rt-thread-official/bsp/imxrt/libraries/MIMXRT1170/MIMXRT1176/drivers/fsl_flexcan.c

4649 lines
172 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2022 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_flexcan.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexcan"
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
#define RXINTERMISSION (CAN_DBG1_CFSM(0x2f))
#define TXINTERMISSION (CAN_DBG1_CFSM(0x14))
#define BUSIDLE (CAN_DBG1_CFSM(0x02))
#define CBN_VALUE3 (CAN_DBG1_CBN(0x03))
#define DELAY_BUSIDLE (200)
#endif
/* According to CiA doc 1301 v1.0.0, specified data/nominal phase sample point postion for CAN FD at 80 MHz. */
#define IDEAL_DATA_SP_1 (800U)
#define IDEAL_DATA_SP_2 (750U)
#define IDEAL_DATA_SP_3 (700U)
#define IDEAL_DATA_SP_4 (625U)
#define IDEAL_NOMINAL_SP (800U)
/* According to CiA doc 301 v4.2.0 and previous version. */
#define IDEAL_SP_LOW (750U)
#define IDEAL_SP_MID (800U)
#define IDEAL_SP_HIGH (875U)
#define IDEAL_SP_FACTOR (1000U)
/* Define the max value of bit timing segments when use different timing register. */
#define MAX_PROPSEG (CAN_CTRL1_PROPSEG_MASK >> CAN_CTRL1_PROPSEG_SHIFT)
#define MAX_PSEG1 (CAN_CTRL1_PSEG1_MASK >> CAN_CTRL1_PSEG1_SHIFT)
#define MAX_PSEG2 (CAN_CTRL1_PSEG2_MASK >> CAN_CTRL1_PSEG2_SHIFT)
#define MAX_RJW (CAN_CTRL1_RJW_MASK >> CAN_CTRL1_RJW_SHIFT)
#define MAX_PRESDIV (CAN_CTRL1_PRESDIV_MASK >> CAN_CTRL1_PRESDIV_SHIFT)
#define CTRL1_MAX_TIME_QUANTA (1U + MAX_PROPSEG + 1U + MAX_PSEG1 + 1U + MAX_PSEG2 + 1U)
#define CTRL1_MIN_TIME_QUANTA (8U)
#define MAX_EPROPSEG (CAN_CBT_EPROPSEG_MASK >> CAN_CBT_EPROPSEG_SHIFT)
#define MAX_EPSEG1 (CAN_CBT_EPSEG1_MASK >> CAN_CBT_EPSEG1_SHIFT)
#define MAX_EPSEG2 (CAN_CBT_EPSEG2_MASK >> CAN_CBT_EPSEG2_SHIFT)
#define MAX_ERJW (CAN_CBT_ERJW_MASK >> CAN_CBT_ERJW_SHIFT)
#define MAX_EPRESDIV (CAN_CBT_EPRESDIV_MASK >> CAN_CBT_EPRESDIV_SHIFT)
#define CBT_MAX_TIME_QUANTA (1U + MAX_EPROPSEG + 1U + MAX_EPSEG1 + 1U + MAX_EPSEG2 + 1U)
#define CBT_MIN_TIME_QUANTA (8U)
#define MAX_FPROPSEG (CAN_FDCBT_FPROPSEG_MASK >> CAN_FDCBT_FPROPSEG_SHIFT)
#define MAX_FPSEG1 (CAN_FDCBT_FPSEG1_MASK >> CAN_FDCBT_FPSEG1_SHIFT)
#define MAX_FPSEG2 (CAN_FDCBT_FPSEG2_MASK >> CAN_FDCBT_FPSEG2_SHIFT)
#define MAX_FRJW (CAN_FDCBT_FRJW_MASK >> CAN_FDCBT_FRJW_SHIFT)
#define MAX_FPRESDIV (CAN_FDCBT_FPRESDIV_MASK >> CAN_FDCBT_FPRESDIV_SHIFT)
#define FDCBT_MAX_TIME_QUANTA (1U + MAX_FPROPSEG + 0U + MAX_FPSEG1 + 1U + MAX_FPSEG2 + 1U)
#define FDCBT_MIN_TIME_QUANTA (5U)
#define MAX_TDCOFF ((uint32_t)CAN_FDCTRL_TDCOFF_MASK >> CAN_FDCTRL_TDCOFF_SHIFT)
#define MAX_NTSEG1 (CAN_ENCBT_NTSEG1_MASK >> CAN_ENCBT_NTSEG1_SHIFT)
#define MAX_NTSEG2 (CAN_ENCBT_NTSEG2_MASK >> CAN_ENCBT_NTSEG2_SHIFT)
#define MAX_NRJW (CAN_ENCBT_NRJW_MASK >> CAN_ENCBT_NRJW_SHIFT)
#define MAX_ENPRESDIV (CAN_EPRS_ENPRESDIV_MASK >> CAN_EPRS_ENPRESDIV_SHIFT)
#define ENCBT_MAX_TIME_QUANTA (1U + MAX_NTSEG1 + 1U + MAX_NTSEG2 + 1U)
#define ENCBT_MIN_TIME_QUANTA (8U)
#define MAX_DTSEG1 (CAN_EDCBT_DTSEG1_MASK >> CAN_EDCBT_DTSEG1_SHIFT)
#define MAX_DTSEG2 (CAN_EDCBT_DTSEG2_MASK >> CAN_EDCBT_DTSEG2_SHIFT)
#define MAX_DRJW (CAN_EDCBT_DRJW_MASK >> CAN_EDCBT_DRJW_SHIFT)
#define MAX_EDPRESDIV (CAN_EPRS_EDPRESDIV_MASK >> CAN_EPRS_EDPRESDIV_SHIFT)
#define EDCBT_MAX_TIME_QUANTA (1U + MAX_DTSEG1 + 1U + MAX_DTSEG2 + 1U)
#define EDCBT_MIN_TIME_QUANTA (5U)
#define MAX_ETDCOFF ((uint32_t)CAN_ETDC_ETDCOFF_MASK >> CAN_ETDC_ETDCOFF_SHIFT)
/* TSEG1 corresponds to the sum of xPROPSEG and xPSEG1, TSEG2 corresponds to the xPSEG2 value. */
#define MIN_TIME_SEGMENT1 (2U)
#define MIN_TIME_SEGMENT2 (2U)
/* Define maximum CAN and CAN FD bit rate supported by FLEXCAN. */
#define MAX_CANFD_BITRATE (8000000U)
#define MAX_CAN_BITRATE (1000000U)
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
#define CAN_ESR1_FLTCONF_BUSOFF CAN_ESR1_FLTCONF(2U)
#endif
/* Define the range of memory that needs to be initialized when the device has memory error detection feature. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
#define CAN_INIT_RXFIR ((uintptr_t)base + 0x4Cu)
#define CAN_INIT_MEMORY_BASE_1 (uint32_t *)((uintptr_t)base + (uintptr_t)FSL_FEATURE_FLEXCAN_INIT_MEMORY_BASE_1)
#define CAN_INIT_MEMORY_SIZE_1 FSL_FEATURE_FLEXCAN_INIT_MEMORY_SIZE_1
#define CAN_INIT_MEMORY_BASE_2 (uint32_t *)((uintptr_t)base + (uintptr_t)FSL_FEATURE_FLEXCAN_INIT_MEMORY_BASE_2)
#define CAN_INIT_MEMORY_SIZE_2 FSL_FEATURE_FLEXCAN_INIT_MEMORY_SIZE_2
#endif
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
#ifndef CAN_CLOCK_CHECK_NO_AFFECTS
/* If no define such MACRO, it mean that the CAN in current device have no clock affect issue. */
#define CAN_CLOCK_CHECK_NO_AFFECTS (true)
#endif /* CAN_CLOCK_CHECK_NO_AFFECTS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief FlexCAN Internal State. */
enum _flexcan_state
{
kFLEXCAN_StateIdle = 0x0, /*!< MB/RxFIFO idle.*/
kFLEXCAN_StateRxData = 0x1, /*!< MB receiving.*/
kFLEXCAN_StateRxRemote = 0x2, /*!< MB receiving remote reply.*/
kFLEXCAN_StateTxData = 0x3, /*!< MB transmitting.*/
kFLEXCAN_StateTxRemote = 0x4, /*!< MB transmitting remote request.*/
kFLEXCAN_StateRxFifo = 0x5, /*!< RxFIFO receiving.*/
};
/*! @brief FlexCAN message buffer CODE for Rx buffers. */
enum _flexcan_mb_code_rx
{
kFLEXCAN_RxMbInactive = 0x0, /*!< MB is not active.*/
kFLEXCAN_RxMbFull = 0x2, /*!< MB is full.*/
kFLEXCAN_RxMbEmpty = 0x4, /*!< MB is active and empty.*/
kFLEXCAN_RxMbOverrun = 0x6, /*!< MB is overwritten into a full buffer.*/
kFLEXCAN_RxMbBusy = 0x8, /*!< FlexCAN is updating the contents of the MB, The CPU must not access the MB.*/
kFLEXCAN_RxMbRanswer = 0xA, /*!< A frame was configured to recognize a Remote Request Frame and transmit a
Response Frame in return.*/
kFLEXCAN_RxMbNotUsed = 0xF, /*!< Not used.*/
};
/*! @brief FlexCAN message buffer CODE FOR Tx buffers. */
enum _flexcan_mb_code_tx
{
kFLEXCAN_TxMbInactive = 0x8, /*!< MB is not active.*/
kFLEXCAN_TxMbAbort = 0x9, /*!< MB is aborted.*/
kFLEXCAN_TxMbDataOrRemote = 0xC, /*!< MB is a TX Data Frame(when MB RTR = 0) or MB is a TX Remote Request
Frame (when MB RTR = 1).*/
kFLEXCAN_TxMbTanswer = 0xE, /*!< MB is a TX Response Request Frame from an incoming Remote Request Frame.*/
kFLEXCAN_TxMbNotUsed = 0xF, /*!< Not used.*/
};
/* Typedef for interrupt handler. */
typedef void (*flexcan_isr_t)(CAN_Type *base, flexcan_handle_t *handle);
/*******************************************************************************
* Prototypes
******************************************************************************/
#if !defined(NDEBUG)
/*!
* @brief Check if Message Buffer is occupied by Rx FIFO.
*
* This function check if Message Buffer is occupied by Rx FIFO.
*
* @param base FlexCAN peripheral base address.
* @param mbIdx The FlexCAN Message Buffer index.
* @return TRUE if the index MB is occupied by Rx FIFO, FALSE if the index MB not occupied by Rx FIFO.
*/
static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx);
#endif
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
/*!
* @brief Get the first valid Message buffer ID of give FlexCAN instance.
*
* This function is a helper function for Errata 5641 workaround.
*
* @param base FlexCAN peripheral base address.
* @return The first valid Message Buffer Number.
*/
static uint8_t FLEXCAN_GetFirstValidMb(CAN_Type *base);
#endif
/*!
* @brief Check if Message Buffer interrupt is enabled.
*
* This function check if Message Buffer interrupt is enabled.
*
* @param base FlexCAN peripheral base address.
* @param mbIdx The FlexCAN Message Buffer index.
*
* @return TRUE if the index MB interrupt mask enabled, FALSE if the index MB interrupt mask disabled.
*/
static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx);
/*!
* @brief Reset the FlexCAN Instance.
*
* Restores the FlexCAN module to reset state, notice that this function
* will set all the registers to reset state so the FlexCAN module can not work
* after calling this API.
*
* @param base FlexCAN peripheral base address.
*/
static void FLEXCAN_Reset(CAN_Type *base);
/*!
* @brief Set bit rate of FlexCAN classical CAN frame or CAN FD frame nominal phase.
*
* This function set the bit rate of classical CAN frame or CAN FD frame nominal phase base on the value of the
* parameter passed in. Users need to ensure that the timing segment values (phaseSeg1, phaseSeg2 and propSeg) match the
* clock and bit rate, if not match, the final output bit rate may not equal the bitRate_Bps value. Suggest use
* FLEXCAN_CalculateImprovedTimingValues() to get timing configuration.
*
* @param base FlexCAN peripheral base address.
* @param sourceClock_Hz Source Clock in Hz.
* @param bitRate_Bps Bit rate in Bps.
* @param timingConfig FlexCAN timingConfig.
*/
static void FLEXCAN_SetBitRate(CAN_Type *base,
uint32_t sourceClock_Hz,
uint32_t bitRate_Bps,
flexcan_timing_config_t timingConfig);
/*!
* @brief Calculates the segment values for a single bit time for classical CAN.
*
* This function use to calculates the Classical CAN segment values which will be set in CTRL1/CBT/ENCBT register.
*
* @param base FlexCAN peripheral base address.
* @param tqNum Number of time quantas per bit, range in 8 ~ 25 when use CTRL1, range in 8 ~ 129 when use CBT, range in
* 8 ~ 385 when use ENCBT. param pTimingConfig Pointer to the FlexCAN timing configuration structure.
*/
static void FLEXCAN_GetSegments(CAN_Type *base,
uint32_t bitRate,
uint32_t tqNum,
flexcan_timing_config_t *pTimingConfig);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* @brief Set data phase bit rate of FlexCAN FD frame.
*
* This function set the data phase bit rate of CAN FD frame base on the value of the parameter
* passed in. Users need to ensure that the timing segment values (fphaseSeg1, fphaseSeg2 and fpropSeg) match the clock
* and bit rate, if not match, the final output bit rate may not equal the bitRateFD value. Suggest use
* FLEXCAN_FDCalculateImprovedTimingValues() to get timing configuration.
*
*
* @param base FlexCAN peripheral base address.
* @param sourceClock_Hz Source Clock in Hz.
* @param bitRateFD_Bps FD frame data phase bit rate in Bps.
* @param timingConfig FlexCAN timingConfig.
*/
static void FLEXCAN_SetFDBitRate(CAN_Type *base,
uint32_t sourceClock_Hz,
uint32_t bitRateFD_Bps,
flexcan_timing_config_t timingConfig);
/*!
* @brief Get Mailbox offset number by dword.
*
* This function gets the offset number of the specified mailbox.
* Mailbox is not consecutive between memory regions when payload is not 8 bytes
* so need to calculate the specified mailbox address.
* For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes
* payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword
* after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.
*
* @param base FlexCAN peripheral base address.
* @param mbIdx Mailbox index.
*/
static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx);
/*!
* @brief Calculates the segment values for a single bit time for CAN FD data phase.
*
* This function use to calculates the CAN FD data phase segment values which will be set in CFDCBT/EDCBT
* register.
*
* @param bitRateFD Data phase bit rate
* @param tqNum Number of time quanta per bit
* @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
*/
static void FLEXCAN_FDGetSegments(uint32_t bitRateFD, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig);
/*!
* @brief Calculates the improved timing values by specific bit rate for CAN FD nominal phase.
*
* This function use to calculates the CAN FD nominal phase timing values according to the given nominal phase bit rate.
* The Calculated timing values will be set in CBT/ENCBT registers. The calculation is based on the recommendation of
* the CiA 1301 v1.0.0 document.
*
* @param bitRate The CAN FD nominal phase speed in bps defined by user, should be less than or equal to 1Mbps.
* @param sourceClock_Hz The Source clock frequency in Hz.
* @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
*
* @return TRUE if timing configuration found, FALSE if failed to find configuration.
*/
static bool FLEXCAN_CalculateImprovedNominalTimingValues(uint32_t bitRate,
uint32_t sourceClock_Hz,
flexcan_timing_config_t *pTimingConfig);
#endif
/*!
* @brief Check unhandle interrupt events
*
* @param base FlexCAN peripheral base address.
* @return TRUE if unhandled interrupt action exist, FALSE if no unhandlered interrupt action exist.
*/
static bool FLEXCAN_CheckUnhandleInterruptEvents(CAN_Type *base);
/*!
* @brief Sub Handler Data Trasfered Events
*
* @param base FlexCAN peripheral base address.
* @param handle FlexCAN handle pointer.
* @param pResult Pointer to the Handle result.
*
* @return the status after handle each data transfered event.
*/
static status_t FLEXCAN_SubHandlerForDataTransfered(CAN_Type *base, flexcan_handle_t *handle, uint32_t *pResult);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
/*!
* @brief Sub Handler Ehanced Rx FIFO event
*
* @param base FlexCAN peripheral base address.
