rt-thread-official/bsp/imxrt/libraries/MIMXRT1170/MIMXRT1176/drivers/fsl_spdif.c

850 lines
27 KiB
C

/*
* Copyright 2017-2020 NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_spdif.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.spdif"
#endif
/*******************************************************************************
* Definitations
******************************************************************************/
/*! @brief spdif transfer state. */
enum
{
kSPDIF_Busy = 0x0U, /*!< SPDIF is busy */
kSPDIF_Idle, /*!< Transfer is done. */
kSPDIF_Error /*!< Transfer error occurred. */
};
/*! @brief Typedef for spdif tx interrupt handler. */
typedef void (*spdif_isr_t)(SPDIF_Type *base, spdif_handle_t *handle);
/*******************************************************************************
* Prototypes
******************************************************************************/
/*******************************************************************************
* Variables
******************************************************************************/
/* Base pointer array */
static SPDIF_Type *const s_spdifBases[] = SPDIF_BASE_PTRS;
/*! @brief SPDIF handle pointer */
static spdif_handle_t *s_spdifHandle[ARRAY_SIZE(s_spdifBases)][2];
/* IRQ number array */
static const IRQn_Type s_spdifIRQ[] = SPDIF_IRQS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Clock name array */
static const clock_ip_name_t s_spdifClock[] = SPDIF_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointer to IRQ handler for each instance. */
static spdif_isr_t s_spdifTxIsr;
/*! @brief Pointer to IRQ handler for each instance. */
static spdif_isr_t s_spdifRxIsr;
/*! @brief Used for spdif gain */
static uint8_t s_spdif_gain[8] = {24U, 16U, 12U, 8U, 6U, 4U, 3U, 1U};
static uint8_t s_spdif_tx_watermark[4] = {16, 12, 8, 4};
static uint8_t s_spdif_rx_watermark[4] = {1, 4, 8, 16};
/*******************************************************************************
* Code
******************************************************************************/
uint32_t SPDIF_GetInstance(SPDIF_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_spdifBases); instance++)
{
if (s_spdifBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_spdifBases));
return instance;
}
/*!
* brief Initializes the SPDIF peripheral.
*
* Ungates the SPDIF clock, resets the module, and configures SPDIF with a configuration structure.
* The configuration structure can be custom filled or set with default values by
* SPDIF_GetDefaultConfig().
*
* note This API should be called at the beginning of the application to use
* the SPDIF driver. Otherwise, accessing the SPDIF module can cause a hard fault
* because the clock is not enabled.
*
* param base SPDIF base pointer
* param config SPDIF configuration structure.
*/
void SPDIF_Init(SPDIF_Type *base, const spdif_config_t *config)
{
uint32_t val = 0;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the SPDIF clock */
CLOCK_EnableClock(s_spdifClock[SPDIF_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Reset the internal logic */
base->SCR |= SPDIF_SCR_SOFT_RESET_MASK;
/* Waiting for reset finish */
while ((base->SCR & SPDIF_SCR_SOFT_RESET_MASK) != 0x00U)
{
}
/* Setting the SPDIF settings */
base->SCR = SPDIF_SCR_RXFIFOFULL_SEL(config->rxFullSelect) | SPDIF_SCR_RXAUTOSYNC(config->isRxAutoSync) |
SPDIF_SCR_TXAUTOSYNC(config->isRxAutoSync) | SPDIF_SCR_TXFIFOEMPTY_SEL(config->txFullSelect) |
SPDIF_SCR_TXFIFO_CTRL(1U) | SPDIF_SCR_VALCTRL(config->validityConfig) |
SPDIF_SCR_TXSEL(config->txSource) | SPDIF_SCR_USRC_SEL(config->uChannelSrc);
/* Set DPLL clock source */
base->SRPC = SPDIF_SRPC_CLKSRC_SEL(config->DPLLClkSource) | SPDIF_SRPC_GAINSEL(config->gain);
/* Set SPDIF tx clock source */
val = base->STC & ~SPDIF_STC_TXCLK_SOURCE_MASK;
val |= SPDIF_STC_TXCLK_SOURCE(config->txClkSource);
base->STC = val;
/* clear and diable all the interrupt */
base->SIC = (uint32_t)kSPDIF_AllInterrupt;
base->SIE &= ~(uint32_t)kSPDIF_AllInterrupt;
}
/*!
