rt-thread-official/bsp/imxrt/libraries/MIMXRT1170/MIMXRT1176/drivers/fsl_mipi_csi2rx.h

384 lines
14 KiB
C

/*
* Copyright 2017, 2019-2020 NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_MIPI_CSI2RX_H_
#define _FSL_MIPI_CSI2RX_H_
#include "fsl_common.h"
/*!
* @addtogroup csi2rx
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @name Driver version */
/*@{*/
/*! @brief CSI2RX driver version. */
#define FSL_CSI2RX_DRIVER_VERSION (MAKE_VERSION(2, 0, 4))
/*@}*/
#if (defined(FSL_FEATURE_CSI2RX_HAS_NO_REG_PREFIX) && FSL_FEATURE_CSI2RX_HAS_NO_REG_PREFIX)
#define CSI2RX_REG_CFG_NUM_LANES(base) (base)->CFG_NUM_LANES
#define CSI2RX_REG_CFG_DISABLE_DATA_LANES(base) (base)->CFG_DISABLE_DATA_LANES
#define CSI2RX_REG_BIT_ERR(base) (base)->BIT_ERR
#define CSI2RX_REG_IRQ_STATUS(base) (base)->IRQ_STATUS
#define CSI2RX_REG_IRQ_MASK(base) (base)->IRQ_MASK
#define CSI2RX_REG_ULPS_STATUS(base) (base)->ULPS_STATUS
#define CSI2RX_REG_PPI_ERRSOT_HS(base) (base)->PPI_ERRSOT_HS
#define CSI2RX_REG_PPI_ERRSOTSYNC_HS(base) (base)->PPI_ERRSOTSYNC_HS
#define CSI2RX_REG_PPI_ERRESC(base) (base)->PPI_ERRESC
#define CSI2RX_REG_PPI_ERRSYNCESC(base) (base)->PPI_ERRSYNCESC
#define CSI2RX_REG_PPI_ERRCONTROL(base) (base)->PPI_ERRCONTROL
#define CSI2RX_REG_CFG_DISABLE_PAYLOAD_0(base) (base)->CFG_DISABLE_PAYLOAD_0
#define CSI2RX_REG_CFG_DISABLE_PAYLOAD_1(base) (base)->CFG_DISABLE_PAYLOAD_1
#define CSI2RX_REG_CFG_IGNORE_VC(base) (base)->CFG_IGNORE_VC
#define CSI2RX_REG_CFG_VID_VC(base) (base)->CFG_VID_VC
#define CSI2RX_REG_CFG_VID_P_FIFO_SEND_LEVEL(base) (base)->CFG_VID_P_FIFO_SEND_LEVEL
#define CSI2RX_REG_CFG_VID_VSYNC(base) (base)->CFG_VID_VSYNC
#define CSI2RX_REG_CFG_VID_HSYNC_FP(base) (base)->CFG_VID_HSYNC_FP
#define CSI2RX_REG_CFG_VID_HSYNC(base) (base)->CFG_VID_HSYNC
#define CSI2RX_REG_CFG_VID_HSYNC_BP(base) (base)->CFG_VID_HSYNC_BP
#else
#define CSI2RX_REG_CFG_NUM_LANES(base) (base)->CSI2RX_CFG_NUM_LANES
#define CSI2RX_REG_CFG_DISABLE_DATA_LANES(base) (base)->CSI2RX_CFG_DISABLE_DATA_LANES
#define CSI2RX_REG_BIT_ERR(base) (base)->CSI2RX_BIT_ERR
#define CSI2RX_REG_IRQ_STATUS(base) (base)->CSI2RX_IRQ_STATUS
#define CSI2RX_REG_IRQ_MASK(base) (base)->CSI2RX_IRQ_MASK
#define CSI2RX_REG_ULPS_STATUS(base) (base)->CSI2RX_ULPS_STATUS
#define CSI2RX_REG_PPI_ERRSOT_HS(base) (base)->CSI2RX_PPI_ERRSOT_HS
#define CSI2RX_REG_PPI_ERRSOTSYNC_HS(base) (base)->CSI2RX_PPI_ERRSOTSYNC_HS
#define CSI2RX_REG_PPI_ERRESC(base) (base)->CSI2RX_PPI_ERRESC
#define CSI2RX_REG_PPI_ERRSYNCESC(base) (base)->CSI2RX_PPI_ERRSYNCESC
#define CSI2RX_REG_PPI_ERRCONTROL(base) (base)->CSI2RX_PPI_ERRCONTROL