* @param handle FlexCAN handle pointer.
* @param flags FlexCAN interrupt flags.
*
* @return the status after handle Ehanced Rx FIFO event.
*/
static status_t FLEXCAN_SubHandlerForEhancedRxFifo(CAN_Type *base, flexcan_handle_t *handle, uint64_t flags);
#endif
/*******************************************************************************
* Variables
******************************************************************************/
/* Array of FlexCAN peripheral base address. */
static CAN_Type *const s_flexcanBases[] = CAN_BASE_PTRS;
/* Array of FlexCAN IRQ number. */
static const IRQn_Type s_flexcanRxWarningIRQ[] = CAN_Rx_Warning_IRQS;
static const IRQn_Type s_flexcanTxWarningIRQ[] = CAN_Tx_Warning_IRQS;
static const IRQn_Type s_flexcanWakeUpIRQ[] = CAN_Wake_Up_IRQS;
static const IRQn_Type s_flexcanErrorIRQ[] = CAN_Error_IRQS;
static const IRQn_Type s_flexcanBusOffIRQ[] = CAN_Bus_Off_IRQS;
static const IRQn_Type s_flexcanMbIRQ[] = CAN_ORed_Message_buffer_IRQS;
/* Array of FlexCAN handle. */
static flexcan_handle_t *s_flexcanHandle[ARRAY_SIZE(s_flexcanBases)];
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Array of FlexCAN clock name. */
static const clock_ip_name_t s_flexcanClock[] = FLEXCAN_CLOCKS;
#if defined(FLEXCAN_PERIPH_CLOCKS)
/* Array of FlexCAN serial clock name. */
static const clock_ip_name_t s_flexcanPeriphClock[] = FLEXCAN_PERIPH_CLOCKS;
#endif /* FLEXCAN_PERIPH_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* FlexCAN ISR for transactional APIs. */
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
static flexcan_isr_t s_flexcanIsr = (flexcan_isr_t)DefaultISR;
#else
static flexcan_isr_t s_flexcanIsr;
#endif
/*******************************************************************************
* Implementation of 32-bit memset
******************************************************************************/
static void flexcan_memset(void *s, uint32_t c, size_t n)
{
size_t m;
uint32_t *ptr = s;
m = n / sizeof(*ptr);
while ((m--) != (size_t)0)
{
*ptr++ = c;
}
}
/*******************************************************************************
* Code
******************************************************************************/
/*!
* brief Get the FlexCAN instance from peripheral base address.
*
* param base FlexCAN peripheral base address.
* return FlexCAN instance.
*/
uint32_t FLEXCAN_GetInstance(CAN_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_flexcanBases); instance++)
{
if (s_flexcanBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_flexcanBases));
return instance;
}
/*!
* brief Enter FlexCAN Freeze Mode.
*
* This function makes the FlexCAN work under Freeze Mode.
*
* param base FlexCAN peripheral base address.
*/
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
void FLEXCAN_EnterFreezeMode(CAN_Type *base)
{
uint32_t u32TimeoutCount = 0U;
uint32_t u32TempMCR = 0U;
uint32_t u32TempIMASK1 = 0U;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint32_t u32TempIMASK2 = 0U;
#endif
/* Step1: set FRZ enable in MCR. */
base->MCR |= CAN_MCR_FRZ_MASK;
/* Step2: to check if MDIS bit set in MCR. if yes, clear it. */
if (0U != (base->MCR & CAN_MCR_MDIS_MASK))
{
base->MCR &= ~CAN_MCR_MDIS_MASK;
}
/* Step3: polling LPMACK. */
u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
while ((0U == (base->MCR & CAN_MCR_LPMACK_MASK)) && (u32TimeoutCount > 0U))
{
u32TimeoutCount--;
}
/* Step4: to check FLTCONF in ESR1 register */
if (0U == (base->ESR1 & CAN_ESR1_FLTCONF_BUSOFF))
{
/* Step5B: Set Halt bits. */
base->MCR |= CAN_MCR_HALT_MASK;
/* Step6B: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set, timeout need more than 178
* CAN bit length, so 20 multiply timeout is enough. */
u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT * 20U;
while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
{
u32TimeoutCount--;
}
}
else
{
/* backup MCR and IMASK register. Errata document not descript it, but we need backup for step 8A and 9A. */
u32TempMCR = base->MCR;
u32TempIMASK1 = base->IMASK1;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
u32TempIMASK2 = base->IMASK2;
#endif
/* Step5A: Set the Soft Reset bit ((SOFTRST) in the MCR.*/
base->MCR |= CAN_MCR_SOFTRST_MASK;
/* Step6A: Poll the MCR register until the Soft Reset (SOFTRST) bit is cleared. */
u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
while ((CAN_MCR_SOFTRST_MASK == (base->MCR & CAN_MCR_SOFTRST_MASK)) && (u32TimeoutCount > 0U))
{
u32TimeoutCount--;
}
/* Step7A: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set. */
u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
{
u32TimeoutCount--;
}
/* Step8A: reconfig MCR. */
base->MCR = u32TempMCR;
/* Step9A: reconfig IMASK. */
base->IMASK1 = u32TempIMASK1;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
base->IMASK2 = u32TempIMASK2;
#endif
}
}
#elif (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_8341) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_8341)
void FLEXCAN_EnterFreezeMode(CAN_Type *base)
{
uint32_t u32TimeoutCount = 0U;
uint32_t u32TempMCR = 0U;
uint32_t u32TempIMASK1 = 0U;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint32_t u32TempIMASK2 = 0U;
#endif
/* Step1: set FRZ and HALT bit enable in MCR. */
base->MCR |= CAN_MCR_FRZ_MASK;
base->MCR |= CAN_MCR_HALT_MASK;
/* Step2: to check if MDIS bit set in MCR. if yes, clear it. */
if (0U != (base->MCR & CAN_MCR_MDIS_MASK))
{
base->MCR &= ~CAN_MCR_MDIS_MASK;
}
/* Step3: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set. */
u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT * 100U;
while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
{
u32TimeoutCount--;
}
/* Step4: check whether the timeout reached. if no skip step5 to step8. */
if (0U == u32TimeoutCount)
{
/* backup MCR and IMASK register. Errata document not descript it, but we need backup for step 8A and 9A. */
u32TempMCR = base->MCR;
u32TempIMASK1 = base->IMASK1;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
u32TempIMASK2 = base->IMASK2;
#endif
/* Step5: Set the Soft Reset bit ((SOFTRST) in the MCR.*/
base->MCR |= CAN_MCR_SOFTRST_MASK;
/* Step6: Poll the MCR register until the Soft Reset (SOFTRST) bit is cleared. */
while (CAN_MCR_SOFTRST_MASK == (base->MCR & CAN_MCR_SOFTRST_MASK))
{
}
/* Step7: reconfig MCR. */
base->MCR = u32TempMCR;
/* Step8: reconfig IMASK. */
base->IMASK1 = u32TempIMASK1;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
base->IMASK2 = u32TempIMASK2;
#endif
}
}
#else
void FLEXCAN_EnterFreezeMode(CAN_Type *base)
{
/* Set Freeze, Halt bits. */
base->MCR |= CAN_MCR_FRZ_MASK;
base->MCR |= CAN_MCR_HALT_MASK;
while (0U == (base->MCR & CAN_MCR_FRZACK_MASK))
{
}
}
#endif
/*!
* brief Exit FlexCAN Freeze Mode.
*
* This function makes the FlexCAN leave Freeze Mode.
*
* param base FlexCAN peripheral base address.
*/
void FLEXCAN_ExitFreezeMode(CAN_Type *base)
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
/* Clean FlexCAN Access With Non-Correctable Error Interrupt Flag to avoid be put in freeze mode. */
FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_FlexCanAccessNonCorrectableErrorIntFlag |
(uint64_t)kFLEXCAN_FlexCanAccessNonCorrectableErrorOverrunFlag);
#endif
/* Clear Freeze, Halt bits. */
base->MCR &= ~CAN_MCR_HALT_MASK;
base->MCR &= ~CAN_MCR_FRZ_MASK;
/* Wait until the FlexCAN Module exit freeze mode. */
while (0U != (base->MCR & CAN_MCR_FRZACK_MASK))
{
}
}
#if !defined(NDEBUG)
/*!
* brief Check if Message Buffer is occupied by Rx FIFO.
*
* This function check if Message Buffer is occupied by Rx FIFO.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN Message Buffer index.
* return TRUE if the index MB is occupied by Rx FIFO, FALSE if the index MB not occupied by Rx FIFO.
*/
static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx)
{
uint8_t lastOccupiedMb;
bool fgRet;
/* Is Rx FIFO enabled? */
if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
{
/* Get RFFN value. */
lastOccupiedMb = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
/* Calculate the number of last Message Buffer occupied by Rx FIFO. */
lastOccupiedMb = ((lastOccupiedMb + 1U) * 2U) + 5U;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
/* the first valid MB should be occupied by ERRATA 5461 or 5829. */
lastOccupiedMb += 1U;
#endif
fgRet = (mbIdx <= lastOccupiedMb);
}
else
{
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
if (0U == mbIdx)
{
fgRet = true;
}
else
#endif
{
fgRet = false;
}
}
return fgRet;
}
#endif
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
/*!
* brief Get the first valid Message buffer ID of give FlexCAN instance.
*
* This function is a helper function for Errata 5641 workaround.
*
* param base FlexCAN peripheral base address.
* return The first valid Message Buffer Number.
*/
static uint8_t FLEXCAN_GetFirstValidMb(CAN_Type *base)
{
uint8_t firstValidMbNum;
if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
{
firstValidMbNum = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
firstValidMbNum = ((firstValidMbNum + 1U) * 2U) + 6U;
}
else
{
firstValidMbNum = 0U;
}
return firstValidMbNum;
}
#endif
/*!
* brief Check if Message Buffer interrupt is enabled.
*
* This function check if Message Buffer interrupt is enabled.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN Message Buffer index.
*
* return TRUE if the index MB interrupt mask enabled, FALSE if the index MB interrupt mask disabled.
*/
static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx)
{
/* Assertion. */
assert(mbIdx < (uint8_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base));
uint32_t flag = 1U;
bool fgRet = false;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
if (mbIdx >= 32U)
{
fgRet = (0U != (base->IMASK2 & (flag << (mbIdx - 32U))));
}
else
#endif
{
fgRet = (0U != (base->IMASK1 & (flag << mbIdx)));
}
return fgRet;
}
/*!
* brief Reset the FlexCAN Instance.
*
* Restores the FlexCAN module to reset state, notice that this function
* will set all the registers to reset state so the FlexCAN module can not work
* after calling this API.
*
* param base FlexCAN peripheral base address.
*/
static void FLEXCAN_Reset(CAN_Type *base)
{
/* The module must should be first exit from low power
* mode, and then soft reset can be applied.
*/
assert(0U == (base->MCR & CAN_MCR_MDIS_MASK));
uint8_t i;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
if (0 != (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base)))
{
/* De-assert DOZE Enable Bit. */
base->MCR &= ~CAN_MCR_DOZE_MASK;
}
#endif
/* Wait until FlexCAN exit from any Low Power Mode. */
while (0U != (base->MCR & CAN_MCR_LPMACK_MASK))
{
}
/* Assert Soft Reset Signal. */
base->MCR |= CAN_MCR_SOFTRST_MASK;
/* Wait until FlexCAN reset completes. */
while (0U != (base->MCR & CAN_MCR_SOFTRST_MASK))
{
}
/* Reset MCR register. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER) && FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER)
base->MCR |= CAN_MCR_WRNEN_MASK | CAN_MCR_WAKSRC_MASK |
CAN_MCR_MAXMB((uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1U);
#else
base->MCR |=
CAN_MCR_WRNEN_MASK | CAN_MCR_MAXMB((uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1U);
#endif
/* Reset CTRL1 and CTRL2 register, default to eanble SMP feature which enable three sample point to determine the
* received bit's value of the. */
base->CTRL1 = CAN_CTRL1_SMP_MASK;
base->CTRL2 = CAN_CTRL2_TASD(0x16) | CAN_CTRL2_RRS_MASK | CAN_CTRL2_EACEN_MASK;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
/* Enable unrestricted write access to FlexCAN memory. */
base->CTRL2 |= CAN_CTRL2_WRMFRZ_MASK;
/* Do memory initialization for all FlexCAN RAM in order to have the parity bits in memory properly
updated. */
*(volatile uint32_t *)CAN_INIT_RXFIR = 0x0U;
flexcan_memset(CAN_INIT_MEMORY_BASE_1, 0, CAN_INIT_MEMORY_SIZE_1);
flexcan_memset(CAN_INIT_MEMORY_BASE_2, 0, CAN_INIT_MEMORY_SIZE_2);
/* Disable unrestricted write access to FlexCAN memory. */
base->CTRL2 &= ~CAN_CTRL2_WRMFRZ_MASK;
/* Clean all memory error flags. */
FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_AllMemoryErrorFlag);
#else
/* Only need clean all Message Buffer memory. */
flexcan_memset((void *)&base->MB[0], 0, sizeof(base->MB));
#endif
/* Clean all individual Rx Mask of Message Buffers. */
for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++)
{
base->RXIMR[i] = 0x3FFFFFFF;
}
/* Clean Global Mask of Message Buffers. */
base->RXMGMASK = 0x3FFFFFFF;
/* Clean Global Mask of Message Buffer 14. */
base->RX14MASK = 0x3FFFFFFF;
/* Clean Global Mask of Message Buffer 15. */
base->RX15MASK = 0x3FFFFFFF;
/* Clean Global Mask of Rx FIFO. */
base->RXFGMASK = 0x3FFFFFFF;
}
/*!
* brief Set bit rate of FlexCAN classical CAN frame or CAN FD frame nominal phase.
*
* This function set the bit rate of classical CAN frame or CAN FD frame nominal phase base on the value of the
* parameter passed in. Users need to ensure that the timing segment values (phaseSeg1, phaseSeg2 and propSeg) match the
* clock and bit rate, if not match, the final output bit rate may not equal the bitRate_Bps value. Suggest use
* FLEXCAN_CalculateImprovedTimingValues() to get timing configuration.
*
* param base FlexCAN peripheral base address.
* param sourceClock_Hz Source Clock in Hz.
* param bitRate_Bps Bit rate in Bps.
* param timingConfig FlexCAN timingConfig.
*/
static void FLEXCAN_SetBitRate(CAN_Type *base,
uint32_t sourceClock_Hz,
uint32_t bitRate_Bps,
flexcan_timing_config_t timingConfig)
{
/* FlexCAN classical CAN frame or CAN FD frame nominal phase timing setting formula:
* quantum = 1 + (phaseSeg1 + 1) + (phaseSeg2 + 1) + (propSeg + 1);
*/
uint32_t quantum = (1U + ((uint32_t)timingConfig.phaseSeg1 + 1U) + ((uint32_t)timingConfig.phaseSeg2 + 1U) +
((uint32_t)timingConfig.propSeg + 1U));
/* Assertion: Desired bit rate is too high. */
assert(bitRate_Bps <= 1000000U);
/* Assertion: Source clock should greater than or equal to bit rate * quantum. */
assert((bitRate_Bps * quantum) <= sourceClock_Hz);
/* Assertion: Desired bit rate is too low, the bit rate * quantum * max prescaler divider value should greater than
or equal to source clock. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
assert((bitRate_Bps * quantum * MAX_ENPRESDIV) >= sourceClock_Hz);
#else
assert((bitRate_Bps * quantum * MAX_EPRESDIV) >= sourceClock_Hz);
#endif
}
else
{
assert((bitRate_Bps * quantum * MAX_PRESDIV) >= sourceClock_Hz);
}
#else
assert((bitRate_Bps * quantum * MAX_PRESDIV) >= sourceClock_Hz);
#endif
if (quantum < (MIN_TIME_SEGMENT1 + MIN_TIME_SEGMENT2 + 1U))
{
/* No valid timing configuration. */
timingConfig.preDivider = 0U;
}
else
{
timingConfig.preDivider = (uint16_t)((sourceClock_Hz / (bitRate_Bps * quantum)) - 1U);
}
/* Update actual timing characteristic. */
FLEXCAN_SetTimingConfig(base, (const flexcan_timing_config_t *)(uintptr_t)&timingConfig);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Set data phase bit rate of FlexCAN FD frame.