* brief De-initializes the SPDIF peripheral.
*
* This API gates the SPDIF clock. The SPDIF module can't operate unless SPDIF_Init is called to enable the clock.
*
* param base SPDIF base pointer
*/
void SPDIF_Deinit(SPDIF_Type *base)
{
SPDIF_TxEnable(base, false);
SPDIF_RxEnable(base, false);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_DisableClock(s_spdifClock[SPDIF_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Sets the SPDIF configuration structure to default values.
*
* This API initializes the configuration structure for use in SPDIF_Init.
* The initialized structure can remain unchanged in SPDIF_Init, or it can be modified
* before calling SPDIF_Init.
* This is an example.
code
spdif_config_t config;
SPDIF_GetDefaultConfig(&config);
endcode
*
* param config pointer to master configuration structure
*/
void SPDIF_GetDefaultConfig(spdif_config_t *config)
{
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
config->isTxAutoSync = true;
config->isRxAutoSync = true;
config->DPLLClkSource = 1;
config->txClkSource = 1;
config->rxFullSelect = kSPDIF_RxFull8Samples;
config->txFullSelect = kSPDIF_TxEmpty8Samples;
config->uChannelSrc = kSPDIF_UChannelFromTx;
config->txSource = kSPDIF_txNormal;
config->validityConfig = kSPDIF_validityFlagAlwaysClear;
config->gain = kSPDIF_GAIN_8;
}
/*!
* brief Enables/disables the SPDIF Tx.
*
* param base SPDIF base pointer
* param enable True means enable SPDIF Tx, false means disable.
*/
void SPDIF_TxEnable(SPDIF_Type *base, bool enable)
{
uint32_t val = 0;
if (enable)
{
/* Open Tx FIFO */
val = base->SCR & (~SPDIF_SCR_TXFIFO_CTRL_MASK);
val |= SPDIF_SCR_TXFIFO_CTRL(1U);
base->SCR = val;
/* Enable transfer clock */
base->STC |= SPDIF_STC_TX_ALL_CLK_EN_MASK;
}
else
{
base->SCR &= ~(SPDIF_SCR_TXFIFO_CTRL_MASK | SPDIF_SCR_TXSEL_MASK);
/* Disable transfer clock */
base->STC &= ~SPDIF_STC_TX_ALL_CLK_EN_MASK;
}
}
/*!
* brief Configures the SPDIF Tx sample rate.
*
* The audio format can be changed at run-time. This function configures the sample rate.
*
* param base SPDIF base pointer.
* param sampleRate_Hz SPDIF sample rate frequency in Hz.
* param sourceClockFreq_Hz SPDIF tx clock source frequency in Hz.
*/
void SPDIF_TxSetSampleRate(SPDIF_Type *base, uint32_t sampleRate_Hz, uint32_t sourceClockFreq_Hz)
{
uint32_t clkDiv = sourceClockFreq_Hz / (sampleRate_Hz * 64U);
uint32_t mod = sourceClockFreq_Hz % (sampleRate_Hz * 64U);
uint32_t val = 0;
uint8_t clockSource = (uint8_t)(((base->STC) & SPDIF_STC_TXCLK_SOURCE_MASK) >> SPDIF_STC_TXCLK_SOURCE_SHIFT);
/* Compute the nearest divider */
if (mod > ((sampleRate_Hz * 64U) / 2U))
{
clkDiv += 1U;
}
/* If use divided systeme clock */
if (clockSource == 5U)
{
if (clkDiv > 256U)
{
val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK));
val |= SPDIF_STC_SYSCLK_DF((clkDiv / 128U) - 1U) | SPDIF_STC_TXCLK_DF(127U);
base->STC = val;
}
else
{
val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK));
val |= SPDIF_STC_SYSCLK_DF(1U) | SPDIF_STC_TXCLK_DF(clkDiv - 1U);
base->STC = val;
}
}
else
{
/* Other clock only uses txclk div */
val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK));
val |= SPDIF_STC_TXCLK_DF(clkDiv - 1U);
base->STC = val;
}
}
/*!