#define CSI2RX_REG_CFG_DISABLE_PAYLOAD_0(base) (base)->CSI2RX_CFG_DISABLE_PAYLOAD_0
#define CSI2RX_REG_CFG_DISABLE_PAYLOAD_1(base) (base)->CSI2RX_CFG_DISABLE_PAYLOAD_1
#define CSI2RX_REG_CFG_IGNORE_VC(base) (base)->CSI2RX_CFG_IGNORE_VC
#define CSI2RX_REG_CFG_VID_VC(base) (base)->CSI2RX_CFG_VID_VC
#define CSI2RX_REG_CFG_VID_P_FIFO_SEND_LEVEL(base) (base)->CSI2RX_CFG_VID_P_FIFO_SEND_LEVEL
#define CSI2RX_REG_CFG_VID_VSYNC(base) (base)->CSI2RX_CFG_VID_VSYNC
#define CSI2RX_REG_CFG_VID_HSYNC_FP(base) (base)->CSI2RX_CFG_VID_HSYNC_FP
#define CSI2RX_REG_CFG_VID_HSYNC(base) (base)->CSI2RX_CFG_VID_HSYNC
#define CSI2RX_REG_CFG_VID_HSYNC_BP(base) (base)->CSI2RX_CFG_VID_HSYNC_BP
#endif
#ifndef MIPI_CSI2RX_CSI2RX_CFG_NUM_LANES_csi2rx_cfg_num_lanes_MASK
#define MIPI_CSI2RX_CSI2RX_CFG_NUM_LANES_csi2rx_cfg_num_lanes_MASK MIPI_CSI2RX_CFG_NUM_LANES_CFG_NUM_LANES_MASK
#endif
#ifndef MIPI_CSI2RX_CSI2RX_IRQ_MASK_csi2rx_irq_mask_MASK
#define MIPI_CSI2RX_CSI2RX_IRQ_MASK_csi2rx_irq_mask_MASK MIPI_CSI2RX_IRQ_MASK_IRQ_MASK_MASK
#endif
/*! @brief CSI2RX data lanes. */
enum _csi2rx_data_lane
{
kCSI2RX_DataLane0 = (1U << 0U), /*!< Data lane 0. */
kCSI2RX_DataLane1 = (1U << 1U), /*!< Data lane 1. */
kCSI2RX_DataLane2 = (1U << 2U), /*!< Data lane 2. */
kCSI2RX_DataLane3 = (1U << 3U) /*!< Data lane 3. */
};
/*! @brief CSI2RX payload type. */
enum _csi2rx_payload
{
kCSI2RX_PayloadGroup0Null = (1U << 0U), /*!< NULL. */
kCSI2RX_PayloadGroup0Blank = (1U << 1U), /*!< Blank. */
kCSI2RX_PayloadGroup0Embedded = (1U << 2U), /*!< Embedded. */
kCSI2RX_PayloadGroup0YUV420_8Bit = (1U << 10U), /*!< Legacy YUV420 8 bit. */
kCSI2RX_PayloadGroup0YUV422_8Bit = (1U << 14U), /*!< YUV422 8 bit. */
kCSI2RX_PayloadGroup0YUV422_10Bit = (1U << 15U), /*!< YUV422 10 bit. */
kCSI2RX_PayloadGroup0RGB444 = (1U << 16U), /*!< RGB444. */
kCSI2RX_PayloadGroup0RGB555 = (1U << 17U), /*!< RGB555. */
kCSI2RX_PayloadGroup0RGB565 = (1U << 18U), /*!< RGB565. */
kCSI2RX_PayloadGroup0RGB666 = (1U << 19U), /*!< RGB666. */
kCSI2RX_PayloadGroup0RGB888 = (1U << 20U), /*!< RGB888. */
kCSI2RX_PayloadGroup0Raw6 = (1U << 24U), /*!< Raw 6. */
kCSI2RX_PayloadGroup0Raw7 = (1U << 25U), /*!< Raw 7. */
kCSI2RX_PayloadGroup0Raw8 = (1U << 26U), /*!< Raw 8. */
kCSI2RX_PayloadGroup0Raw10 = (1U << 27U), /*!< Raw 10. */
kCSI2RX_PayloadGroup0Raw12 = (1U << 28U), /*!< Raw 12. */
kCSI2RX_PayloadGroup0Raw14 = (1U << 29U), /*!< Raw 14. */
kCSI2RX_PayloadGroup1UserDefined1 = (1U << 0U), /*!< User defined 8-bit data type 1, 0x30. */
kCSI2RX_PayloadGroup1UserDefined2 = (1U << 1U), /*!< User defined 8-bit data type 2, 0x31. */
kCSI2RX_PayloadGroup1UserDefined3 = (1U << 2U), /*!< User defined 8-bit data type 3, 0x32. */
