4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-19 10:43:31 +08:00
2018-12-05 11:44:53 +08:00

256 lines
8.8 KiB
C

/*
* The Clear BSD License
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_dmic.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.dmic"
#endif
/*******************************************************************************
* Variables
******************************************************************************/
/* Array of DMIC peripheral base address. */
static DMIC_Type *const s_dmicBases[FSL_FEATURE_SOC_DMIC_COUNT] = DMIC_BASE_PTRS;
/* Array of DMIC clock name. */
static const clock_ip_name_t s_dmicClock[FSL_FEATURE_SOC_DMIC_COUNT] = DMIC_CLOCKS;
/* Array of DMIC IRQ number. */
static const IRQn_Type s_dmicIRQ[FSL_FEATURE_SOC_DMIC_COUNT] = DMIC_IRQS;
/*! @brief Callback function array for DMIC(s). */
static dmic_callback_t s_dmicCallback[FSL_FEATURE_SOC_DMIC_COUNT];
/* Array of HWVAD IRQ number. */
static const IRQn_Type s_dmicHwvadIRQ[FSL_FEATURE_SOC_DMIC_COUNT] = DMIC_HWVAD_IRQS;
/*! @brief Callback function array for HWVAD(s). */
static dmic_hwvad_callback_t s_dmicHwvadCallback[FSL_FEATURE_SOC_DMIC_COUNT];
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the DMIC instance from peripheral base address.
*
* @param base DMIC peripheral base address.
* @return DMIC instance.
*/
uint32_t DMIC_GetInstance(DMIC_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_dmicBases); instance++)
{
if (s_dmicBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_dmicBases));
return instance;
}
void DMIC_Init(DMIC_Type *base)
{
assert(base);
/* Enable the clock to the register interface */
CLOCK_EnableClock(s_dmicClock[DMIC_GetInstance(base)]);
/* Reset the peripheral */
RESET_PeripheralReset(kDMIC_RST_SHIFT_RSTn);
/* Disable DMA request*/
base->CHANNEL[0].FIFO_CTRL &= ~DMIC_CHANNEL_FIFO_CTRL_DMAEN(1);
base->CHANNEL[1].FIFO_CTRL &= ~DMIC_CHANNEL_FIFO_CTRL_DMAEN(1);
/* Disable DMIC interrupt. */
base->CHANNEL[0].FIFO_CTRL &= ~DMIC_CHANNEL_FIFO_CTRL_INTEN(1);
base->CHANNEL[1].FIFO_CTRL &= ~DMIC_CHANNEL_FIFO_CTRL_INTEN(1);
}
void DMIC_DeInit(DMIC_Type *base)
{
assert(base);
/* Disable the clock to the register interface */
CLOCK_DisableClock(s_dmicClock[DMIC_GetInstance(base)]);
}
void DMIC_ConfigIO(DMIC_Type *base, dmic_io_t config)
{
base->IOCFG = config;
}
void DMIC_SetOperationMode(DMIC_Type *base, operation_mode_t mode)
{
if (mode == kDMIC_OperationModeInterrupt)
{
/* Enable DMIC interrupt. */
base->CHANNEL[0].FIFO_CTRL |= DMIC_CHANNEL_FIFO_CTRL_INTEN(1);
base->CHANNEL[1].FIFO_CTRL |= DMIC_CHANNEL_FIFO_CTRL_INTEN(1);
}
if (mode == kDMIC_OperationModeDma)
{
/* enable DMA request*/
base->CHANNEL[0].FIFO_CTRL |= DMIC_CHANNEL_FIFO_CTRL_DMAEN(1);
base->CHANNEL[1].FIFO_CTRL |= DMIC_CHANNEL_FIFO_CTRL_DMAEN(1);
}
}
void DMIC_ConfigChannel(DMIC_Type *base,
dmic_channel_t channel,
stereo_side_t side,
dmic_channel_config_t *channel_config)
{
base->CHANNEL[channel].DIVHFCLK = channel_config->divhfclk;