*
* This function set the data phase bit rate of CAN FD frame base on the value of the parameter
* passed in. Users need to ensure that the timing segment values (fphaseSeg1, fphaseSeg2 and fpropSeg) match the clock
* and bit rate, if not match, the final output bit rate may not equal the bitRateFD value. Suggest use
* FLEXCAN_FDCalculateImprovedTimingValues() to get timing configuration.
*
*
* param base FlexCAN peripheral base address.
* param sourceClock_Hz Source Clock in Hz.
* param bitRateFD_Bps FD frame data phase bit rate in Bps.
* param timingConfig FlexCAN timingConfig.
*/
static void FLEXCAN_SetFDBitRate(CAN_Type *base,
uint32_t sourceClock_Hz,
uint32_t bitRateFD_Bps,
flexcan_timing_config_t timingConfig)
{
/* FlexCAN FD frame data phase timing setting formula:
* quantum = 1 + (fphaseSeg1 + 1) + (fphaseSeg2 + 1) + fpropSeg;
*/
uint32_t quantum = (1U + ((uint32_t)timingConfig.fphaseSeg1 + 1U) + ((uint32_t)timingConfig.fphaseSeg2 + 1U) +
(uint32_t)timingConfig.fpropSeg);
/* Assertion: Desired bit rate is too high. */
assert(bitRateFD_Bps <= 8000000U);
/* Assertion: Source clock should greater than or equal to bit rate * quantum. */
assert((bitRateFD_Bps * quantum) <= sourceClock_Hz);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* Assertion: Desired bit rate is too low, the bit rate * quantum * max prescaler divider value should greater than
or equal to source clock. */
assert((bitRateFD_Bps * quantum * MAX_EDPRESDIV) >= sourceClock_Hz);
#else
assert((bitRateFD_Bps * quantum * MAX_FPRESDIV) >= sourceClock_Hz);
#endif
if (quantum < (MIN_TIME_SEGMENT1 + MIN_TIME_SEGMENT2 + 1U))
{
/* No valid data phase timing configuration. */
timingConfig.fpreDivider = 0U;
}
else
{
timingConfig.fpreDivider = (uint16_t)((sourceClock_Hz / (bitRateFD_Bps * quantum)) - 1U);
}
/* Update actual timing characteristic. */
FLEXCAN_SetFDTimingConfig(base, (const flexcan_timing_config_t *)(uintptr_t)&timingConfig);
}
#endif
/*!
* brief Initializes a FlexCAN instance.
*
* This function initializes the FlexCAN module with user-defined settings.
* This example shows how to set up the flexcan_config_t parameters and how
* to call the FLEXCAN_Init function by passing in these parameters.
* code
* flexcan_config_t flexcanConfig;
* flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0;
* flexcanConfig.bitRate = 1000000U;
* flexcanConfig.maxMbNum = 16;
* flexcanConfig.enableLoopBack = false;
* flexcanConfig.enableSelfWakeup = false;
* flexcanConfig.enableIndividMask = false;
* flexcanConfig.disableSelfReception = false;
* flexcanConfig.enableListenOnlyMode = false;
* flexcanConfig.enableDoze = false;
* flexcanConfig.timingConfig = timingConfig;
* FLEXCAN_Init(CAN0, &flexcanConfig, 40000000UL);
* endcode
*
* param base FlexCAN peripheral base address.
* param pConfig Pointer to the user-defined configuration structure.
* param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
*/
void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz)
{
/* Assertion. */
assert(NULL != pConfig);
assert((pConfig->maxMbNum > 0U) &&
(pConfig->maxMbNum <= (uint8_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)));
assert(pConfig->bitRate > 0U);
uint32_t mcrTemp;
uint32_t ctrl1Temp;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance;
#endif
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
instance = FLEXCAN_GetInstance(base);
/* Enable FlexCAN clock. */
(void)CLOCK_EnableClock(s_flexcanClock[instance]);
/*
* Check the CAN clock in this device whether affected by Other clock gate
* If it affected, we'd better to change other clock source,
* If user insist on using that clock source, user need open these gate at same time,
* In this scene, User need to care the power consumption.
*/
assert(CAN_CLOCK_CHECK_NO_AFFECTS);
#if defined(FLEXCAN_PERIPH_CLOCKS)
/* Enable FlexCAN serial clock. */
(void)CLOCK_EnableClock(s_flexcanPeriphClock[instance]);
#endif /* FLEXCAN_PERIPH_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
#if defined(CAN_CTRL1_CLKSRC_MASK)
#if (defined(FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE) && FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE)
if (0 == FSL_FEATURE_FLEXCAN_INSTANCE_SUPPORT_ENGINE_CLK_SEL_REMOVEn(base))
#endif /* FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE */
{
/* Disable FlexCAN Module. */
FLEXCAN_Enable(base, false);
/* Protocol-Engine clock source selection, This bit must be set
* when FlexCAN Module in Disable Mode.
*/
base->CTRL1 = (kFLEXCAN_ClkSrc0 == pConfig->clkSrc) ? (base->CTRL1 & ~CAN_CTRL1_CLKSRC_MASK) :
(base->CTRL1 | CAN_CTRL1_CLKSRC_MASK);
}
#endif /* CAN_CTRL1_CLKSRC_MASK */
/* Enable FlexCAN Module for configuration. */
FLEXCAN_Enable(base, true);
/* Reset to known status. */
FLEXCAN_Reset(base);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
/* Enable to update in MCER. */
base->CTRL2 |= CAN_CTRL2_ECRWRE_MASK;
base->MECR &= ~CAN_MECR_ECRWRDIS_MASK;
/* Enable/Disable Memory Error Detection and Correction.*/
base->MECR = (pConfig->enableMemoryErrorControl) ? (base->MECR & ~CAN_MECR_ECCDIS_MASK) :
(base->MECR | CAN_MECR_ECCDIS_MASK);
/* Enable/Disable Non-Correctable Errors In FlexCAN Access Put Device In Freeze Mode. */
base->MECR = (pConfig->enableNonCorrectableErrorEnterFreeze) ? (base->MECR | CAN_MECR_NCEFAFRZ_MASK) :
(base->MECR & ~CAN_MECR_NCEFAFRZ_MASK);
/* Lock MCER register. */
base->CTRL2 &= ~CAN_CTRL2_ECRWRE_MASK;
#endif
/* Save current CTRL1 value and enable to enter Freeze mode(enabled by default). */
ctrl1Temp = base->CTRL1;
/* Save current MCR value and enable to enter Freeze mode(enabled by default). */
mcrTemp = base->MCR;
/* Enable Loop Back Mode? */
ctrl1Temp = (pConfig->enableLoopBack) ? (ctrl1Temp | CAN_CTRL1_LPB_MASK) : (ctrl1Temp & ~CAN_CTRL1_LPB_MASK);
/* Enable Timer Sync? */
ctrl1Temp = (pConfig->enableTimerSync) ? (ctrl1Temp | CAN_CTRL1_TSYN_MASK) : (ctrl1Temp & ~CAN_CTRL1_TSYN_MASK);
/* Enable Listen Only Mode? */
ctrl1Temp = (pConfig->enableListenOnlyMode) ? ctrl1Temp | CAN_CTRL1_LOM_MASK : ctrl1Temp & ~CAN_CTRL1_LOM_MASK;
#if !(defined(FSL_FEATURE_FLEXCAN_HAS_NO_SUPV_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_NO_SUPV_SUPPORT)
/* Enable Supervisor Mode? */
mcrTemp = (pConfig->enableSupervisorMode) ? mcrTemp | CAN_MCR_SUPV_MASK : mcrTemp & ~CAN_MCR_SUPV_MASK;
#endif
/* Set the maximum number of Message Buffers */
mcrTemp = (mcrTemp & ~CAN_MCR_MAXMB_MASK) | CAN_MCR_MAXMB((uint32_t)pConfig->maxMbNum - 1U);
/* Enable Self Wake Up Mode and configure the wake up source. */
mcrTemp = (pConfig->enableSelfWakeup) ? (mcrTemp | CAN_MCR_SLFWAK_MASK) : (mcrTemp & ~CAN_MCR_SLFWAK_MASK);
mcrTemp = (kFLEXCAN_WakeupSrcFiltered == pConfig->wakeupSrc) ? (mcrTemp | CAN_MCR_WAKSRC_MASK) :
(mcrTemp & ~CAN_MCR_WAKSRC_MASK);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
/* Enable Pretended Networking Mode? When Pretended Networking mode is set, Self Wake Up feature must be disabled.*/
mcrTemp = (pConfig->enablePretendedeNetworking) ? ((mcrTemp & ~CAN_MCR_SLFWAK_MASK) | CAN_MCR_PNET_EN_MASK) :
(mcrTemp & ~CAN_MCR_PNET_EN_MASK);
#endif
/* Enable Individual Rx Masking and Queue feature? */
mcrTemp = (pConfig->enableIndividMask) ? (mcrTemp | CAN_MCR_IRMQ_MASK) : (mcrTemp & ~CAN_MCR_IRMQ_MASK);
/* Disable Self Reception? */
mcrTemp = (pConfig->disableSelfReception) ? mcrTemp | CAN_MCR_SRXDIS_MASK : mcrTemp & ~CAN_MCR_SRXDIS_MASK;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base))
{
/* Enable Doze Mode? */
mcrTemp = (pConfig->enableDoze) ? (mcrTemp | CAN_MCR_DOZE_MASK) : (mcrTemp & ~CAN_MCR_DOZE_MASK);
}
#endif
/* Write back CTRL1 Configuration to register. */
base->CTRL1 = ctrl1Temp;
/* Write back MCR Configuration to register. */
base->MCR = mcrTemp;
/* Bit Rate Configuration.*/
FLEXCAN_SetBitRate(base, sourceClock_Hz, pConfig->bitRate, pConfig->timingConfig);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Initializes a FlexCAN instance.
*
* This function initializes the FlexCAN module with user-defined settings.
* This example shows how to set up the flexcan_config_t parameters and how
* to call the FLEXCAN_FDInit function by passing in these parameters.
* code
* flexcan_config_t flexcanConfig;
* flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0;
* flexcanConfig.bitRate = 1000000U;
* flexcanConfig.bitRateFD = 2000000U;
* flexcanConfig.maxMbNum = 16;
* flexcanConfig.enableLoopBack = false;
* flexcanConfig.enableSelfWakeup = false;
* flexcanConfig.enableIndividMask = false;
* flexcanConfig.disableSelfReception = false;
* flexcanConfig.enableListenOnlyMode = false;
* flexcanConfig.enableDoze = false;
* flexcanConfig.timingConfig = timingConfig;
* FLEXCAN_FDInit(CAN0, &flexcanConfig, 80000000UL, kFLEXCAN_16BperMB, true);
* endcode
*
* param base FlexCAN peripheral base address.
* param pConfig Pointer to the user-defined configuration structure.
* param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
* param dataSize FlexCAN Message Buffer payload size. The actual transmitted or received CAN FD frame data size needs
* to be less than or equal to this value.
* param brs True if bit rate switch is enabled in FD mode.
*/
void FLEXCAN_FDInit(
CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs)
{
assert((uint32_t)dataSize <= 3U);
assert(((pConfig->bitRate < pConfig->bitRateFD) && brs) || ((pConfig->bitRate == pConfig->bitRateFD) && (!brs)));
uint32_t fdctrl = 0U;
/* Initialization of classical CAN. */
FLEXCAN_Init(base, pConfig, sourceClock_Hz);
/* Extra bit rate setting for CAN FD data phase. */
FLEXCAN_SetFDBitRate(base, sourceClock_Hz, pConfig->bitRateFD, pConfig->timingConfig);
/* read FDCTRL register. */
fdctrl = base->FDCTRL;
/* Enable FD operation and set bit rate switch. */
if (brs)
{
fdctrl |= CAN_FDCTRL_FDRATE_MASK;
}
else
{
fdctrl &= ~CAN_FDCTRL_FDRATE_MASK;
}
/* Before use "|=" operation for multi-bits field, CPU should clean previous Setting. */
fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR0_MASK) | CAN_FDCTRL_MBDSR0(dataSize);
#if defined(CAN_FDCTRL_MBDSR1_MASK)
fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR1_MASK) | CAN_FDCTRL_MBDSR1(dataSize);
#endif
#if defined(CAN_FDCTRL_MBDSR2_MASK)
fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR2_MASK) | CAN_FDCTRL_MBDSR2(dataSize);
#endif
#if defined(CAN_FDCTRL_MBDSR3_MASK)
fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR3_MASK) | CAN_FDCTRL_MBDSR3(dataSize);
#endif
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Enable CAN FD operation. */
base->MCR |= CAN_MCR_FDEN_MASK;
/* Clear SMP bit when CAN FD is enabled (CAN FD only can use one regular sample point plus one optional secondary
* sampling point). */
base->CTRL1 &= ~CAN_CTRL1_SMP_MASK;
if (brs && !(pConfig->enableLoopBack))
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* The TDC offset should be configured as shown in this equation : offset = DTSEG1 + 2 */
if (((uint32_t)pConfig->timingConfig.fphaseSeg1 + pConfig->timingConfig.fpropSeg + 2U) *
(pConfig->timingConfig.fpreDivider + 1U) <
MAX_ETDCOFF)
{
base->ETDC =
CAN_ETDC_ETDCEN_MASK | CAN_ETDC_TDMDIS(!pConfig->enableTransceiverDelayMeasure) |
CAN_ETDC_ETDCOFF(((uint32_t)pConfig->timingConfig.fphaseSeg1 + pConfig->timingConfig.fpropSeg + 2U) *
(pConfig->timingConfig.fpreDivider + 1U));
}
else
{
/* Enable the Transceiver Delay Compensation */
base->ETDC = CAN_ETDC_ETDCEN_MASK | CAN_ETDC_TDMDIS(!pConfig->enableTransceiverDelayMeasure) |
CAN_ETDC_ETDCOFF(MAX_ETDCOFF);
}
#else
/* The TDC offset should be configured as shown in this equation : offset = PSEG1 + PROPSEG + 2 */
if (((uint32_t)pConfig->timingConfig.fphaseSeg1 + pConfig->timingConfig.fpropSeg + 2U) *
(pConfig->timingConfig.fpreDivider + 1U) <
MAX_TDCOFF)
{
fdctrl =
(fdctrl & ~CAN_FDCTRL_TDCOFF_MASK) |
CAN_FDCTRL_TDCOFF(((uint32_t)pConfig->timingConfig.fphaseSeg1 + pConfig->timingConfig.fpropSeg + 2U) *
(pConfig->timingConfig.fpreDivider + 1U));
}
else
{
fdctrl = (fdctrl & ~CAN_FDCTRL_TDCOFF_MASK) | CAN_FDCTRL_TDCOFF(MAX_TDCOFF);
}
/* Enable the Transceiver Delay Compensation */
fdctrl = (fdctrl & ~CAN_FDCTRL_TDCEN_MASK) | CAN_FDCTRL_TDCEN_MASK;
#endif
}
/* update the FDCTL register. */
base->FDCTRL = fdctrl;
/* Enable CAN FD ISO mode by default. */
base->CTRL2 |= CAN_CTRL2_ISOCANFDEN_MASK;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#endif
/*!
* brief De-initializes a FlexCAN instance.
*
* This function disables the FlexCAN module clock and sets all register values
* to the reset value.
*
* param base FlexCAN peripheral base address.
*/
void FLEXCAN_Deinit(CAN_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance;
#endif
/* Reset all Register Contents. */
FLEXCAN_Reset(base);
/* Disable FlexCAN module. */
FLEXCAN_Enable(base, false);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
instance = FLEXCAN_GetInstance(base);
#if defined(FLEXCAN_PERIPH_CLOCKS)
/* Disable FlexCAN serial clock. */
(void)CLOCK_DisableClock(s_flexcanPeriphClock[instance]);
#endif /* FLEXCAN_PERIPH_CLOCKS */
/* Disable FlexCAN clock. */
(void)CLOCK_DisableClock(s_flexcanClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Gets the default configuration structure.
*
* This function initializes the FlexCAN configuration structure to default values. The default
* values are as follows.
* flexcanConfig->clkSrc = kFLEXCAN_ClkSrc0;
* flexcanConfig->bitRate = 1000000U;
* flexcanConfig->bitRateFD = 2000000U;
* flexcanConfig->maxMbNum = 16;
* flexcanConfig->enableLoopBack = false;
* flexcanConfig->enableSelfWakeup = false;
* flexcanConfig->enableIndividMask = false;
* flexcanConfig->disableSelfReception = false;
* flexcanConfig->enableListenOnlyMode = false;
* flexcanConfig->enableDoze = false;
* flexcanConfig->enablePretendedeNetworking = false;
* flexcanConfig->enableMemoryErrorControl = true;
* flexcanConfig->enableNonCorrectableErrorEnterFreeze = true;
* flexcanConfig->enableTransceiverDelayMeasure = true;
* flexcanConfig.timingConfig = timingConfig;
*
* param pConfig Pointer to the FlexCAN configuration structure.
*/
void FLEXCAN_GetDefaultConfig(flexcan_config_t *pConfig)
{
/* Assertion. */
assert(NULL != pConfig);
/* Initializes the configure structure to zero. */
(void)memset(pConfig, 0, sizeof(*pConfig));
/* Initialize FlexCAN Module config struct with default value. */
pConfig->clkSrc = kFLEXCAN_ClkSrc0;
pConfig->bitRate = 1000000U;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
pConfig->bitRateFD = 2000000U;
#endif
pConfig->maxMbNum = 16;
pConfig->enableLoopBack = false;
pConfig->enableTimerSync = true;
pConfig->enableSelfWakeup = false;
pConfig->wakeupSrc = kFLEXCAN_WakeupSrcUnfiltered;
pConfig->enableIndividMask = false;
pConfig->disableSelfReception = false;
pConfig->enableListenOnlyMode = false;
#if !(defined(FSL_FEATURE_FLEXCAN_HAS_NO_SUPV_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_NO_SUPV_SUPPORT)
pConfig->enableSupervisorMode = true;
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
pConfig->enableDoze = false;
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
pConfig->enablePretendedeNetworking = false;
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
pConfig->enableMemoryErrorControl = true;
pConfig->enableNonCorrectableErrorEnterFreeze = true;
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
pConfig->enableTransceiverDelayMeasure = true;
#endif
/* Default protocol timing configuration, nominal bit time quantum is 10 (80% SP), data bit time quantum is 5
* (60%). Suggest use FLEXCAN_CalculateImprovedTimingValues/FLEXCAN_FDCalculateImprovedTimingValues to get the
* improved timing configuration.*/
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
pConfig->timingConfig.phaseSeg1 = 1;
pConfig->timingConfig.phaseSeg2 = 1;
pConfig->timingConfig.propSeg = 4;
pConfig->timingConfig.rJumpwidth = 1;
pConfig->timingConfig.fphaseSeg1 = 1;
pConfig->timingConfig.fphaseSeg2 = 1;
pConfig->timingConfig.fpropSeg = 0;
pConfig->timingConfig.frJumpwidth = 1;
#else
pConfig->timingConfig.phaseSeg1 = 1;
pConfig->timingConfig.phaseSeg2 = 1;
pConfig->timingConfig.propSeg = 4;
pConfig->timingConfig.rJumpwidth = 1;
#endif
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
/*!
* brief Configures the FlexCAN Pretended Networking mode.
*
* This function configures the FlexCAN Pretended Networking mode with given configuration.
*
* param base FlexCAN peripheral base address.
* param pConfig Pointer to the FlexCAN Rx FIFO configuration structure.
*/
void FLEXCAN_SetPNConfig(CAN_Type *base, const flexcan_pn_config_t *pConfig)
{
/* Assertion. */
assert(NULL != pConfig);
assert(0U != pConfig->matchNum);
uint32_t pnctrl;
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
pnctrl = (pConfig->matchNum > 1U) ? CAN_CTRL1_PN_FCS(0x2U | (uint32_t)pConfig->matchSrc) :
CAN_CTRL1_PN_FCS(pConfig->matchSrc);
pnctrl |= (pConfig->enableMatch) ? (CAN_CTRL1_PN_WUMF_MSK_MASK) : 0U;
pnctrl |= (pConfig->enableTimeout) ? (CAN_CTRL1_PN_WTOF_MSK_MASK) : 0U;
pnctrl |= CAN_CTRL1_PN_NMATCH(pConfig->matchNum) | CAN_CTRL1_PN_IDFS(pConfig->idMatchMode) |
CAN_CTRL1_PN_PLFS(pConfig->dataMatchMode);
base->CTRL1_PN = pnctrl;
base->CTRL2_PN = CAN_CTRL2_PN_MATCHTO(pConfig->timeoutValue);
base->FLT_ID1 = pConfig->idLower;
base->FLT_ID2_IDMASK = pConfig->idUpper;
base->FLT_DLC = CAN_FLT_DLC_FLT_DLC_LO(pConfig->lengthLower) | CAN_FLT_DLC_FLT_DLC_HI(pConfig->lengthUpper);
base->PL1_LO = pConfig->lowerWord0;
base->PL1_HI = pConfig->lowerWord1;
base->PL2_PLMASK_LO = pConfig->upperWord0;
base->PL2_PLMASK_HI = pConfig->upperWord1;
FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_PNMatchIntFlag | (uint64_t)kFLEXCAN_PNTimeoutIntFlag);
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
/*!
* brief Reads a FlexCAN Message from Wake Up MB.
*
* This function reads a CAN message from the FlexCAN Wake up Message Buffers. There are four Wake up Message Buffers
* (WMBs) used to store incoming messages in Pretended Networking mode. The WMB index indicates the arrival order. The
* last message is stored in WMB3.
*
* param base FlexCAN peripheral base address.
* param pRxFrame Pointer to CAN message frame structure for reception.
* param mbIdx The FlexCAN Wake up Message Buffer index. Range in 0x0 ~ 0x3.
* retval kStatus_Success - Read Message from Wake up Message Buffer successfully.
* retval kStatus_Fail - Wake up Message Buffer has no valid content.
*/
status_t FLEXCAN_ReadPNWakeUpMB(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
{
/* Assertion. */
assert(NULL != pRxFrame);
assert(mbIdx <= 0x3U);
uint32_t cs_temp;
status_t status;
/* Check if Wake Up MB has valid content. */
if (CAN_WU_MTC_MCOUNTER(mbIdx) <= (base->WU_MTC & CAN_WU_MTC_MCOUNTER_MASK))
{
/* Read CS field of wake up Message Buffer. */
cs_temp = base->WMB[mbIdx].CS;
/* Store Message ID. */
pRxFrame->id = base->WMB[mbIdx].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
/* Get the message ID and format. */
pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
(uint8_t)kFLEXCAN_FrameFormatStandard;
/* Get the message type. */
pRxFrame->type =
(cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
/* Get the message length. */
pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
/* Messages received during Pretended Networking mode don't have time stamps, and the respective field in the
WMB structure must be ignored. */
pRxFrame->timestamp = 0x0;
/* Store Message Payload. */
pRxFrame->dataWord0 = base->WMB[mbIdx].D03;
pRxFrame->dataWord1 = base->WMB[mbIdx].D47;
status = kStatus_Success;
}
else
{
status = kStatus_Fail;
}
return status;
}
#endif
/*!
* brief Sets the FlexCAN classical protocol timing characteristic.
*
* This function gives user settings to classical CAN or CAN FD nominal phase timing characteristic.
* The function is for an experienced user. For less experienced users, call the FLEXCAN_GetDefaultConfig()
* and get the default timing characteristicsthe, then call FLEXCAN_Init() and fill the
* bit rate field.
*
* note Calling FLEXCAN_SetTimingConfig() overrides the bit rate set
* in FLEXCAN_Init().
*
* param base FlexCAN peripheral base address.
* param pConfig Pointer to the timing configuration structure.
*/
void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
{
/* Assertion. */
assert(NULL != pConfig);
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* Enable extended Bit Timing register ENCBT. */
base->CTRL2 |= CAN_CTRL2_BTE_MASK;
/* Updating Timing Setting according to configuration structure. */
base->EPRS = (base->EPRS & (~CAN_EPRS_ENPRESDIV_MASK)) | CAN_EPRS_ENPRESDIV(pConfig->preDivider);
base->ENCBT = CAN_ENCBT_NRJW(pConfig->rJumpwidth) |
CAN_ENCBT_NTSEG1((uint32_t)pConfig->phaseSeg1 + pConfig->propSeg + 1U) |
CAN_ENCBT_NTSEG2(pConfig->phaseSeg2);
#else
/* On RT106x devices, a single write may be ignored, so it is necessary to read back the register value to
* determine whether the value is written successfully. */
do
{
/* Enable Bit Timing register CBT, updating Timing Setting according to configuration structure. */
base->CBT = CAN_CBT_BTF_MASK | CAN_CBT_EPRESDIV(pConfig->preDivider) | CAN_CBT_ERJW(pConfig->rJumpwidth) |
CAN_CBT_EPSEG1(pConfig->phaseSeg1) | CAN_CBT_EPSEG2(pConfig->phaseSeg2) |
CAN_CBT_EPROPSEG(pConfig->propSeg);
} while ((CAN_CBT_EPRESDIV(pConfig->preDivider) | CAN_CBT_ERJW(pConfig->rJumpwidth) |
CAN_CBT_EPSEG1(pConfig->phaseSeg1) | CAN_CBT_EPSEG2(pConfig->phaseSeg2) |
CAN_CBT_EPROPSEG(pConfig->propSeg)) !=
(base->CBT & (CAN_CBT_EPRESDIV_MASK | CAN_CBT_ERJW_MASK | CAN_CBT_EPSEG1_MASK | CAN_CBT_EPSEG2_MASK |
CAN_CBT_EPROPSEG_MASK)));
#endif
}
else
{
/* Cleaning previous Timing Setting. */
base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
CAN_CTRL1_PROPSEG_MASK);
/* Updating Timing Setting according to configuration structure. */
base->CTRL1 |= (CAN_CTRL1_PRESDIV(pConfig->preDivider) | CAN_CTRL1_RJW(pConfig->rJumpwidth) |
CAN_CTRL1_PSEG1(pConfig->phaseSeg1) | CAN_CTRL1_PSEG2(pConfig->phaseSeg2) |
CAN_CTRL1_PROPSEG(pConfig->propSeg));
}
#else
/* Cleaning previous Timing Setting. */
base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
CAN_CTRL1_PROPSEG_MASK);
/* Updating Timing Setting according to configuration structure. */
base->CTRL1 |= (CAN_CTRL1_PRESDIV(pConfig->preDivider) | CAN_CTRL1_RJW(pConfig->rJumpwidth) |
CAN_CTRL1_PSEG1(pConfig->phaseSeg1) | CAN_CTRL1_PSEG2(pConfig->phaseSeg2) |
CAN_CTRL1_PROPSEG(pConfig->propSeg));
#endif
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Sets the FlexCAN FD data phase timing characteristic.
*
* This function gives user settings to CAN FD data phase timing characteristic.
* The function is for an experienced user. For less experienced users, call the FLEXCAN_GetDefaultConfig()
* and get the default timing characteristicsthe, then call FLEXCAN_FDInit() and fill the
* data phase bit rate field.
*
* note Calling FLEXCAN_SetFDTimingConfig() overrides the bit rate set
* in FLEXCAN_FDInit().
*
* param base FlexCAN peripheral base address.
* param pConfig Pointer to the timing configuration structure.
*/
void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
{
/* Assertion. */
assert(NULL != pConfig);
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* Enable extended Bit Timing register EDCBT. */
base->CTRL2 |= CAN_CTRL2_BTE_MASK;
base->EPRS = (base->EPRS & (~CAN_EPRS_EDPRESDIV_MASK)) | CAN_EPRS_EDPRESDIV(pConfig->fpreDivider);
base->EDCBT = CAN_EDCBT_DRJW(pConfig->frJumpwidth) | CAN_EDCBT_DTSEG2(pConfig->fphaseSeg2) |
CAN_EDCBT_DTSEG1((uint32_t)pConfig->fphaseSeg1 + pConfig->fpropSeg);
#else
/* Enable Bit Timing register FDCBT,*/
base->CBT |= CAN_CBT_BTF_MASK;
/* On RT106x devices, a single write may be ignored, so it is necessary to read back the register value to determine
* whether the value is written successfully. */
do
{
/* Updating Timing Setting according to configuration structure. */
base->FDCBT = (CAN_FDCBT_FPRESDIV(pConfig->fpreDivider) | CAN_FDCBT_FRJW(pConfig->frJumpwidth) |
CAN_FDCBT_FPSEG1(pConfig->fphaseSeg1) | CAN_FDCBT_FPSEG2(pConfig->fphaseSeg2) |
CAN_FDCBT_FPROPSEG(pConfig->fpropSeg));
} while ((CAN_FDCBT_FPRESDIV(pConfig->fpreDivider) | CAN_FDCBT_FRJW(pConfig->frJumpwidth) |
CAN_FDCBT_FPSEG1(pConfig->fphaseSeg1) | CAN_FDCBT_FPSEG2(pConfig->fphaseSeg2) |
CAN_FDCBT_FPROPSEG(pConfig->fpropSeg)) !=
(base->FDCBT & (CAN_FDCBT_FPRESDIV_MASK | CAN_FDCBT_FRJW_MASK | CAN_FDCBT_FPSEG1_MASK |
CAN_FDCBT_FPSEG2_MASK | CAN_FDCBT_FPROPSEG_MASK)));
#endif
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#endif
/*!
* brief Sets the FlexCAN receive message buffer global mask.
*
* This function sets the global mask for the FlexCAN message buffer in a matching process.
* The configuration is only effective when the Rx individual mask is disabled in the FLEXCAN_Init().
*
* param base FlexCAN peripheral base address.
* param mask Rx Message Buffer Global Mask value.
*/
void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask)
{
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Setting Rx Message Buffer Global Mask value. */
base->RXMGMASK = mask;
base->RX14MASK = mask;
base->RX15MASK = mask;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
/*!
* brief Sets the FlexCAN receive FIFO global mask.
*
* This function sets the global mask for FlexCAN FIFO in a matching process.
*
* param base FlexCAN peripheral base address.
* param mask Rx Fifo Global Mask value.
*/
void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask)
{
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Setting Rx FIFO Global Mask value. */
base->RXFGMASK = mask;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
/*!
* brief Sets the FlexCAN receive individual mask.
*
* This function sets the individual mask for the FlexCAN matching process.
* The configuration is only effective when the Rx individual mask is enabled in the FLEXCAN_Init().
* If the Rx FIFO is disabled, the individual mask is applied to the corresponding Message Buffer.
* If the Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to
* the Rx Filter with the same index. Note that only the first 32
* individual masks can be used as the Rx FIFO filter mask.
*
* param base FlexCAN peripheral base address.
* param maskIdx The Index of individual Mask.
* param mask Rx Individual Mask value.
*/
void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask)
{
assert(maskIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Setting Rx Individual Mask value. */
base->RXIMR[maskIdx] = mask;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
/*!
* brief Configures a FlexCAN transmit message buffer.
*
* This function aborts the previous transmission, cleans the Message Buffer, and
* configures it as a Transmit Message Buffer.
*
* param base FlexCAN peripheral base address.
* param mbIdx The Message Buffer index.
* param enable Enable/disable Tx Message Buffer.
* - true: Enable Tx Message Buffer.
* - false: Disable Tx Message Buffer.
*/
void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
/* Inactivate Message Buffer. */
if (enable)
{
base->MB[mbIdx].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
}
else
{
base->MB[mbIdx].CS = 0;
}
/* Clean Message Buffer content. */
base->MB[mbIdx].ID = 0x0;
base->MB[mbIdx].WORD0 = 0x0;
base->MB[mbIdx].WORD1 = 0x0;
}
/*!
* brief Calculates the segment values for a single bit time for classical CAN.
*
* This function use to calculates the Classical CAN segment values which will be set in CTRL1/CBT/ENCBT register.
*
* param bitRate The classical CAN bit rate in bps.
* param base FlexCAN peripheral base address.
* param tqNum Number of time quantas per bit, range in 8 ~ 25 when use CTRL1, range in 8 ~ 129 when use CBT, range in
* 8 ~ 385 when use ENCBT. param pTimingConfig Pointer to the FlexCAN timing configuration structure.
*/
static void FLEXCAN_GetSegments(CAN_Type *base,
uint32_t bitRate,
uint32_t tqNum,
flexcan_timing_config_t *pTimingConfig)
{
uint32_t ideal_sp;
uint32_t seg1Max, seg2Max, proSegMax, sjwMAX;
uint32_t seg1Temp;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* Maximum value allowed in ENCBT register. */
seg1Max = MAX_NTSEG2 + 1U;
proSegMax = MAX_NTSEG1 - MAX_NTSEG2;
seg2Max = MAX_NTSEG2 + 1U;
sjwMAX = MAX_NRJW + 1U;
#else
/* Maximum value allowed in CBT register. */
seg1Max = MAX_EPSEG1 + 1U;
proSegMax = MAX_EPROPSEG + 1U;
seg2Max = MAX_EPSEG2 + 1U;
sjwMAX = MAX_ERJW + 1U;
#endif
}
else
{
/* Maximum value allowed in CTRL1 register. */
seg1Max = MAX_PSEG1 + 1U;
proSegMax = MAX_PROPSEG + 1U;
seg2Max = MAX_PSEG2 + 1U;
sjwMAX = MAX_RJW + 1U;
}
#else
/* Maximum value allowed in CTRL1 register. */
seg1Max = MAX_PSEG1 + 1U;
proSegMax = MAX_PROPSEG + 1U;
seg2Max = MAX_PSEG2 + 1U;
sjwMAX = MAX_RJW + 1U;
#endif
/* Try to find the ideal sample point, according to CiA 301 doc.*/
if (bitRate == 1000000U)
{
ideal_sp = IDEAL_SP_LOW;
}
else if (bitRate >= 800000U)
{
ideal_sp = IDEAL_SP_MID;
}
else
{
ideal_sp = IDEAL_SP_HIGH;
}
/* Calculates phaseSeg2. */
pTimingConfig->phaseSeg2 = (uint8_t)(tqNum - (tqNum * ideal_sp) / (uint32_t)IDEAL_SP_FACTOR);
if (pTimingConfig->phaseSeg2 < MIN_TIME_SEGMENT2)
{
pTimingConfig->phaseSeg2 = MIN_TIME_SEGMENT2;
}
else if (pTimingConfig->phaseSeg2 > seg2Max)
{
pTimingConfig->phaseSeg2 = (uint8_t)seg2Max;
}
else
{
; /* Intentional empty */
}
/* Calculates phaseSeg1 and propSeg and try to make phaseSeg1 equal to phaseSeg2. */
if ((tqNum - pTimingConfig->phaseSeg2 - 1U) > (seg1Max + proSegMax))
{
seg1Temp = seg1Max + proSegMax;
pTimingConfig->phaseSeg2 = (uint8_t)(tqNum - 1U - seg1Temp);
}
else
{
seg1Temp = tqNum - pTimingConfig->phaseSeg2 - 1U;
}
if (seg1Temp > (pTimingConfig->phaseSeg2 + proSegMax))
{
pTimingConfig->propSeg = (uint8_t)proSegMax;
pTimingConfig->phaseSeg1 = (uint8_t)(seg1Temp - proSegMax);
}
else if (seg1Temp > pTimingConfig->phaseSeg2)
{
pTimingConfig->propSeg = (uint8_t)(seg1Temp - pTimingConfig->phaseSeg2);
pTimingConfig->phaseSeg1 = pTimingConfig->phaseSeg2;
}
else
{
pTimingConfig->propSeg = 1U;
pTimingConfig->phaseSeg1 = pTimingConfig->phaseSeg2 - 1U;
}
/* rJumpwidth (sjw) is the minimum value of phaseSeg1 and phaseSeg2. */
pTimingConfig->rJumpwidth =
(pTimingConfig->phaseSeg1 > pTimingConfig->phaseSeg2) ? pTimingConfig->phaseSeg2 : pTimingConfig->phaseSeg1;
if (pTimingConfig->rJumpwidth > sjwMAX)
{
pTimingConfig->rJumpwidth = (uint8_t)sjwMAX;
}
pTimingConfig->phaseSeg1 -= 1U;
pTimingConfig->phaseSeg2 -= 1U;
pTimingConfig->propSeg -= 1U;
pTimingConfig->rJumpwidth -= 1U;
}
/*!
* brief Calculates the improved timing values by specific bit Rates for classical CAN.
*
* This function use to calculates the Classical CAN timing values according to the given bit rate. The Calculated
* timing values will be set in CTRL1/CBT/ENCBT register. The calculation is based on the recommendation of the CiA 301
* v4.2.0 and previous version document.
*
* param base FlexCAN peripheral base address.
* param bitRate The classical CAN speed in bps defined by user, should be less than or equal to 1Mbps.
* param sourceClock_Hz The Source clock frequency in Hz.
* param pTimingConfig Pointer to the FlexCAN timing configuration structure.
*
* return TRUE if timing configuration found, FALSE if failed to find configuration.
*/
bool FLEXCAN_CalculateImprovedTimingValues(CAN_Type *base,
uint32_t bitRate,
uint32_t sourceClock_Hz,
flexcan_timing_config_t *pTimingConfig)
{
/* Observe bit rate maximums. */
assert(bitRate <= MAX_CAN_BITRATE);
uint32_t clk;
uint32_t tqNum, tqMin, pdivMAX;
uint32_t spTemp = 1000U;
flexcan_timing_config_t configTemp = {0};
bool fgRet = false;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* Auto Improved Protocal timing for ENCBT. */
tqNum = ENCBT_MAX_TIME_QUANTA;
tqMin = ENCBT_MIN_TIME_QUANTA;
pdivMAX = MAX_ENPRESDIV;
#else
/* Auto Improved Protocal timing for CBT. */
tqNum = CBT_MAX_TIME_QUANTA;
tqMin = CBT_MIN_TIME_QUANTA;
pdivMAX = MAX_PRESDIV;
#endif
}
else
{
/* Auto Improved Protocal timing for CTRL1. */
tqNum = CTRL1_MAX_TIME_QUANTA;
tqMin = CTRL1_MIN_TIME_QUANTA;
pdivMAX = MAX_PRESDIV;
}
#else
/* Auto Improved Protocal timing for CTRL1. */
tqNum = CTRL1_MAX_TIME_QUANTA;
tqMin = CTRL1_MIN_TIME_QUANTA;
pdivMAX = MAX_PRESDIV;
#endif
do
{
clk = bitRate * tqNum;
if (clk > sourceClock_Hz)
{
continue; /* tqNum too large, clk has been exceed sourceClock_Hz. */
}
if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
{
continue; /* Non-supporting: the frequency of clock source is not divisible by target bit rate, the user
should change a divisible bit rate. */
}
configTemp.preDivider = (uint16_t)(sourceClock_Hz / clk) - 1U;
if (configTemp.preDivider > pdivMAX)
{
break; /* The frequency of source clock is too large or the bit rate is too small, the pre-divider could
not handle it. */
}
/* Calculates the best timing configuration under current tqNum. */
FLEXCAN_GetSegments(base, bitRate, tqNum, &configTemp);
/* Determine whether the calculated timing configuration can get the optimal sampling point. */
if (((((uint32_t)configTemp.phaseSeg2 + 1U) * 1000U) / tqNum) < spTemp)
{
spTemp = (((uint32_t)configTemp.phaseSeg2 + 1U) * 1000U) / tqNum;
pTimingConfig->preDivider = configTemp.preDivider;
pTimingConfig->rJumpwidth = configTemp.rJumpwidth;
pTimingConfig->phaseSeg1 = configTemp.phaseSeg1;
pTimingConfig->phaseSeg2 = configTemp.phaseSeg2;
pTimingConfig->propSeg = configTemp.propSeg;
}
fgRet = true;
} while (--tqNum >= tqMin);
return fgRet;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Get Mailbox offset number by dword.
*
* This function gets the offset number of the specified mailbox.
* Mailbox is not consecutive between memory regions when payload is not 8 bytes
* so need to calculate the specified mailbox address.
* For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes
* payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword
* after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.
*
* param base FlexCAN peripheral base address.
* param mbIdx Mailbox index.
*/
static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx)
{
uint32_t offset = 0;
uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
switch (dataSize)
{
case (uint32_t)kFLEXCAN_8BperMB:
offset = (((uint32_t)mbIdx / 32U) * 512U + ((uint32_t)mbIdx % 32U) * 16U);
break;
case (uint32_t)kFLEXCAN_16BperMB:
offset = (((uint32_t)mbIdx / 21U) * 512U + ((uint32_t)mbIdx % 21U) * 24U);
break;
case (uint32_t)kFLEXCAN_32BperMB:
offset = (((uint32_t)mbIdx / 12U) * 512U + ((uint32_t)mbIdx % 12U) * 40U);
break;
case (uint32_t)kFLEXCAN_64BperMB:
offset = (((uint32_t)mbIdx / 7U) * 512U + ((uint32_t)mbIdx % 7U) * 72U);
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
assert(false);
break;
}
/* To get the dword aligned offset, need to divide by 4. */
offset = offset / 4U;
return offset;
}
/*!
* brief Calculates the segment values for a single bit time for CAN FD data phase.
*
* This function use to calculates the CAN FD data phase segment values which will be set in CFDCBT/EDCBT
* register.
*
* param bitRateFD CAN FD data phase bit rate.
* param tqNum Number of time quanta per bit
* param pTimingConfig Pointer to the FlexCAN timing configuration structure.
*/
static void FLEXCAN_FDGetSegments(uint32_t bitRateFD, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig)
{
uint32_t ideal_sp;
uint32_t seg1Max, proSegMax, seg2Max, sjwMAX;
uint32_t seg1Temp;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* Maximum value allowed in EDCBT register. */
seg1Max = MAX_DTSEG2 + 1U;
proSegMax = MAX_DTSEG1 - MAX_DTSEG2;
seg2Max = MAX_DTSEG2 + 1U;
sjwMAX = MAX_DRJW + 1U;
#else
/* Maximum value allowed in FDCBT register. */
seg1Max = MAX_FPSEG1 + 1U;
proSegMax = MAX_FPROPSEG;
seg2Max = MAX_FPSEG2 + 1U;
sjwMAX = MAX_FRJW + 1U;
#endif
/* According to CiA doc 1301 v1.0.0, which specified data phase sample point postion for CAN FD at 80 MHz. */
if (bitRateFD <= 1000000U)
{
ideal_sp = IDEAL_DATA_SP_1;
}
else if (bitRateFD <= 2000000U)
{
ideal_sp = IDEAL_DATA_SP_2;
}
else if (bitRateFD <= 4000000U)
{
ideal_sp = IDEAL_DATA_SP_3;
}
else
{
ideal_sp = IDEAL_DATA_SP_4;
}
/* Calculates fphaseSeg2. */
pTimingConfig->fphaseSeg2 = (uint8_t)(tqNum - (tqNum * ideal_sp) / (uint32_t)IDEAL_SP_FACTOR);
if (pTimingConfig->fphaseSeg2 < MIN_TIME_SEGMENT2)
{
pTimingConfig->fphaseSeg2 = MIN_TIME_SEGMENT2;
}
else if (pTimingConfig->fphaseSeg2 > seg2Max)
{
pTimingConfig->fphaseSeg2 = (uint8_t)seg2Max;
}
else
{
; /* Intentional empty */
}
/* Calculates fphaseSeg1 and fpropSeg and try to make phaseSeg1 equal to phaseSeg2 */
if ((tqNum - pTimingConfig->fphaseSeg2 - 1U) > (seg1Max + proSegMax))
{
seg1Temp = seg1Max + proSegMax;
pTimingConfig->fphaseSeg2 = (uint8_t)(tqNum - 1U - seg1Temp);
}
else
{
seg1Temp = tqNum - pTimingConfig->fphaseSeg2 - 1U;
}
if (seg1Temp > (pTimingConfig->fphaseSeg2 + proSegMax))
{
pTimingConfig->fpropSeg = (uint8_t)proSegMax;
pTimingConfig->fphaseSeg1 = (uint8_t)(seg1Temp - proSegMax);
}
else if (seg1Temp > pTimingConfig->fphaseSeg2)
{
pTimingConfig->fpropSeg = (uint8_t)(seg1Temp - pTimingConfig->fphaseSeg2);
pTimingConfig->fphaseSeg1 = pTimingConfig->fphaseSeg2;
}
else
{
pTimingConfig->fpropSeg = 0U;
pTimingConfig->fphaseSeg1 = (uint8_t)seg1Temp;
}
/* rJumpwidth (sjw) is the minimum value of phaseSeg1 and phaseSeg2. */
pTimingConfig->frJumpwidth =
(pTimingConfig->fphaseSeg1 > pTimingConfig->fphaseSeg2) ? pTimingConfig->fphaseSeg2 : pTimingConfig->fphaseSeg1;
if (pTimingConfig->frJumpwidth > sjwMAX)
{
pTimingConfig->frJumpwidth = (uint8_t)sjwMAX;
}
pTimingConfig->fphaseSeg1 -= 1U;
pTimingConfig->fphaseSeg2 -= 1U;
pTimingConfig->frJumpwidth -= 1U;
}
/*!
* brief Calculates the improved timing values by specific bit rate for CAN FD nominal phase.
*
* This function use to calculates the CAN FD nominal phase timing values according to the given nominal phase bit rate.
* The Calculated timing values will be set in CBT/ENCBT registers. The calculation is based on the recommendation of
* the CiA 1301 v1.0.0 document.
*
* param bitRate The CAN FD nominal phase speed in bps defined by user, should be less than or equal to 1Mbps.
* param sourceClock_Hz The Source clock frequency in Hz.
* param pTimingConfig Pointer to the FlexCAN timing configuration structure.
*
* return TRUE if timing configuration found, FALSE if failed to find configuration.
*/
static bool FLEXCAN_CalculateImprovedNominalTimingValues(uint32_t bitRate,
uint32_t sourceClock_Hz,
flexcan_timing_config_t *pTimingConfig)
{
/* Observe bit rate maximums. */
assert(bitRate <= MAX_CAN_BITRATE);
uint32_t clk;
uint32_t tqNum, tqMin, pdivMAX, seg1Max, proSegMax, seg2Max, sjwMAX, seg1Temp;
uint32_t spTemp = 1000U;
flexcan_timing_config_t configTemp = {0};
bool fgRet = false;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* Auto Improved Protocal timing for ENCBT. */
tqNum = ENCBT_MAX_TIME_QUANTA;
tqMin = ENCBT_MIN_TIME_QUANTA;
pdivMAX = MAX_ENPRESDIV;
seg1Max = MAX_NTSEG2 + 1U;
proSegMax = MAX_NTSEG1 - MAX_NTSEG2;
seg2Max = MAX_NTSEG2 + 1U;
sjwMAX = MAX_NRJW + 1U;
#else
/* Auto Improved Protocal timing for CBT. */
tqNum = CBT_MAX_TIME_QUANTA;
tqMin = CBT_MIN_TIME_QUANTA;
pdivMAX = MAX_PRESDIV;
seg1Max = MAX_EPSEG1 + 1U;
proSegMax = MAX_EPROPSEG + 1U;
seg2Max = MAX_EPSEG2 + 1U;
sjwMAX = MAX_ERJW + 1U;
#endif
do
{
clk = bitRate * tqNum;
if (clk > sourceClock_Hz)
{
continue; /* tqNum too large, clk has been exceed sourceClock_Hz. */
}
if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
{
continue; /* Non-supporting: the frequency of clock source is not divisible by target bit rate, the user
should change a divisible bit rate. */
}
configTemp.preDivider = (uint16_t)(sourceClock_Hz / clk) - 1U;
if (configTemp.preDivider > pdivMAX)
{
break; /* The frequency of source clock is too large or the bit rate is too small, the pre-divider could
not handle it. */
}
/* Calculates the best timing configuration under current tqNum. */
configTemp.phaseSeg2 = (uint8_t)(tqNum - (tqNum * IDEAL_NOMINAL_SP) / (uint32_t)IDEAL_SP_FACTOR);
if (configTemp.phaseSeg2 < MIN_TIME_SEGMENT2)
{
configTemp.phaseSeg2 = MIN_TIME_SEGMENT2;
}
else if (configTemp.phaseSeg2 > seg2Max)
{
configTemp.phaseSeg2 = (uint8_t)seg2Max;
}
else
{
; /* Intentional empty */
}
/* Calculates phaseSeg1 and propSeg and try to make phaseSeg1 equal to phaseSeg2. */
if ((tqNum - configTemp.phaseSeg2 - 1U) > (seg1Max + proSegMax))
{
seg1Temp = seg1Max + proSegMax;
configTemp.phaseSeg2 = (uint8_t)(tqNum - 1U - seg1Temp);
}
else
{
seg1Temp = tqNum - configTemp.phaseSeg2 - 1U;
}
if (seg1Temp > (configTemp.phaseSeg2 + proSegMax))
{
configTemp.propSeg = (uint8_t)proSegMax;
configTemp.phaseSeg1 = (uint8_t)(seg1Temp - proSegMax);
}
else
{
configTemp.propSeg = (uint8_t)(seg1Temp - configTemp.phaseSeg2);
configTemp.phaseSeg1 = configTemp.phaseSeg2;
}
/* rJumpwidth (sjw) is the minimum value of phaseSeg1 and phaseSeg2. */
configTemp.rJumpwidth =
(configTemp.phaseSeg1 > configTemp.phaseSeg2) ? configTemp.phaseSeg2 : configTemp.phaseSeg1;
if (configTemp.rJumpwidth > sjwMAX)
{
configTemp.rJumpwidth = (uint8_t)sjwMAX;
}
configTemp.phaseSeg1 -= 1U;
configTemp.phaseSeg2 -= 1U;
configTemp.propSeg -= 1U;
configTemp.rJumpwidth -= 1U;
if (((((uint32_t)configTemp.phaseSeg2 + 1U) * 1000U) / tqNum) < spTemp)
{
spTemp = (((uint32_t)configTemp.phaseSeg2 + 1U) * 1000U) / tqNum;
pTimingConfig->preDivider = configTemp.preDivider;
pTimingConfig->rJumpwidth = configTemp.rJumpwidth;
pTimingConfig->phaseSeg1 = configTemp.phaseSeg1;
pTimingConfig->phaseSeg2 = configTemp.phaseSeg2;
pTimingConfig->propSeg = configTemp.propSeg;
}
fgRet = true;
} while (--tqNum >= tqMin);
return fgRet;
}
/*!