kCSI2RX_PayloadGroup1UserDefined4 = (1U << 3U), /*!< User defined 8-bit data type 4, 0x33. */
kCSI2RX_PayloadGroup1UserDefined5 = (1U << 4U), /*!< User defined 8-bit data type 5, 0x34. */
kCSI2RX_PayloadGroup1UserDefined6 = (1U << 5U), /*!< User defined 8-bit data type 6, 0x35. */
kCSI2RX_PayloadGroup1UserDefined7 = (1U << 6U), /*!< User defined 8-bit data type 7, 0x36. */
kCSI2RX_PayloadGroup1UserDefined8 = (1U << 7U) /*!< User defined 8-bit data type 8, 0x37. */
};
/*! @brief CSI2RX configuration. */
typedef struct _csi2rx_config
{
uint8_t laneNum; /*!< Number of active lanes used for receiving data. */
uint8_t tHsSettle_EscClk; /*!< Number of rx_clk_esc clock periods for T_HS_SETTLE.
The T_HS_SETTLE should be in the range of
85ns + 6UI to 145ns + 10UI. */
} csi2rx_config_t;
/*! @brief MIPI CSI2RX bit errors. */
enum _csi2rx_bit_error
{
kCSI2RX_BitErrorEccTwoBit = (1U << 0U), /*!< ECC two bit error has occurred. */
kCSI2RX_BitErrorEccOneBit = (1U << 1U) /*!< ECC one bit error has occurred. */
};
/*! @brief MIPI CSI2RX PPI error types. */
typedef enum _csi2rx_ppi_error
{
kCSI2RX_PpiErrorSotHs, /*!< CSI2RX DPHY PPI error ErrSotHS. */
kCSI2RX_PpiErrorSotSyncHs, /*!< CSI2RX DPHY PPI error ErrSotSync_HS. */
kCSI2RX_PpiErrorEsc, /*!< CSI2RX DPHY PPI error ErrEsc. */
kCSI2RX_PpiErrorSyncEsc, /*!< CSI2RX DPHY PPI error ErrSyncEsc. */
kCSI2RX_PpiErrorControl, /*!< CSI2RX DPHY PPI error ErrControl. */
} csi2rx_ppi_error_t;
/*! @brief MIPI CSI2RX interrupt. */
enum _csi2rx_interrupt
{
kCSI2RX_InterruptCrcError = (1U << 0U), /* CRC error. */
kCSI2RX_InterruptEccOneBitError = (1U << 1U), /* One bit ECC error. */
kCSI2RX_InterruptEccTwoBitError = (1U << 2U), /* One bit ECC error. */
kCSI2RX_InterruptUlpsStatusChange = (1U << 3U), /* ULPS status changed. */
kCSI2RX_InterruptErrorSotHs = (1U << 4U), /* D-PHY ErrSotHS occurred. */
kCSI2RX_InterruptErrorSotSyncHs = (1U << 5U), /* D-PHY ErrSotSync_HS occurred. */
kCSI2RX_InterruptErrorEsc = (1U << 6U), /* D-PHY ErrEsc occurred. */
kCSI2RX_InterruptErrorSyncEsc = (1U << 7U), /* D-PHY ErrSyncEsc occurred. */
kCSI2RX_InterruptErrorControl = (1U << 8U), /* D-PHY ErrControl occurred. */
};
/*! @brief MIPI CSI2RX D-PHY ULPS state. */
enum _csi2rx_ulps_status
{
kCSI2RX_ClockLaneUlps = (1U << 0U), /*!< Clock lane is in ULPS state. */
kCSI2RX_DataLane0Ulps = (1U << 1U), /*!< Data lane 0 is in ULPS state. */
kCSI2RX_DataLane1Ulps = (1U << 2U), /*!< Data lane 1 is in ULPS state. */
kCSI2RX_DataLane2Ulps = (1U << 3U), /*!< Data lane 2 is in ULPS state. */
kCSI2RX_DataLane3Ulps = (1U << 4U), /*!< Data lane 3 is in ULPS state. */
kCSI2RX_ClockLaneMark = (1U << 5U), /*!< Clock lane is in mark state. */
kCSI2RX_DataLane0Mark = (1U << 6U), /*!< Data lane 0 is in mark state. */
kCSI2RX_DataLane1Mark = (1U << 7U), /*!< Data lane 1 is in mark state. */
kCSI2RX_DataLane2Mark = (1U << 8U), /*!< Data lane 2 is in mark state. */
kCSI2RX_DataLane3Mark = (1U << 9U), /*!< Data lane 3 is in mark state. */
};
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif
/*!
* @brief Enables and configures the CSI2RX peripheral module.
*
* @param base CSI2RX peripheral address.
* @param config CSI2RX module configuration structure.
*/
void CSI2RX_Init(MIPI_CSI2RX_Type *base, const csi2rx_config_t *config);
/*!
* @brief Disables the CSI2RX peripheral module.
*
* @param base CSI2RX peripheral address.
*/
void CSI2RX_Deinit(MIPI_CSI2RX_Type *base);
/*!
* @brief Gets the MIPI CSI2RX bit error status.
*
* This function gets the RX bit error status, the return value could be compared
* with @ref _csi2rx_bit_error. If one bit ECC error detected, the return value
* could be passed to the function @ref CSI2RX_GetEccBitErrorPosition to get the
* position of the ECC error bit.
*
* Example:
* @code
uint32_t bitError;
uint32_t bitErrorPosition;
bitError = CSI2RX_GetBitError(MIPI_CSI2RX);
if (kCSI2RX_BitErrorEccTwoBit & bitError)
{
Two bits error;
}
else if (kCSI2RX_BitErrorEccOneBit & bitError)
{
One bits error;
bitErrorPosition = CSI2RX_GetEccBitErrorPosition(bitError);
}
@endcode
*
* @param base CSI2RX peripheral address.
* @return The RX bit error status.
*/
static inline uint32_t CSI2RX_GetBitError(MIPI_CSI2RX_Type *base)
{
return CSI2RX_REG_BIT_ERR(base);
}
/*!
* @brief Get ECC one bit error bit position.
*
* If @ref CSI2RX_GetBitError detects ECC one bit error, this function could
* extract the error bit position from the return value of @ref CSI2RX_GetBitError.
*
* @param bitError The bit error returned by @ref CSI2RX_GetBitError.
* @return The position of error bit.
*/
static inline uint32_t CSI2RX_GetEccBitErrorPosition(uint32_t bitError)
{
return (bitError >> 2U) & 0x1FU;
}
/*!
* @brief Gets the MIPI CSI2RX D-PHY ULPS status.
*
* Example to check whether data lane 0 is in ULPS status.
* @code
uint32_t status = CSI2RX_GetUlpsStatus(MIPI_CSI2RX);
if (kCSI2RX_DataLane0Ulps & status)
{
Data lane 0 is in ULPS status.
}
@endcode
*
* @param base CSI2RX peripheral address.
* @return The MIPI CSI2RX D-PHY ULPS status, it is OR'ed value or @ref _csi2rx_ulps_status.
*/
static inline uint32_t CSI2RX_GetUlpsStatus(MIPI_CSI2RX_Type *base)
{
return CSI2RX_REG_ULPS_STATUS(base);
}
/*!
* @brief Gets the MIPI CSI2RX D-PHY PPI error lanes.
*
* This function checks the PPI error occurred on which data lanes, the returned
* value is OR'ed value of @ref csi2rx_ppi_error_t. For example, if the ErrSotHS
* is detected, to check the ErrSotHS occurred on which data lanes, use like this:
*
* @code
uint32_t errorDataLanes = CSI2RX_GetPpiErrorDataLanes(MIPI_CSI2RX, kCSI2RX_PpiErrorSotHs);
if (kCSI2RX_DataLane0 & errorDataLanes)
{
ErrSotHS occurred on data lane 0.
}
if (kCSI2RX_DataLane1 & errorDataLanes)
{
ErrSotHS occurred on data lane 1.
}
@endcode
*
* @param base CSI2RX peripheral address.
* @param errorType What kind of error to check.
* @return The data lane mask that error @p errorType occurred.
*/
static inline uint32_t CSI2RX_GetPpiErrorDataLanes(MIPI_CSI2RX_Type *base, csi2rx_ppi_error_t errorType)
{
uint32_t errorLanes;
if (kCSI2RX_PpiErrorSotHs == errorType)
{
errorLanes = CSI2RX_REG_PPI_ERRSOT_HS(base);
}
else if (kCSI2RX_PpiErrorSotSyncHs == errorType)
{
errorLanes = CSI2RX_REG_PPI_ERRSOTSYNC_HS(base);
}
else if (kCSI2RX_PpiErrorEsc == errorType)
{
errorLanes = CSI2RX_REG_PPI_ERRESC(base);
}
else if (kCSI2RX_PpiErrorSyncEsc == errorType)
{
errorLanes = CSI2RX_REG_PPI_ERRSYNCESC(base);
}
else
{
errorLanes = CSI2RX_REG_PPI_ERRCONTROL(base);
}
return errorLanes;
}
/*!
* @brief Enable the MIPI CSI2RX interrupts.
*
* This function enables the MIPI CSI2RX interrupts. The interrupts to enable
* are passed in as an OR'ed value of @ref _csi2rx_interrupt. For example, to enable
* one bit and two bit ECC error interrupts, use like this:
*
* @code
CSI2RX_EnableInterrupts(MIPI_CSI2RX, kCSI2RX_InterruptEccOneBitError | kCSI2RX_InterruptEccTwoBitError);
@endcode
*
* @param base CSI2RX peripheral address.
* @param mask OR'ed value of @ref _csi2rx_interrupt.
*/
static inline void CSI2RX_EnableInterrupts(MIPI_CSI2RX_Type *base, uint32_t mask)
{
CSI2RX_REG_IRQ_MASK(base) &= ~mask;
}
/*!
* @brief Disable the MIPI CSI2RX interrupts.
*
* This function disables the MIPI CSI2RX interrupts. The interrupts to disable
* are passed in as an OR'ed value of @ref _csi2rx_interrupt. For example, to disable
* one bit and two bit ECC error interrupts, use like this:
*
* @code
CSI2RX_DisableInterrupts(MIPI_CSI2RX, kCSI2RX_InterruptEccOneBitError | kCSI2RX_InterruptEccTwoBitError);
@endcode
*
* @param base CSI2RX peripheral address.
* @param mask OR'ed value of @ref _csi2rx_interrupt.
*/
static inline void CSI2RX_DisableInterrupts(MIPI_CSI2RX_Type *base, uint32_t mask)
{
CSI2RX_REG_IRQ_MASK(base) |= mask;
}
/*!
* @brief Get the MIPI CSI2RX interrupt status.
*
* This function returns the MIPI CSI2RX interrupts status as an OR'ed value
* of @ref _csi2rx_interrupt.
*
* @param base CSI2RX peripheral address.
* @return OR'ed value of @ref _csi2rx_interrupt.
*/
static inline uint32_t CSI2RX_GetInterruptStatus(MIPI_CSI2RX_Type *base)
{
return CSI2RX_REG_IRQ_STATUS(base);
}
#if defined(__cplusplus)
}
#endif
/*!
*@}
*/
#endif /* _FSL_MIPI_CSI2RX_H_ */