base->CHANNEL[channel].OSR = channel_config->osr;
base->CHANNEL[channel].GAINSHIFT = channel_config->gainshft;
base->CHANNEL[channel].PREAC2FSCOEF = channel_config->preac2coef;
base->CHANNEL[channel].PREAC4FSCOEF = channel_config->preac4coef;
base->CHANNEL[channel].PHY_CTRL =
DMIC_CHANNEL_PHY_CTRL_PHY_FALL(side) | DMIC_CHANNEL_PHY_CTRL_PHY_HALF(channel_config->sample_rate);
base->CHANNEL[channel].DC_CTRL = DMIC_CHANNEL_DC_CTRL_DCPOLE(channel_config->dc_cut_level) |
DMIC_CHANNEL_DC_CTRL_DCGAIN(channel_config->post_dc_gain_reduce) |
DMIC_CHANNEL_DC_CTRL_SATURATEAT16BIT(channel_config->saturate16bit);
}
void DMIC_CfgChannelDc(DMIC_Type *base,
dmic_channel_t channel,
dc_removal_t dc_cut_level,
uint32_t post_dc_gain_reduce,
bool saturate16bit)
{
base->CHANNEL[channel].DC_CTRL = DMIC_CHANNEL_DC_CTRL_DCPOLE(dc_cut_level) |
DMIC_CHANNEL_DC_CTRL_DCGAIN(post_dc_gain_reduce) |
DMIC_CHANNEL_DC_CTRL_SATURATEAT16BIT(saturate16bit);
}
void DMIC_Use2fs(DMIC_Type *base, bool use2fs)
{
base->USE2FS = (use2fs) ? 0x1 : 0x0;
}
void DMIC_EnableChannnel(DMIC_Type *base, uint32_t channelmask)
{
base->CHANEN = channelmask;
}
void DMIC_FifoChannel(DMIC_Type *base, uint32_t channel, uint32_t trig_level, uint32_t enable, uint32_t resetn)
{
base->CHANNEL[channel].FIFO_CTRL |=
(base->CHANNEL[channel].FIFO_CTRL & (DMIC_CHANNEL_FIFO_CTRL_INTEN_MASK | DMIC_CHANNEL_FIFO_CTRL_DMAEN_MASK)) |
DMIC_CHANNEL_FIFO_CTRL_TRIGLVL(trig_level) | DMIC_CHANNEL_FIFO_CTRL_ENABLE(enable) |
DMIC_CHANNEL_FIFO_CTRL_RESETN(resetn);
}
void DMIC_EnableIntCallback(DMIC_Type *base, dmic_callback_t cb)
{
uint32_t instance;
instance = DMIC_GetInstance(base);
NVIC_ClearPendingIRQ(s_dmicIRQ[instance]);
/* Save callback pointer */
s_dmicCallback[instance] = cb;
EnableIRQ(s_dmicIRQ[instance]);
}
void DMIC_DisableIntCallback(DMIC_Type *base, dmic_callback_t cb)
{
uint32_t instance;
instance = DMIC_GetInstance(base);
DisableIRQ(s_dmicIRQ[instance]);
s_dmicCallback[instance] = NULL;
NVIC_ClearPendingIRQ(s_dmicIRQ[instance]);
}
void DMIC_HwvadEnableIntCallback(DMIC_Type *base, dmic_hwvad_callback_t vadcb)
{
uint32_t instance;
instance = DMIC_GetInstance(base);
NVIC_ClearPendingIRQ(s_dmicHwvadIRQ[instance]);
/* Save callback pointer */
s_dmicHwvadCallback[instance] = vadcb;
EnableIRQ(s_dmicHwvadIRQ[instance]);
}
void DMIC_HwvadDisableIntCallback(DMIC_Type *base, dmic_hwvad_callback_t vadcb)
{
uint32_t instance;
instance = DMIC_GetInstance(base);
DisableIRQ(s_dmicHwvadIRQ[instance]);
s_dmicHwvadCallback[instance] = NULL;
NVIC_ClearPendingIRQ(s_dmicHwvadIRQ[instance]);
}
/* IRQ handler functions overloading weak symbols in the startup */
#if defined(DMIC0)
/*DMIC0 IRQ handler */
void DMIC0_DriverIRQHandler(void)
{
if (s_dmicCallback[0] != NULL)
{
s_dmicCallback[0]();
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
/*DMIC0 HWVAD IRQ handler */
void HWVAD0_DriverIRQHandler(void)
{
if (s_dmicHwvadCallback[0] != NULL)
{
s_dmicHwvadCallback[0]();
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif