN_6;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
GPIO_InitCtlStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitCtlStruct.Pin = GPIO_PIN_5;
GPIO_InitPeripheral(GPIOB, &GPIO_InitCtlStruct);
}
#endif
}
#endif /* BSP_USING_CAN */
#ifdef RT_USING_FINSH
#include <finsh.h>
#if defined(BSP_USING_UART2) || defined(BSP_USING_UART3)
static void uart_test_rw(rt_device_t uartx, const char *name)
{
if (uartx == NULL)
{
uartx = rt_device_find(name);
rt_err_t err = rt_device_open(uartx, RT_DEVICE_FLAG_INT_RX|RT_DEVICE_FLAG_DMA_RX);
RT_ASSERT(err == RT_EOK);
}
rt_device_write(uartx, 0, name, strlen(name));
rt_device_write(uartx, 0, "\r\n", 2);
uint8_t recv_buf[64] = {0x0};
int ret = rt_device_read(uartx, 0, recv_buf, sizeof(recv_buf));
if (ret != 0)
{
for (int i=0; i<ret; ++i)
rt_kprintf("[%02x]", recv_buf[i]);
}
rt_device_write(uartx, 0, "\r\n", 2);
}
static void uart_test(void)
{
#ifdef BSP_USING_UART2
static rt_device_t u2 = NULL;
uart_test_rw(u2, "uart2");
#endif
#ifdef BSP_USING_UART2
static rt_device_t u3 = NULL;
uart_test_rw(u3, "uart3");
#endif
}
MSH_CMD_EXPORT(uart_test, uart_test)
#endif
#ifdef BSP_USING_ADC
#ifdef BSP_USING_ADC1
#define ADC_DEV_NAME "adc1"
#else
#define ADC_DEV_NAME "adc2"
#endif
#define REFER_VOLTAGE 3300
#define CONVERT_BITS (1 << 12)
static int adc_vol_sample(int argc, char *argv[])
{
rt_adc_device_t adc_dev;
rt_uint32_t value, vol;
rt_err_t ret = RT_EOK;
adc_dev = (rt_adc_device_t)rt_device_find(ADC_DEV_NAME);
if (adc_dev == RT_NULL)
{
rt_kprintf("adc sample run failed! can't find %s device!\n", ADC_DEV_NAME);
return RT_ERROR;
}
for (int i=6; i<=9; ++i)
{
ret = rt_adc_enable(adc_dev, i);
value = rt_adc_read(adc_dev, i);
rt_kprintf("ch=[%d] the value is :[%d] \n", i, value);
vol = value * REFER_VOLTAGE / CONVERT_BITS;
rt_kprintf("ch=[%d] the voltage is :[%d] \n", i, vol);
}
return ret;
}
MSH_CMD_EXPORT(adc_vol_sample, adc voltage convert sample);
#endif
#ifdef BSP_USING_HWTIMER
static rt_err_t timeout_cb(rt_device_t dev, rt_size_t size)
{
rt_kprintf("this is hwtimer timeout callback fucntion!\n");
rt_kprintf("timer name is :%s.\n", dev->parent.name);
rt_kprintf("tick is :%d !\n", rt_tick_get());
return 0;
}
static int hwtimer_init(const char *name)
{
rt_err_t ret = RT_EOK;
rt_hwtimerval_t timeout_s;
rt_device_t hw_dev = RT_NULL;
rt_hwtimer_mode_t mode;
hw_dev = rt_device_find(name);
if (hw_dev == RT_NULL)
{
rt_kprintf("hwtimer sample run failed! can't find %s device!\n", name);
return RT_ERROR;
}
ret = rt_device_open(hw_dev, RT_DEVICE_OFLAG_RDWR);
if (ret != RT_EOK)
{
rt_kprintf("open %s device failed!\n", name);
return ret;
}
rt_device_set_rx_indicate(hw_dev, timeout_cb);
mode = HWTIMER_MODE_PERIOD;
ret = rt_device_control(hw_dev, HWTIMER_CTRL_MODE_SET, &mode);
if (ret != RT_EOK)
{
rt_kprintf("set mode failed! ret is :%d\n", ret);
return ret;
}
timeout_s.sec = 5;
timeout_s.usec = 0;
if (rt_device_write(hw_dev, 0, &timeout_s, sizeof(timeout_s)) != sizeof(timeout_s))
{
rt_kprintf("set timeout value failed\n");
return RT_ERROR;
}
rt_thread_mdelay(3500);
rt_device_read(hw_dev, 0, &timeout_s, sizeof(timeout_s));
rt_kprintf("Read: Sec = %d, Usec = %d\n", timeout_s.sec, timeout_s.usec);
return ret;
}
static int hwtimer_sample(int argc, char *argv[])
{
#ifdef BSP_USING_HWTIM6
hwtimer_init("timer6");
#endif
#ifdef BSP_USING_HWTIM7
hwtimer_init("timer7");
#endif
return RT_EOK;
}
MSH_CMD_EXPORT(hwtimer_sample, hwtimer sample);
#endif
#ifdef RT_USING_PWM
static int pwm_set_test(const char *name, int ch,
rt_uint32_t period, rt_uint32_t pulse)
{
struct rt_device_pwm *pwm_dev = (struct rt_device_pwm *)rt_device_find(name);
if (pwm_dev == RT_NULL)
{
rt_kprintf("pwm sample run failed! can't find %s device!\n", name);
return RT_ERROR;
}
rt_pwm_set(pwm_dev, ch, period, pulse);
rt_pwm_enable(pwm_dev, ch);
return RT_EOK;
}
#define PWM_TEST_NAME_CH_1 "tim3pwm1"
#define PWM_TEST_NAME_CH_2 "tim3pwm2"
#define PWM_TEST_NAME_CH_3 "tim3pwm3"
#define PWM_TEST_NAME_CH_4 "tim3pwm4"
static int pwm_led_sample(int argc, char *argv[])
{
pwm_set_test(PWM_TEST_NAME_CH_1, 1, 1000, 200);
pwm_set_test(PWM_TEST_NAME_CH_2, 2, 1000, 400);
pwm_set_test(PWM_TEST_NAME_CH_3, 3, 1000, 600);
pwm_set_test(PWM_TEST_NAME_CH_4, 4, 1000, 700);
return RT_EOK;
}
MSH_CMD_EXPORT(pwm_led_sample, pwm sample);
static int pwm_led_sample_off(int argc, char *argv[])
{
struct rt_device_pwm *pwm_dev = (struct rt_device_pwm *)rt_device_find(PWM_TEST_NAME_CH_1);
if (pwm_dev == RT_NULL)
{
rt_kprintf("pwm sample run failed! can't find %s device!\n", PWM_TEST_NAME_CH_1);
return RT_ERROR;
}
rt_pwm_disable(pwm_dev, 1);
return RT_EOK;
}
MSH_CMD_EXPORT(pwm_led_sample_off, pwm sample off);
#endif
#endif