* brief Configures the SPDIF Rx audio format.
*
* The audio format can be changed at run-time. This function configures the sample rate and audio data
* format to be transferred.
*
* param base SPDIF base pointer.
* param clockSourceFreq_Hz SPDIF system clock frequency in hz.
*/
uint32_t SPDIF_GetRxSampleRate(SPDIF_Type *base, uint32_t clockSourceFreq_Hz)
{
uint64_t gain = s_spdif_gain[((base->SRPC & SPDIF_SRPC_GAINSEL_MASK) >> SPDIF_SRPC_GAINSEL_SHIFT)];
uint32_t measure = 0;
uint32_t sampleRate = 0;
uint64_t temp = 0;
/* Wait the DPLL locked */
while ((base->SRPC & SPDIF_SRPC_LOCK_MASK) == 0U)
{
}
/* Get the measure value */
measure = base->SRFM;
temp = (uint64_t)measure * (uint64_t)clockSourceFreq_Hz;
temp /= 1024U * 1024U * 128U * gain;
sampleRate = (uint32_t)temp;
return sampleRate;
}
/*!
* brief Sends data using a blocking method.
*
* note This function blocks by polling until data is ready to be sent.
*
* param base SPDIF base pointer.
* param buffer Pointer to the data to be written.
* param size Bytes to be written.
*/
void SPDIF_WriteBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
{
assert(buffer != NULL);
assert((size % 6U) == 0U);
uint32_t i = 0, j = 0, data = 0;
while (i < size)
{
/* Wait until it can write data */
while ((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_TxFIFOEmpty) == 0x00U)
{
}
/* Write left channel data */
for (j = 0; j < 3U; j++)
{
data |= ((uint32_t)(*buffer) << (j * 8U));
buffer++;
}
SPDIF_WriteLeftData(base, data);
/* Write right channel data */
data = 0;
for (j = 0; j < 3U; j++)
{
data |= ((uint32_t)(*buffer) << (j * 8U));
buffer++;
}
SPDIF_WriteRightData(base, data);
i += 6U;
}
}
/*!
* brief Receives data using a blocking method.
*
* note This function blocks by polling until data is ready to be sent.
*
* param base SPDIF base pointer.
* param buffer Pointer to the data to be read.
* param size Bytes to be read.
*/
void SPDIF_ReadBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
{
assert(buffer != NULL);
assert((size % 6U) == 0U);
uint32_t i = 0, j = 0, data = 0;
while (i < size)
{
/* Wait until it can write data */
while ((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_RxFIFOFull) == 0x00U)
{
}
/* Write left channel data */
data = SPDIF_ReadLeftData(base);
for (j = 0; j < 3U; j++)
{
*buffer = ((uint8_t)(data >> (j * 8U)) & 0xFFU);
buffer++;
}
/* Write right channel data */
data = SPDIF_ReadRightData(base);
for (j = 0; j < 3U; j++)
{
*buffer = ((uint8_t)(data >> (j * 8U)) & 0xFFU);
buffer++;
}
i += 6U;
}
}
/*!
* brief Initializes the SPDIF Tx handle.
*
* This function initializes the Tx handle for the SPDIF Tx transactional APIs. Call
* this function once to get the handle initialized.
*
* param base SPDIF base pointer
* param handle SPDIF handle pointer.
* param callback Pointer to the user callback function.
* param userData User parameter passed to the callback function
*/
void SPDIF_TransferTxCreateHandle(SPDIF_Type *base,
spdif_handle_t *handle,
spdif_transfer_callback_t callback,
void *userData)
{
assert(handle != NULL);
/* Zero the handle */
(void)memset(handle, 0, sizeof(*handle));
s_spdifHandle[SPDIF_GetInstance(base)][0] = handle;
handle->callback = callback;
handle->userData = userData;
handle->watermark =
s_spdif_tx_watermark[(base->SCR & SPDIF_SCR_TXFIFOEMPTY_SEL_MASK) >> SPDIF_SCR_TXFIFOEMPTY_SEL_SHIFT];
/* Set the isr pointer */
s_spdifTxIsr = SPDIF_TransferTxHandleIRQ;
/* Enable Tx irq */
(void)EnableIRQ(s_spdifIRQ[SPDIF_GetInstance(base)]);
}
/*!
* brief Initializes the SPDIF Rx handle.
*
* This function initializes the Rx handle for the SPDIF Rx transactional APIs. Call
* this function once to get the handle initialized.
*
* param base SPDIF base pointer.
* param handle SPDIF handle pointer.
* param callback Pointer to the user callback function.
* param userData User parameter passed to the callback function.
*/
void SPDIF_TransferRxCreateHandle(SPDIF_Type *base,
spdif_handle_t *handle,
spdif_transfer_callback_t callback,
void *userData)
{
assert(handle != NULL);
/* Zero the handle */
(void)memset(handle, 0, sizeof(*handle));
s_spdifHandle[SPDIF_GetInstance(base)][1] = handle;
handle->callback = callback;
handle->userData = userData;
handle->watermark =
s_spdif_rx_watermark[(base->SCR & SPDIF_SCR_RXFIFOFULL_SEL_MASK) >> SPDIF_SCR_RXFIFOFULL_SEL_SHIFT];
/* Set the isr pointer */
s_spdifRxIsr = SPDIF_TransferRxHandleIRQ;
/* Enable Rx irq */
(void)EnableIRQ(s_spdifIRQ[SPDIF_GetInstance(base)]);
}
/*!
* brief Performs an interrupt non-blocking send transfer on SPDIF.
*
* note This API returns immediately after the transfer initiates.
* Call the SPDIF_TxGetTransferStatusIRQ to poll the transfer status and check whether
* the transfer is finished. If the return status is not kStatus_SPDIF_Busy, the transfer
* is finished.
*
* param base SPDIF base pointer.
* param handle Pointer to the spdif_handle_t structure which stores the transfer state.
* param xfer Pointer to the spdif_transfer_t structure.
* retval kStatus_Success Successfully started the data receive.
* retval kStatus_SPDIF_TxBusy Previous receive still not finished.
* retval kStatus_InvalidArgument The input parameter is invalid.
*/
status_t SPDIF_TransferSendNonBlocking(SPDIF_Type *base, spdif_handle_t *handle, spdif_transfer_t *xfer)
{
assert(handle != NULL);
/* Check if the queue is full */
if (handle->spdifQueue[handle->queueUser].data != NULL)
{
return kStatus_SPDIF_QueueFull;
}
/* Add into queue */
handle->transferSize[handle->queueUser] = xfer->dataSize;
handle->spdifQueue[handle->queueUser].data = xfer->data;
handle->spdifQueue[handle->queueUser].dataSize = xfer->dataSize;
handle->queueUser = (handle->queueUser + 0x01U) % SPDIF_XFER_QUEUE_SIZE;
/* Set the state to busy */
handle->state = kSPDIF_Busy;
/* Enable interrupt */
SPDIF_EnableInterrupts(base, kSPDIF_TxFIFOEmpty);
/* Enable Tx transfer */
SPDIF_TxEnable(base, true);
return kStatus_Success;
}
/*!
* brief Performs an interrupt non-blocking receive transfer on SPDIF.
*
* note This API returns immediately after the transfer initiates.
* Call the SPDIF_RxGetTransferStatusIRQ to poll the transfer status and check whether
* the transfer is finished. If the return status is not kStatus_SPDIF_Busy, the transfer
* is finished.
*
* param base SPDIF base pointer
* param handle Pointer to the spdif_handle_t structure which stores the transfer state.
* param xfer Pointer to the spdif_transfer_t structure.
* retval kStatus_Success Successfully started the data receive.
* retval kStatus_SPDIF_RxBusy Previous receive still not finished.
* retval kStatus_InvalidArgument The input parameter is invalid.
*/
status_t SPDIF_TransferReceiveNonBlocking(SPDIF_Type *base, spdif_handle_t *handle, spdif_transfer_t *xfer)
{
assert(handle != NULL);
uint32_t enableInterrupts = (uint32_t)kSPDIF_RxFIFOFull | (uint32_t)kSPDIF_RxControlChannelChange;
/* Check if the queue is full */
if (handle->spdifQueue[handle->queueUser].data != NULL)
{
return kStatus_SPDIF_QueueFull;
}
/* Add into queue */
handle->transferSize[handle->queueUser] = xfer->dataSize;
handle->spdifQueue[handle->queueUser].data = xfer->data;
handle->spdifQueue[handle->queueUser].dataSize = xfer->dataSize;
handle->spdifQueue[handle->queueUser].udata = xfer->udata;
handle->spdifQueue[handle->queueUser].qdata = xfer->qdata;
handle->queueUser = (handle->queueUser + 0x01U) % SPDIF_XFER_QUEUE_SIZE;
/* Set state to busy */
handle->state = kSPDIF_Busy;
if (xfer->qdata != NULL)
{
enableInterrupts |= (uint32_t)kSPDIF_QChannelReceiveRegisterFull;
}
if (xfer->udata != NULL)
{
enableInterrupts |= (uint32_t)kSPDIF_UChannelReceiveRegisterFull;
}
/* Enable interrupt */
SPDIF_EnableInterrupts(base, enableInterrupts);
/* Enable Rx transfer */
SPDIF_RxEnable(base, true);
return kStatus_Success;
}
/*!
* brief Gets a set byte count.
*
* param base SPDIF base pointer.
* param handle Pointer to the spdif_handle_t structure which stores the transfer state.
* param count Bytes count sent.
* retval kStatus_Success Succeed get the transfer count.
* retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SPDIF_TransferGetSendCount(SPDIF_Type *base, spdif_handle_t *handle, size_t *count)
{
assert(handle != NULL);
status_t status = kStatus_Success;
uint8_t queueDriver = handle->queueDriver;
if (handle->state != (uint32_t)kSPDIF_Busy)
{
status = kStatus_NoTransferInProgress;
}
else
{
*count = (handle->transferSize[queueDriver] - handle->spdifQueue[queueDriver].dataSize);
}
return status;
}
/*!
* brief Gets a received byte count.
*
* param base SPDIF base pointer.
* param handle Pointer to the spdif_handle_t structure which stores the transfer state.
* param count Bytes count received.
* retval kStatus_Success Succeed get the transfer count.
* retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SPDIF_TransferGetReceiveCount(SPDIF_Type *base, spdif_handle_t *handle, size_t *count)
{
assert(handle != NULL);
status_t status = kStatus_Success;
uint8_t queueDriver = handle->queueDriver;
if (handle->state != (uint32_t)kSPDIF_Busy)
{
status = kStatus_NoTransferInProgress;
}
else
{
*count = (handle->transferSize[queueDriver] - handle->spdifQueue[queueDriver].dataSize);
}
return status;
}
/*!
* brief Aborts the current send.
*
* note This API can be called any time when an interrupt non-blocking transfer initiates
* to abort the transfer early.
*
* param base SPDIF base pointer.
* param handle Pointer to the spdif_handle_t structure which stores the transfer state.
*/
void SPDIF_TransferAbortSend(SPDIF_Type *base, spdif_handle_t *handle)
{
assert(handle != NULL);
/* Use FIFO request interrupt and fifo error */
SPDIF_DisableInterrupts(base, kSPDIF_TxFIFOEmpty);
handle->state = kSPDIF_Idle;
/* Clear the queue */
(void)memset(handle->spdifQueue, 0, sizeof(spdif_transfer_t) * SPDIF_XFER_QUEUE_SIZE);
handle->queueDriver = 0;
handle->queueUser = 0;
}
/*!
* brief Aborts the current IRQ receive.
*
* note This API can be called when an interrupt non-blocking transfer initiates
* to abort the transfer early.
*
* param base SPDIF base pointer
* param handle Pointer to the spdif_handle_t structure which stores the transfer state.
*/
void SPDIF_TransferAbortReceive(SPDIF_Type *base, spdif_handle_t *handle)
{
assert(handle != NULL);
/* Disable interrupt */
SPDIF_DisableInterrupts(base, (uint32_t)kSPDIF_UChannelReceiveRegisterFull |
(uint32_t)kSPDIF_QChannelReceiveRegisterFull | (uint32_t)kSPDIF_RxFIFOFull |
(uint32_t)kSPDIF_RxControlChannelChange);
handle->state = kSPDIF_Idle;
/* Clear the queue */
(void)memset(handle->spdifQueue, 0, sizeof(spdif_transfer_t) * SPDIF_XFER_QUEUE_SIZE);
handle->queueDriver = 0;
handle->queueUser = 0;
}
/*!
* brief Tx interrupt handler.
*
* param base SPDIF base pointer.
* param handle Pointer to the spdif_handle_t structure.
*/
void SPDIF_TransferTxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle)
{
assert(handle != NULL);
uint8_t *buffer = handle->spdifQueue[handle->queueDriver].data;
uint8_t dataSize = 0;
uint32_t i = 0, j = 0, data = 0;
/* Do Transfer */
if (((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_TxFIFOEmpty) != 0x00U) &&
((base->SIE & (uint32_t)kSPDIF_TxFIFOEmpty) != 0x00U))
{
dataSize = handle->watermark;
while (i < dataSize)
{
data = 0;
/* Write left channel data */
for (j = 0; j < 3U; j++)
{
data |= ((uint32_t)(*buffer) << (j * 8U));
buffer++;
}
SPDIF_WriteLeftData(base, data);
/* Write right channel data */
data = 0;
for (j = 0; j < 3U; j++)
{
data |= ((uint32_t)(*buffer) << (j * 8U));
buffer++;
}
SPDIF_WriteRightData(base, data);
i++;
}
handle->spdifQueue[handle->queueDriver].dataSize -= (uint32_t)dataSize * 6U;
handle->spdifQueue[handle->queueDriver].data += dataSize * 6U;
/* If finished a block, call the callback function */
if (handle->spdifQueue[handle->queueDriver].dataSize == 0U)
{
(void)memset(&handle->spdifQueue[handle->queueDriver], 0, sizeof(spdif_transfer_t));
handle->queueDriver = (handle->queueDriver + 0x01U) % SPDIF_XFER_QUEUE_SIZE;
if (handle->callback != NULL)
{
(handle->callback)(base, handle, kStatus_SPDIF_TxIdle, handle->userData);
}
}
/* If all data finished, just stop the transfer */
if (handle->spdifQueue[handle->queueDriver].data == NULL)
{
SPDIF_TransferAbortSend(base, handle);
}
}
}
/*!
* brief Tx interrupt handler.
*
* param base SPDIF base pointer.
* param handle Pointer to the spdif_handle_t structure.
*/
void SPDIF_TransferRxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle)
{
assert(handle != NULL);
uint8_t *buffer = NULL;
uint8_t dataSize = 0;
uint32_t i = 0, j = 0, data = 0;
/* Handle Cnew flag */
if ((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_RxControlChannelChange) != 0x00U)
{
/* Clear the interrupt flag */
SPDIF_ClearStatusFlags(base, SPDIF_SIE_CNEW_MASK);
if (handle->callback != NULL)
{
(handle->callback)(base, handle, kStatus_SPDIF_RxCnew, handle->userData);
}
}
/* Handle illegal symbol */
if ((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_RxIllegalSymbol) != 0x00U)
{
SPDIF_ClearStatusFlags(base, kSPDIF_RxIllegalSymbol);
if (handle->callback != NULL)
{
(handle->callback)(base, handle, kStatus_SPDIF_RxIllegalSymbol, handle->userData);
}
}
/* Handle Parity Bit Error */
if ((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_RxParityBitError) != 0x00U)
{
SPDIF_ClearStatusFlags(base, kSPDIF_RxParityBitError);
if (handle->callback != NULL)
{
(handle->callback)(base, handle, kStatus_SPDIF_RxParityBitError, handle->userData);
}
}
/* Handle DPlocked */
if ((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_RxDPLLLocked) != 0x00U)
{
SPDIF_ClearStatusFlags(base, kSPDIF_RxDPLLLocked);
if (handle->callback != NULL)
{
(handle->callback)(base, handle, kStatus_SPDIF_RxDPLLLocked, handle->userData);
}
}
/* Handle Q channel full flag */
if (((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_QChannelReceiveRegisterFull) != 0x00U) &&
((base->SIE & (uint32_t)kSPDIF_QChannelReceiveRegisterFull) != 0x00U))
{
buffer = handle->spdifQueue[handle->queueDriver].qdata;
if (buffer != NULL)
{
data = SPDIF_ReadQChannel(base);
buffer[0] = (uint8_t)data & 0xFFU;
buffer[1] = (uint8_t)(data >> 8U) & 0xFFU;
buffer[2] = (uint8_t)(data >> 16U) & 0xFFU;
}
}
/* Handle U channel full flag */
if (((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_UChannelReceiveRegisterFull) != 0x00U) &&
((base->SIE & (uint32_t)kSPDIF_UChannelReceiveRegisterFull) != 0x00U))
{
buffer = handle->spdifQueue[handle->queueDriver].udata;
if (buffer != NULL)
{
data = SPDIF_ReadUChannel(base);
buffer[0] = (uint8_t)data & 0xFFU;
buffer[1] = (uint8_t)(data >> 8U) & 0xFFU;
buffer[2] = (uint8_t)(data >> 16U) & 0xFFU;
}
}
/* Handle audio data transfer */
if (((SPDIF_GetStatusFlag(base) & (uint32_t)kSPDIF_RxFIFOFull) != 0x00U) &&
((base->SIE & (uint32_t)kSPDIF_RxFIFOFull) != 0x00U))
{
dataSize = handle->watermark;
buffer = handle->spdifQueue[handle->queueDriver].data;
while (i < dataSize)
{
/* Read left channel data */
data = SPDIF_ReadLeftData(base);
for (j = 0; j < 3U; j++)
{
*buffer = (uint8_t)((data >> (j * 8U)) & 0xFFU);
buffer++;
}
/* Read right channel data */
data = SPDIF_ReadRightData(base);
for (j = 0; j < 3U; j++)
{
*buffer = (uint8_t)((data >> (j * 8U)) & 0xFFU);
buffer++;
}
i++;
}
handle->spdifQueue[handle->queueDriver].dataSize -= (uint32_t)dataSize * 6U;
handle->spdifQueue[handle->queueDriver].data += dataSize * 6U;
/* If finished a block, call the callback function */
if (handle->spdifQueue[handle->queueDriver].dataSize == 0x00U)
{
(void)memset(&handle->spdifQueue[handle->queueDriver], 0, sizeof(spdif_transfer_t));
handle->queueDriver = (handle->queueDriver + 0x01U) % SPDIF_XFER_QUEUE_SIZE;
if (handle->callback != NULL)
{
(handle->callback)(base, handle, kStatus_SPDIF_RxIdle, handle->userData);
}
}
/* If all data finished, just stop the transfer */
if (handle->spdifQueue[handle->queueDriver].data == NULL)
{
SPDIF_TransferAbortReceive(base, handle);
}
}
}
#if defined(SPDIF)
void SPDIF_DriverIRQHandler(void);
void SPDIF_DriverIRQHandler(void)
{
if ((s_spdifHandle[0][0] != NULL) && (s_spdifTxIsr != NULL))
{
s_spdifTxIsr(SPDIF, s_spdifHandle[0][0]);
}
if ((s_spdifHandle[0][1] != NULL) && (s_spdifRxIsr != NULL))
{
s_spdifRxIsr(SPDIF, s_spdifHandle[0][1]);
}
SDK_ISR_EXIT_BARRIER;
}
#endif