* brief Calculates the improved timing values by specific bit rates for CAN FD.
*
* This function use to calculates the CAN FD timing values according to the given nominal phase bit rate and data phase
* bit rate. The Calculated timing values will be set in CBT/ENCBT and FDCBT/EDCBT registers. The calculation is based
* on the recommendation of the CiA 1301 v1.0.0 document.
*
* param bitRate The CAN FD nominal phase speed in bps defined by user.
* param bitRateFD The CAN FD data phase speed in bps defined by user. Equal to bitRate means disable bit rate
* switching. param sourceClock_Hz The Source clock frequency in Hz. param pTimingConfig Pointer to the FlexCAN timing
* configuration structure.
*
* return TRUE if timing configuration found, FALSE if failed to find configuration
*/
bool FLEXCAN_FDCalculateImprovedTimingValues(CAN_Type *base,
uint32_t bitRate,
uint32_t bitRateFD,
uint32_t sourceClock_Hz,
flexcan_timing_config_t *pTimingConfig)
{
/* Observe bit rate maximums */
assert(bitRate <= MAX_CANFD_BITRATE);
assert(bitRateFD <= MAX_CANFD_BITRATE);
/* Data phase bit rate need greater or equal to nominal phase bit rate. */
assert(bitRate <= bitRateFD);
uint32_t clk;
uint32_t tqMin, pdivMAX, tqTemp;
bool fgRet = false;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
/* Auto Improved Protocal timing for EDCBT. */
tqTemp = EDCBT_MAX_TIME_QUANTA;
tqMin = EDCBT_MIN_TIME_QUANTA;
pdivMAX = MAX_EDPRESDIV;
#else
/* Auto Improved Protocal timing for FDCBT. */
tqTemp = FDCBT_MAX_TIME_QUANTA;
tqMin = FDCBT_MIN_TIME_QUANTA;
pdivMAX = MAX_FPRESDIV;
#endif
if (bitRate != bitRateFD)
{
/* To minimize errors when processing FD frames, try to get the same bit rate prescaler value for nominal phase
and data phase. */
do
{
clk = bitRateFD * tqTemp;
if (clk > sourceClock_Hz)
{
continue; /* tqTemp too large, clk x tqTemp has been exceed sourceClock_Hz. */
}
if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
{
continue; /* the frequency of clock source is not divisible by target bit rate. */
}
pTimingConfig->fpreDivider = (uint16_t)(sourceClock_Hz / clk) - 1U;
if (pTimingConfig->fpreDivider > pdivMAX)
{
break; /* The frequency of source clock is too large or the bit rate is too small, the pre-divider
could not handle it. */
}
/* Calculates the best data phase timing configuration. */
FLEXCAN_FDGetSegments(bitRateFD, tqTemp, pTimingConfig);
if (FLEXCAN_CalculateImprovedNominalTimingValues(
bitRate, sourceClock_Hz / ((uint32_t)pTimingConfig->fpreDivider + 1U), pTimingConfig))
{
fgRet = true;
if (pTimingConfig->preDivider == 0U)
{
pTimingConfig->preDivider = pTimingConfig->fpreDivider;
break;
}
else
{
pTimingConfig->preDivider =
(pTimingConfig->preDivider + 1U) * (pTimingConfig->fpreDivider + 1U) - 1U;
continue;
}
}
} while (--tqTemp >= tqMin);
}
else
{
if (FLEXCAN_CalculateImprovedNominalTimingValues(bitRate, sourceClock_Hz, pTimingConfig))
{
/* No need data phase timing configuration, data phase rate equal to nominal phase rate, user don't use Brs
feature. */
pTimingConfig->fpreDivider = 0U;
pTimingConfig->frJumpwidth = 0U;
pTimingConfig->fphaseSeg1 = 0U;
pTimingConfig->fphaseSeg2 = 0U;
pTimingConfig->fpropSeg = 0U;
fgRet = true;
}
}
return fgRet;
}
/*!
* brief Configures a FlexCAN transmit message buffer.
*
* This function aborts the previous transmission, cleans the Message Buffer, and
* configures it as a Transmit Message Buffer.
*
* param base FlexCAN peripheral base address.
* param mbIdx The Message Buffer index.
* param enable Enable/disable Tx Message Buffer.
* - true: Enable Tx Message Buffer.
* - false: Disable Tx Message Buffer.
*/
void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
uint8_t cnt = 0;
uint8_t payload_dword = 1;
uint32_t dataSize;
dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
#endif
/* Inactivate Message Buffer. */
if (enable)
{
/* Inactivate by writing CS. */
mbAddr[offset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
}
else
{
mbAddr[offset] = 0x0;
}
/* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
Bytes payload. */
for (cnt = 0; cnt < (dataSize + 1U); cnt++)
{
payload_dword *= 2U;
}
/* Clean ID. */
mbAddr[offset + 1U] = 0x0U;
/* Clean Message Buffer content, DWORD by DWORD. */
for (cnt = 0; cnt < payload_dword; cnt++)
{
mbAddr[offset + 2U + cnt] = 0x0U;
}
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif
}
#endif /* FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE */
/*!
* brief Configures a FlexCAN Receive Message Buffer.
*
* This function cleans a FlexCAN build-in Message Buffer and configures it
* as a Receive Message Buffer.
*
* param base FlexCAN peripheral base address.
* param mbIdx The Message Buffer index.
* param pRxMbConfig Pointer to the FlexCAN Message Buffer configuration structure.
* param enable Enable/disable Rx Message Buffer.
* - true: Enable Rx Message Buffer.
* - false: Disable Rx Message Buffer.
*/
void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(((NULL != pRxMbConfig) || (false == enable)));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
uint32_t cs_temp = 0;
/* Inactivate Message Buffer. */
base->MB[mbIdx].CS = 0;
/* Clean Message Buffer content. */
base->MB[mbIdx].ID = 0x0;
base->MB[mbIdx].WORD0 = 0x0;
base->MB[mbIdx].WORD1 = 0x0;
if (enable)
{
/* Setup Message Buffer ID. */
base->MB[mbIdx].ID = pRxMbConfig->id;
/* Setup Message Buffer format. */
if (kFLEXCAN_FrameFormatExtend == pRxMbConfig->format)
{
cs_temp |= CAN_CS_IDE_MASK;
}
/* Setup Message Buffer type. */
if (kFLEXCAN_FrameTypeRemote == pRxMbConfig->type)
{
cs_temp |= CAN_CS_RTR_MASK;
}
/* Activate Rx Message Buffer. */
cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
base->MB[mbIdx].CS = cs_temp;
}
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Configures a FlexCAN Receive Message Buffer.
*
* This function cleans a FlexCAN build-in Message Buffer and configures it
* as a Receive Message Buffer.
*
* param base FlexCAN peripheral base address.
* param mbIdx The Message Buffer index.
* param pRxMbConfig Pointer to the FlexCAN Message Buffer configuration structure.
* param enable Enable/disable Rx Message Buffer.
* - true: Enable Rx Message Buffer.
* - false: Disable Rx Message Buffer.
*/
void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(((NULL != pRxMbConfig) || (false == enable)));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
uint32_t cs_temp = 0;
uint8_t cnt = 0;
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
uint8_t payload_dword;
uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
/* Inactivate Message Buffer. */
mbAddr[offset] = 0U;
/* Clean Message Buffer content. */
mbAddr[offset + 1U] = 0U;
/* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
Bytes payload. */
payload_dword = (2U << dataSize);
for (cnt = 0; cnt < payload_dword; cnt++)
{
mbAddr[offset + 2U + cnt] = 0x0;
}
if (enable)
{
/* Setup Message Buffer ID. */
mbAddr[offset + 1U] = pRxMbConfig->id;
/* Setup Message Buffer format. */
if (kFLEXCAN_FrameFormatExtend == pRxMbConfig->format)
{
cs_temp |= CAN_CS_IDE_MASK;
}
/* Setup Message Buffer type. */
if (kFLEXCAN_FrameTypeRemote == pRxMbConfig->type)
{
cs_temp |= CAN_CS_RTR_MASK;
}
/* Activate Rx Message Buffer. */
cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
mbAddr[offset] = cs_temp;
}
}
#endif
/*!
* brief Configures the FlexCAN Legacy Rx FIFO.
*
* This function configures the FlexCAN Rx FIFO with given configuration.
* note Legacy Rx FIFO only can receive classic CAN message.
*
* param base FlexCAN peripheral base address.
* param pRxFifoConfig Pointer to the FlexCAN Legacy Rx FIFO configuration structure. Can be NULL when enable parameter
* is false.
* param enable Enable/disable Legacy Rx FIFO.
* - true: Enable Legacy Rx FIFO.
* - false: Disable Legacy Rx FIFO.
*/
void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *pRxFifoConfig, bool enable)
{
/* Assertion. */
assert((NULL != pRxFifoConfig) || (false == enable));
volatile uint32_t *mbAddr;
uint8_t i, j, k, rffn = 0, numMbOccupy;
uint32_t setup_mb = 0;
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
if (enable)
{
assert(pRxFifoConfig->idFilterNum <= 128U);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
/* Legacy Rx FIFO and Enhanced Rx FIFO cannot be enabled at the same time. */
assert((base->ERFCR & CAN_ERFCR_ERFEN_MASK) == 0U);
#endif
/* Get the setup_mb value. */
setup_mb = (uint8_t)((base->MCR & CAN_MCR_MAXMB_MASK) >> CAN_MCR_MAXMB_SHIFT);
setup_mb = (setup_mb < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)) ?
setup_mb :
(uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base);
/* Determine RFFN value. */
for (i = 0; i <= 0xFU; i++)
{
if ((8U * (i + 1U)) >= pRxFifoConfig->idFilterNum)
{
rffn = i;
assert(((setup_mb - 8U) - (2U * rffn)) > 0U);
base->CTRL2 = (base->CTRL2 & ~CAN_CTRL2_RFFN_MASK) | CAN_CTRL2_RFFN(rffn);
break;
}
}
/* caculate the Number of Mailboxes occupied by RX Legacy FIFO and the filter. */
numMbOccupy = 6U + (rffn + 1U) * 2U;
/* Copy ID filter table to Message Buffer Region (Fix MISRA_C-2012 Rule 18.1). */
j = 0U;
for (i = 6U; i < numMbOccupy; i++)
{
/* Get address for current mail box. */
mbAddr = &(base->MB[i].CS);
/* One Mail box contain 4U DWORD registers. */
for (k = 0; k < 4U; k++)
{
/* Fill all valid filter in the mail box occupied by filter.
* Disable unused Rx FIFO Filter, the other rest of register in the last Mail box occupied by fiter set
* as 0xffffffff.
*/
mbAddr[k] = (j < pRxFifoConfig->idFilterNum) ? (pRxFifoConfig->idFilterTable[j]) : 0xFFFFFFFFU;
/* Try to fill next filter in current Mail Box. */
j++;
}
}
/* Setup ID Fitlter Type. */
switch (pRxFifoConfig->idFilterType)
{
case kFLEXCAN_RxFifoFilterTypeA:
base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x0);
break;
case kFLEXCAN_RxFifoFilterTypeB:
base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x1);
break;
case kFLEXCAN_RxFifoFilterTypeC:
base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x2);
break;
case kFLEXCAN_RxFifoFilterTypeD:
/* All frames rejected. */
base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x3);
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
assert(false);
break;
}
/* Setting Message Reception Priority. */
base->CTRL2 = (pRxFifoConfig->priority == kFLEXCAN_RxFifoPrioHigh) ? (base->CTRL2 & ~CAN_CTRL2_MRP_MASK) :
(base->CTRL2 | CAN_CTRL2_MRP_MASK);
/* Enable Rx Message FIFO. */
base->MCR |= CAN_MCR_RFEN_MASK;
}
else
{
rffn = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
/* caculate the Number of Mailboxes occupied by RX Legacy FIFO and the filter. */
numMbOccupy = 6U + (rffn + 1U) * 2U;
/* Disable Rx Message FIFO. */
base->MCR &= ~CAN_MCR_RFEN_MASK;
/* Clean MB0 ~ MB5 and all MB occupied by ID filters (Fix MISRA_C-2012 Rule 18.1). */
for (i = 0; i < numMbOccupy; i++)
{
FLEXCAN_SetRxMbConfig(base, i, NULL, false);
}
}
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
/*!
* brief Configures the FlexCAN Enhanced Rx FIFO.
*
* This function configures the Enhanced Rx FIFO with given configuration.
* note Enhanced Rx FIFO support receive classic CAN or CAN FD messages, Legacy Rx FIFO and Enhanced Rx FIFO
* cannot be enabled at the same time.
*
* param base FlexCAN peripheral base address.
* param pConfig Pointer to the FlexCAN Enhanced Rx FIFO configuration structure. Can be NULL when enable parameter
* is false.
* param enable Enable/disable Enhanced Rx FIFO.
* - true: Enable Enhanced Rx FIFO.
* - false: Disable Enhanced Rx FIFO.
*/
void FLEXCAN_SetEnhancedRxFifoConfig(CAN_Type *base, const flexcan_enhanced_rx_fifo_config_t *pConfig, bool enable)
{
/* Assertion. */
assert((NULL != pConfig) || (false == enable));
uint32_t i;
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
if (enable)
{
/* Each pair of filter elements occupies 2 words and can consist of one extended ID filter element or two
* standard ID filter elements. */
assert((pConfig->idFilterPairNum < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO_FILTER_MAX_NUMBER) &&
(pConfig->extendIdFilterNum <= (pConfig->idFilterPairNum + 1U)));
/* The Enhanced Rx FIFO Watermark cannot be greater than the enhanced Rx FIFO size. */
assert(pConfig->fifoWatermark < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO_SIZE);
/* Legacy Rx FIFO and Enhanced Rx FIFO cannot be enabled at the same time. */
assert((base->MCR & CAN_MCR_RFEN_MASK) == 0U);
/* Enable Enhanced Rx FIFO. */
base->ERFCR = CAN_ERFCR_ERFEN_MASK;
/* Reset Enhanced Rx FIFO engine and clear flags. */
base->ERFSR |= CAN_ERFSR_ERFCLR_MASK | CAN_ERFSR_ERFUFW_MASK | CAN_ERFSR_ERFOVF_MASK | CAN_ERFSR_ERFWMI_MASK |
CAN_ERFSR_ERFDA_MASK;
/* Setting Enhanced Rx FIFO. */
base->ERFCR |= CAN_ERFCR_DMALW(pConfig->dmaPerReadLength) | CAN_ERFCR_NEXIF(pConfig->extendIdFilterNum) |
CAN_ERFCR_NFE(pConfig->idFilterPairNum) | CAN_ERFCR_ERFWM(pConfig->fifoWatermark);
/* Copy ID filter table to Enhanced Rx FIFO Filter Element registers. */
for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO_FILTER_MAX_NUMBER; i++)
{
base->ERFFEL[i] = (i < ((uint32_t)pConfig->idFilterPairNum * 2U)) ? pConfig->idFilterTable[i] : 0xFFFFFFFFU;
}
/* Setting Message Reception Priority. */
base->CTRL2 = (pConfig->priority == kFLEXCAN_RxFifoPrioHigh) ? (base->CTRL2 & ~CAN_CTRL2_MRP_MASK) :
(base->CTRL2 | CAN_CTRL2_MRP_MASK);
}
else
{
/* Disable Enhanced Rx FIFO. */
base->ERFCR &= ~CAN_ERFCR_ERFEN_MASK;
/* Clean all Enhanced Rx FIFO Filter Element registers. */
for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO_FILTER_MAX_NUMBER; i++)
{
base->ERFFEL[i] = 0xFFFFFFFFU;
}
}
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA) && FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA)
/*!
* brief Enables or disables the FlexCAN Legacy/Enhanced Rx FIFO DMA request.
*
* This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO.
*
* param base FlexCAN peripheral base address.
* param enable true to enable, false to disable.
*/
void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable)
{
if (enable)
{
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Enable FlexCAN DMA. */
base->MCR |= CAN_MCR_DMA_MASK;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
else
{
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Disable FlexCAN DMA. */
base->MCR &= ~CAN_MCR_DMA_MASK;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
}
#endif /* FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
/*!
* brief Gets the FlexCAN Memory Error Report registers status.
*
* This function gets the FlexCAN Memory Error Report registers status.
*
* param base FlexCAN peripheral base address.
* param errorStatus Pointer to FlexCAN Memory Error Report registers status structure.
*/
void FLEXCAN_GetMemoryErrorReportStatus(CAN_Type *base, flexcan_memory_error_report_status_t *errorStatus)
{
uint32_t temp;
/* Disable updates of the error report registers. */
base->MECR |= CAN_MECR_RERRDIS_MASK;
errorStatus->accessAddress = (uint16_t)(base->RERRAR & CAN_RERRAR_ERRADDR_MASK);
errorStatus->errorData = base->RERRDR;
errorStatus->errorType =
(base->RERRAR & CAN_RERRAR_NCE_MASK) == 0U ? kFLEXCAN_CorrectableError : kFLEXCAN_NonCorrectableError;
temp = (base->RERRAR & CAN_RERRAR_SAID_MASK) >> CAN_RERRAR_SAID_SHIFT;
switch (temp)
{
case (uint32_t)kFLEXCAN_MoveOutFlexCanAccess:
case (uint32_t)kFLEXCAN_MoveInAccess:
case (uint32_t)kFLEXCAN_TxArbitrationAccess:
case (uint32_t)kFLEXCAN_RxMatchingAccess:
case (uint32_t)kFLEXCAN_MoveOutHostAccess:
errorStatus->accessType = (flexcan_memory_access_type_t)temp;
break;
default:
assert(false);
break;
}
for (uint32_t i = 0; i < 4U; i++)
{
temp = (base->RERRSYNR & ((uint32_t)CAN_RERRSYNR_SYND0_MASK << (i * 8U))) >> (i * 8U);
errorStatus->byteStatus[i].byteIsRead = (base->RERRSYNR & ((uint32_t)CAN_RERRSYNR_BE0_MASK << (i * 8U))) != 0U;
switch (temp)
{
case CAN_RERRSYNR_SYND0(kFLEXCAN_NoError):
case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits0Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits1Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits2Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits3Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits4Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits0Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits1Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits2Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits3Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits4Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits5Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits6Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits7Error):
case CAN_RERRSYNR_SYND0(kFLEXCAN_AllZeroError):
case CAN_RERRSYNR_SYND0(kFLEXCAN_AllOneError):
errorStatus->byteStatus[i].bitAffected = (flexcan_byte_error_syndrome_t)temp;
break;
default:
errorStatus->byteStatus[i].bitAffected = kFLEXCAN_NonCorrectableErrors;
break;
}
}
/* Re-enable updates of the error report registers. */
base->MECR &= CAN_MECR_RERRDIS_MASK;
}
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
/*!
* FlexCAN: A frame with wrong ID or payload is transmitted into
* the CAN bus when the Message Buffer under transmission is
* either aborted or deactivated while the CAN bus is in the Bus Idle state
*
* This function to do workaround for ERR006032
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN Message Buffer index.
*/
static void FLEXCAN_ERRATA_6032(CAN_Type *base, volatile uint32_t *mbCSAddr)
{
uint32_t dbg_temp = 0U;
uint32_t u32TempCS = 0U;
uint32_t u32Timeout = DELAY_BUSIDLE;
/*disable ALL interrupts to prevent any context switching*/
uint32_t irqMask = DisableGlobalIRQ();
dbg_temp = (uint32_t)(base->DBG1);
switch (dbg_temp & CAN_DBG1_CFSM_MASK)
{
case RXINTERMISSION:
if (CBN_VALUE3 == (dbg_temp & CAN_DBG1_CBN_MASK))
{
/*wait until CFSM is different from RXINTERMISSION */
while (RXINTERMISSION == (base->DBG1 & CAN_DBG1_CFSM_MASK))
{
__NOP();
}
}
break;
case TXINTERMISSION:
if (CBN_VALUE3 == (dbg_temp & CAN_DBG1_CBN_MASK))
{
/*wait until CFSM is different from TXINTERMISSION*/
while (TXINTERMISSION == (base->DBG1 & CAN_DBG1_CFSM_MASK))
{
__NOP();
}
}
break;
default:
/* To avoid MISRA-C 2012 rule 16.4 issue. */
break;
}
/*Anyway, BUSIDLE need to delay*/
if (BUSIDLE == (base->DBG1 & CAN_DBG1_CFSM_MASK))
{
while (u32Timeout-- > 0U)
{
__NOP();
}
/*Write 0x0 into Code field of CS word.*/
u32TempCS = (uint32_t)(*mbCSAddr);
u32TempCS &= ~CAN_CS_CODE_MASK;
*mbCSAddr = u32TempCS;
}
/*restore interruption*/
EnableGlobalIRQ(irqMask);
}
#endif
/*!
* brief Writes a FlexCAN Message to the Transmit Message Buffer.
*
* This function writes a CAN Message to the specified Transmit Message Buffer
* and changes the Message Buffer state to start CAN Message transmit. After
* that the function returns immediately.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN Message Buffer index.
* param pTxFrame Pointer to CAN message frame to be sent.
* retval kStatus_Success - Write Tx Message Buffer Successfully.
* retval kStatus_Fail - Tx Message Buffer is currently in use.
*/
status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *pTxFrame)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(NULL != pTxFrame);
assert(pTxFrame->length <= 8U);
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
uint32_t cs_temp = 0;
status_t status;
/* Check if Message Buffer is available. */
if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (base->MB[mbIdx].CS & CAN_CS_CODE_MASK))
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
FLEXCAN_ERRATA_6032(base, &(base->MB[mbIdx].CS));
#endif
/* Inactive Tx Message Buffer. */
base->MB[mbIdx].CS = (base->MB[mbIdx].CS & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
/* Fill Message ID field. */
base->MB[mbIdx].ID = pTxFrame->id;
/* Fill Message Format field. */
if ((uint32_t)kFLEXCAN_FrameFormatExtend == pTxFrame->format)
{
cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
}
/* Fill Message Type field. */
if ((uint32_t)kFLEXCAN_FrameTypeRemote == pTxFrame->type)
{
cs_temp |= CAN_CS_RTR_MASK;
}
cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(pTxFrame->length);
/* Load Message Payload. */
base->MB[mbIdx].WORD0 = pTxFrame->dataWord0;
base->MB[mbIdx].WORD1 = pTxFrame->dataWord1;
/* Activate Tx Message Buffer. */
base->MB[mbIdx].CS = cs_temp;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif
status = kStatus_Success;
}
else
{
/* Tx Message Buffer is activated, return immediately. */
status = kStatus_Fail;
}
return status;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Writes a FlexCAN FD Message to the Transmit Message Buffer.
*
* This function writes a CAN FD Message to the specified Transmit Message Buffer
* and changes the Message Buffer state to start CAN FD Message transmit. After
* that the function returns immediately.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN FD Message Buffer index.
* param pTxFrame Pointer to CAN FD message frame to be sent.
* retval kStatus_Success - Write Tx Message Buffer Successfully.
* retval kStatus_Fail - Tx Message Buffer is currently in use.
*/
status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t *pTxFrame)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(NULL != pTxFrame);
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
status_t status;
uint32_t cs_temp = 0;
uint8_t cnt = 0;
uint32_t can_cs = 0;
uint8_t payload_dword = 1;
uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
#endif
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
can_cs = mbAddr[offset];
/* Check if Message Buffer is available. */
if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (can_cs & CAN_CS_CODE_MASK))
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
FLEXCAN_ERRATA_6032(base, &(mbAddr[offset]));
#endif
/* Inactive Tx Message Buffer and Fill Message ID field. */
mbAddr[offset] = (can_cs & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
mbAddr[offset + 1U] = pTxFrame->id;
/* Fill Message Format field. */
if ((uint32_t)kFLEXCAN_FrameFormatExtend == pTxFrame->format)
{
cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
}
/* Fill Message Type field. */
if ((uint32_t)kFLEXCAN_FrameTypeRemote == pTxFrame->type)
{
cs_temp |= CAN_CS_RTR_MASK;
}
cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(pTxFrame->length) | CAN_CS_EDL(1) |
CAN_CS_BRS(pTxFrame->brs);
/* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
Bytes payload. */
for (cnt = 0; cnt < (dataSize + 1U); cnt++)
{
payload_dword *= 2U;
}
/* Load Message Payload and Activate Tx Message Buffer. */
for (cnt = 0; cnt < payload_dword; cnt++)
{
mbAddr[offset + 2U + cnt] = pTxFrame->dataWord[cnt];
}
mbAddr[offset] = cs_temp;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif
status = kStatus_Success;
}
else
{
/* Tx Message Buffer is activated, return immediately. */
status = kStatus_Fail;
}
return status;
}
#endif
/*!
* brief Reads a FlexCAN Message from Receive Message Buffer.
*
* This function reads a CAN message from a specified Receive Message Buffer.
* The function fills a receive CAN message frame structure with
* just received data and activates the Message Buffer again.
* The function returns immediately.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN Message Buffer index.
* param pRxFrame Pointer to CAN message frame structure for reception.
* retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
* retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
* retval kStatus_Fail - Rx Message Buffer is empty.
*/
status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(NULL != pRxFrame);
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
uint32_t cs_temp;
uint32_t rx_code;
status_t status;
/* Read CS field of Rx Message Buffer to lock Message Buffer. */
cs_temp = base->MB[mbIdx].CS;
/* Get Rx Message Buffer Code field. */
rx_code = (cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT;
/* Check to see if Rx Message Buffer is full. */
if (((uint32_t)kFLEXCAN_RxMbFull == rx_code) || ((uint32_t)kFLEXCAN_RxMbOverrun == rx_code))
{
/* Store Message ID. */
pRxFrame->id = base->MB[mbIdx].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
/* Get the message ID and format. */
pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
(uint8_t)kFLEXCAN_FrameFormatStandard;
/* Get the message type. */
pRxFrame->type =
(cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
/* Get the message length. */
pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
/* Get the time stamp. */
pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
/* Store Message Payload. */
pRxFrame->dataWord0 = base->MB[mbIdx].WORD0;
pRxFrame->dataWord1 = base->MB[mbIdx].WORD1;
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
if ((uint32_t)kFLEXCAN_RxMbFull == rx_code)
{
status = kStatus_Success;
}
else
{
status = kStatus_FLEXCAN_RxOverflow;
}
}
else
{
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
status = kStatus_Fail;
}
return status;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Reads a FlexCAN FD Message from Receive Message Buffer.
*
* This function reads a CAN FD message from a specified Receive Message Buffer.
* The function fills a receive CAN FD message frame structure with
* just received data and activates the Message Buffer again.
* The function returns immediately.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN FD Message Buffer index.
* param pRxFrame Pointer to CAN FD message frame structure for reception.
* retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
* retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
* retval kStatus_Fail - Rx Message Buffer is empty.
*/
status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(NULL != pRxFrame);
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
status_t status;
uint32_t cs_temp;
uint8_t rx_code;
uint8_t cnt = 0;
uint32_t can_id = 0;
uint32_t dataSize;
dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
uint8_t payload_dword = 1;
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
/* Read CS field of Rx Message Buffer to lock Message Buffer. */
cs_temp = mbAddr[offset];
can_id = mbAddr[offset + 1U];
/* Get Rx Message Buffer Code field. */
rx_code = (uint8_t)((cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT);
/* Check to see if Rx Message Buffer is full. */
if (((uint8_t)kFLEXCAN_RxMbFull == rx_code) || ((uint8_t)kFLEXCAN_RxMbOverrun == rx_code))
{
/* Store Message ID. */
pRxFrame->id = can_id & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
/* Get the message ID and format. */
pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
(uint8_t)kFLEXCAN_FrameFormatStandard;
/* Get the message type. */
pRxFrame->type =
(cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
/* Get the message length. */
pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
/* Get the time stamp. */
pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
/* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
Bytes payload. */
for (cnt = 0; cnt < (dataSize + 1U); cnt++)
{
payload_dword *= 2U;
}
/* Store Message Payload. */
for (cnt = 0; cnt < payload_dword; cnt++)
{
pRxFrame->dataWord[cnt] = mbAddr[offset + 2U + cnt];
}
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
if ((uint32_t)kFLEXCAN_RxMbFull == rx_code)
{
status = kStatus_Success;
}
else
{
status = kStatus_FLEXCAN_RxOverflow;
}
}
else
{
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
status = kStatus_Fail;
}
return status;
}
#endif
/*!
* brief Reads a FlexCAN Message from Legacy Rx FIFO.
*
* This function reads a CAN message from the FlexCAN Legacy Rx FIFO.
*
* param base FlexCAN peripheral base address.
* param pRxFrame Pointer to CAN message frame structure for reception.
* retval kStatus_Success - Read Message from Rx FIFO successfully.
* retval kStatus_Fail - Rx FIFO is not enabled.
*/
status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *pRxFrame)
{
/* Assertion. */
assert(NULL != pRxFrame);
uint32_t cs_temp;
status_t status;
/* Check if Legacy Rx FIFO is Enabled. */
if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
{
/* Read CS field of Rx Message Buffer to lock Message Buffer. */
cs_temp = base->MB[0].CS;
/* Read data from Rx FIFO output port. */
/* Store Message ID. */
pRxFrame->id = base->MB[0].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
/* Get the message ID and format. */
pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
(uint8_t)kFLEXCAN_FrameFormatStandard;
/* Get the message type. */
pRxFrame->type =
(cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
/* Get the message length. */
pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
/* Get the time stamp. */
pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
/* Store Message Payload. */
pRxFrame->dataWord0 = base->MB[0].WORD0;
pRxFrame->dataWord1 = base->MB[0].WORD1;
/* Store ID Filter Hit Index. */
pRxFrame->idhit = (uint16_t)(base->RXFIR & CAN_RXFIR_IDHIT_MASK);
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
status = kStatus_Success;
}
else
{
status = kStatus_Fail;
}
return status;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
/*!
* brief Reads a FlexCAN Message from Enhanced Rx FIFO.
*
* This function reads a CAN or CAN FD message from the FlexCAN Enhanced Rx FIFO.
*
* param base FlexCAN peripheral base address.
* param pRxFrame Pointer to CAN FD message frame structure for reception.
* retval kStatus_Success - Read Message from Rx FIFO successfully.
* retval kStatus_Fail - Rx FIFO is not enabled.
*/
status_t FLEXCAN_ReadEnhancedRxFifo(CAN_Type *base, flexcan_fd_frame_t *pRxFrame)
{
/* Assertion. */
assert(NULL != pRxFrame);
status_t status;
uint32_t idHitOff;
/* Check if Enhanced Rx FIFO is Enabled. */
if (0U != (base->ERFCR & CAN_ERFCR_ERFEN_MASK))
{
/* Enhanced Rx FIFO ID HIT offset is changed dynamically according to data length code (DLC) . */
idHitOff = (DLC_LENGTH_DECODE(((flexcan_fd_frame_t *)E_RX_FIFO(base))->length) + 3U) / 4U + 3U;
/* Copy CAN FD Message from Enhanced Rx FIFO, should use the DLC value to identify the bytes that belong to the
* message which is being read. */
(void)memcpy((void *)pRxFrame, (void *)(uint32_t *)E_RX_FIFO(base), sizeof(uint32_t) * idHitOff);
pRxFrame->idhit = pRxFrame->dataWord[idHitOff - 3U];
/* Clear the unused frame data. */
for (uint32_t i = (idHitOff - 3U); i < 16U; i++)
{
pRxFrame->dataWord[i] = 0x0;
}
/* Clear data available flag to let FlexCAN know one frame has been read from the Enhanced Rx FIFO. */
base->ERFSR |= CAN_ERFSR_ERFDA_MASK;
status = kStatus_Success;
}
else
{
status = kStatus_Fail;
}
return status;
}
#endif
/*!
* brief Performs a polling send transaction on the CAN bus.
*
* note A transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param mbIdx The FlexCAN Message Buffer index.
* param pTxFrame Pointer to CAN message frame to be sent.
* retval kStatus_Success - Write Tx Message Buffer Successfully.
* retval kStatus_Fail - Tx Message Buffer is currently in use.
*/
status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pTxFrame)
{
status_t status;
/* Write Tx Message Buffer to initiate a data sending. */
if (kStatus_Success == FLEXCAN_WriteTxMb(base, mbIdx, (const flexcan_frame_t *)(uintptr_t)pTxFrame))
{
/* Wait until CAN Message send out. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64flag = 1;
while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
#else
uint32_t u32flag = 1;
while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
#endif
{
}
/* Clean Tx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
#else
FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
#endif
/*After TX MB tranfered success, update the Timestamp from MB[mbIdx].CS register*/
pTxFrame->timestamp = (uint16_t)((base->MB[mbIdx].CS & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
status = kStatus_Success;
}
else
{
status = kStatus_Fail;
}
return status;
}
/*!
* brief Performs a polling receive transaction on the CAN bus.
*
* note A transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param mbIdx The FlexCAN Message Buffer index.
* param pRxFrame Pointer to CAN message frame structure for reception.
* retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
* retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
* retval kStatus_Fail - Rx Message Buffer is empty.
*/
status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
{
/* Wait until Rx Message Buffer non-empty. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64flag = 1;
while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
#else
uint32_t u32flag = 1;
while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
#endif
{
}
/* Clean Rx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
#else
FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
#endif
/* Read Received CAN Message. */
return FLEXCAN_ReadRxMb(base, mbIdx, pRxFrame);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Performs a polling send transaction on the CAN bus.
*
* note A transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param mbIdx The FlexCAN FD Message Buffer index.
* param pTxFrame Pointer to CAN FD message frame to be sent.
* retval kStatus_Success - Write Tx Message Buffer Successfully.
* retval kStatus_Fail - Tx Message Buffer is currently in use.
*/
status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pTxFrame)
{
status_t status;
/* Write Tx Message Buffer to initiate a data sending. */
if (kStatus_Success == FLEXCAN_WriteFDTxMb(base, mbIdx, (const flexcan_fd_frame_t *)(uintptr_t)pTxFrame))
{
/* Wait until CAN Message send out. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64flag = 1;
while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
#else
uint32_t u32flag = 1;
while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
#endif
{
}
/* Clean Tx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
#else
FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
#endif
/*After TX MB tranfered success, update the Timestamp from base->MB[offset for CAN FD].CS register*/
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
pTxFrame->timestamp = (uint16_t)((mbAddr[offset] & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
status = kStatus_Success;
}
else
{
status = kStatus_Fail;
}
return status;
}
/*!
* brief Performs a polling receive transaction on the CAN bus.
*
* note A transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param mbIdx The FlexCAN FD Message Buffer index.
* param pRxFrame Pointer to CAN FD message frame structure for reception.
* retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
* retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
* retval kStatus_Fail - Rx Message Buffer is empty.
*/
status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
{
/* Wait until Rx Message Buffer non-empty. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64flag = 1;
while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
#else
uint32_t u32flag = 1;
while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
#endif
{
}
/* Clean Rx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
#else
FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
#endif
/* Read Received CAN Message. */
return FLEXCAN_ReadFDRxMb(base, mbIdx, pRxFrame);
}
#endif
/*!
* brief Performs a polling receive transaction from Legacy Rx FIFO on the CAN bus.
*
* note A transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param pRxFrame Pointer to CAN message frame structure for reception.
* retval kStatus_Success - Read Message from Rx FIFO successfully.
* retval kStatus_Fail - Rx FIFO is not enabled.
*/
status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *pRxFrame)
{
status_t rxFifoStatus;
/* Wait until Legacy Rx FIFO non-empty. */
while (0U == FLEXCAN_GetMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag))
{
}
/* Read data from Legacy Rx FIFO. */
rxFifoStatus = FLEXCAN_ReadRxFifo(base, pRxFrame);
/* Clean Rx Fifo available flag. */
FLEXCAN_ClearMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
return rxFifoStatus;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
/*!
* brief Performs a polling receive transaction from Enhanced Rx FIFO on the CAN bus.
*
* note A transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param pRxFrame Pointer to CAN FD message frame structure for reception.
* retval kStatus_Success - Read Message from Rx FIFO successfully.
* retval kStatus_Fail - Rx FIFO is not enabled.
*/
status_t FLEXCAN_TransferReceiveEnhancedFifoBlocking(CAN_Type *base, flexcan_fd_frame_t *pRxFrame)
{
status_t rxFifoStatus;
/* Wait until Enhanced Rx FIFO non-empty. */
while (0U == (FLEXCAN_GetStatusFlags(base) & (uint64_t)kFLEXCAN_ERxFifoDataAvlIntFlag))
{
}
/* Read data from Enhanced Rx FIFO */
rxFifoStatus = FLEXCAN_ReadEnhancedRxFifo(base, pRxFrame);
/* Clean Enhanced Rx Fifo data available flag. */
FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_ERxFifoDataAvlIntFlag);
return rxFifoStatus;
}
#endif
/*!
* brief Initializes the FlexCAN handle.
*
* This function initializes the FlexCAN handle, which can be used for other FlexCAN
* transactional APIs. Usually, for a specified FlexCAN instance,
* call this API once to get the initialized handle.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param callback The callback function.
* param userData The parameter of the callback function.
*/
void FLEXCAN_TransferCreateHandle(CAN_Type *base,
flexcan_handle_t *handle,
flexcan_transfer_callback_t callback,
void *userData)
{
assert(NULL != handle);
uint8_t instance;
/* Clean FlexCAN transfer handle. */
(void)memset(handle, 0, sizeof(*handle));
/* Get instance from peripheral base address. */
instance = (uint8_t)FLEXCAN_GetInstance(base);
/* Register Callback function. */
handle->callback = callback;
handle->userData = userData;
/* Save the context in global variables to support the double weak mechanism. */
s_flexcanHandle[instance] = handle;
s_flexcanIsr = FLEXCAN_TransferHandleIRQ;
/* We Enable Error & Status interrupt here, because this interrupt just
* report current status of FlexCAN module through Callback function.
* It is insignificance without a available callback function.
*/
if (handle->callback != NULL)
{
FLEXCAN_EnableInterrupts(
base, (uint32_t)kFLEXCAN_BusOffInterruptEnable | (uint32_t)kFLEXCAN_ErrorInterruptEnable |
(uint32_t)kFLEXCAN_RxWarningInterruptEnable | (uint32_t)kFLEXCAN_TxWarningInterruptEnable |
(uint32_t)kFLEXCAN_WakeUpInterruptEnable
#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
| (uint64_t)kFLEXCAN_PNMatchWakeUpInterruptEnable |
(uint64_t)kFLEXCAN_PNTimeoutWakeUpInterruptEnable
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
| (uint64_t)kFLEXCAN_HostAccessNCErrorInterruptEnable |
(uint64_t)kFLEXCAN_FlexCanAccessNCErrorInterruptEnable |
(uint64_t)kFLEXCAN_HostOrFlexCanCErrorInterruptEnable
#endif
);
}
else
{
FLEXCAN_DisableInterrupts(
base, (uint32_t)kFLEXCAN_BusOffInterruptEnable | (uint32_t)kFLEXCAN_ErrorInterruptEnable |
(uint32_t)kFLEXCAN_RxWarningInterruptEnable | (uint32_t)kFLEXCAN_TxWarningInterruptEnable |
(uint32_t)kFLEXCAN_WakeUpInterruptEnable
#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
| (uint64_t)kFLEXCAN_PNMatchWakeUpInterruptEnable |
(uint64_t)kFLEXCAN_PNTimeoutWakeUpInterruptEnable
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
| (uint64_t)kFLEXCAN_HostAccessNCErrorInterruptEnable |
(uint64_t)kFLEXCAN_FlexCanAccessNCErrorInterruptEnable |
(uint64_t)kFLEXCAN_HostOrFlexCanCErrorInterruptEnable
#endif
);
}
/* Enable interrupts in NVIC. */
(void)EnableIRQ((IRQn_Type)(s_flexcanRxWarningIRQ[instance]));
(void)EnableIRQ((IRQn_Type)(s_flexcanTxWarningIRQ[instance]));
(void)EnableIRQ((IRQn_Type)(s_flexcanWakeUpIRQ[instance]));
(void)EnableIRQ((IRQn_Type)(s_flexcanErrorIRQ[instance]));
(void)EnableIRQ((IRQn_Type)(s_flexcanBusOffIRQ[instance]));
(void)EnableIRQ((IRQn_Type)(s_flexcanMbIRQ[instance]));
}
/*!
* brief Sends a message using IRQ.
*
* This function sends a message using IRQ. This is a non-blocking function, which returns
* right away. When messages have been sent out, the send callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param pMbXfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
* retval kStatus_Success Start Tx Message Buffer sending process successfully.
* retval kStatus_Fail Write Tx Message Buffer failed.
* retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
*/
status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
{
/* Assertion. */
assert(NULL != handle);
assert(NULL != pMbXfer);
assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
#endif
status_t status;
/* Check if Message Buffer is idle. */
if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
{
/* Distinguish transmit type. */
if ((uint32_t)kFLEXCAN_FrameTypeRemote == pMbXfer->frame->type)
{
handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxRemote;
}
else
{
handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxData;
}
if (kStatus_Success ==
FLEXCAN_WriteTxMb(base, pMbXfer->mbIdx, (const flexcan_frame_t *)(uintptr_t)pMbXfer->frame))
{
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64mask = 1;
FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
#else
uint32_t u32mask = 1;
FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
#endif
status = kStatus_Success;
}
else
{
handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
status = kStatus_Fail;
}
}
else
{
status = kStatus_FLEXCAN_TxBusy;
}
return status;
}
/*!
* brief Receives a message using IRQ.
*
* This function receives a message using IRQ. This is non-blocking function, which returns
* right away. When the message has been received, the receive callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param pMbXfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
* retval kStatus_Success - Start Rx Message Buffer receiving process successfully.
* retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
*/
status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
{
status_t status;
/* Assertion. */
assert(NULL != handle);
assert(NULL != pMbXfer);
assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
#endif
/* Check if Message Buffer is idle. */
if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
{
handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateRxData;
/* Register Message Buffer. */
handle->mbFrameBuf[pMbXfer->mbIdx] = pMbXfer->frame;
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64mask = 1;
FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
#else
uint32_t u32mask = 1;
FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
#endif
status = kStatus_Success;
}
else
{
status = kStatus_FLEXCAN_RxBusy;
}
return status;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Sends a message using IRQ.
*
* This function sends a message using IRQ. This is a non-blocking function, which returns
* right away. When messages have been sent out, the send callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param pMbXfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
* retval kStatus_Success Start Tx Message Buffer sending process successfully.
* retval kStatus_Fail Write Tx Message Buffer failed.
* retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
*/
status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
{
/* Assertion. */
assert(NULL != handle);
assert(NULL != pMbXfer);
assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
#endif
status_t status;
/* Check if Message Buffer is idle. */
if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
{
/* Distinguish transmit type. */
if ((uint32_t)kFLEXCAN_FrameTypeRemote == pMbXfer->framefd->type)
{
handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxRemote;
}
else
{
handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxData;
}
if (kStatus_Success ==
FLEXCAN_WriteFDTxMb(base, pMbXfer->mbIdx, (const flexcan_fd_frame_t *)(uintptr_t)pMbXfer->framefd))
{
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64mask = 1;
FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
#else
uint32_t u32mask = 1;
FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
#endif
status = kStatus_Success;
}
else
{
handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
status = kStatus_Fail;
}
}
else
{
status = kStatus_FLEXCAN_TxBusy;
}
return status;
}
/*!
* brief Receives a message using IRQ.
*
* This function receives a message using IRQ. This is non-blocking function, which returns
* right away. When the message has been received, the receive callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param pMbXfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
* retval kStatus_Success - Start Rx Message Buffer receiving process successfully.
* retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
*/
status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
{
/* Assertion. */
assert(NULL != handle);
assert(NULL != pMbXfer);
assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
#endif
status_t status;
/* Check if Message Buffer is idle. */
if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
{
handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateRxData;
/* Register Message Buffer. */
handle->mbFDFrameBuf[pMbXfer->mbIdx] = pMbXfer->framefd;
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64mask = 1;
FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
#else
uint32_t u32mask = 1;
FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
#endif
status = kStatus_Success;
}
else
{
status = kStatus_FLEXCAN_RxBusy;
}
return status;
}
#endif
/*!
* brief Receives a message from Legacy Rx FIFO using IRQ.
*
* This function receives a message using IRQ. This is a non-blocking function, which returns
* right away. When all messages have been received, the receive callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param pFifoXfer FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t.
* retval kStatus_Success - Start Rx FIFO receiving process successfully.
* retval kStatus_FLEXCAN_RxFifoBusy - Rx FIFO is currently in use.
*/
status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base,
flexcan_handle_t *handle,
flexcan_fifo_transfer_t *pFifoXfer)
{
/* Assertion. */
assert(NULL != handle);
assert(NULL != pFifoXfer);
status_t status;
/* Check if Message Buffer is idle. */
if ((uint8_t)kFLEXCAN_StateIdle == handle->rxFifoState)
{
handle->rxFifoState = (uint8_t)kFLEXCAN_StateRxFifo;
/* Register Message Buffer. */
handle->rxFifoFrameBuf = pFifoXfer->frame;
/* Enable Message Buffer Interrupt. */
FLEXCAN_EnableMbInterrupts(base, (uint32_t)kFLEXCAN_RxFifoOverflowFlag | (uint32_t)kFLEXCAN_RxFifoWarningFlag |
(uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
status = kStatus_Success;
}
else
{
status = kStatus_FLEXCAN_RxFifoBusy;
}
return status;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
/*!
* brief Receives a message from Enhanced Rx FIFO using IRQ.
*
* This function receives a message using IRQ. This is a non-blocking function, which returns
* right away. When all messages have been received, the receive callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param pFifoXfer FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t.
* retval kStatus_Success - Start Rx FIFO receiving process successfully.
* retval kStatus_FLEXCAN_RxFifoBusy - Rx FIFO is currently in use.
*/
status_t FLEXCAN_TransferReceiveEnhancedFifoNonBlocking(CAN_Type *base,
flexcan_handle_t *handle,
flexcan_fifo_transfer_t *pFifoXfer)
{
/* Assertion. */
assert(NULL != handle);
assert(NULL != pFifoXfer);
status_t status;
uint32_t watermark = ((base->ERFCR & CAN_ERFCR_ERFWM_MASK) >> CAN_ERFCR_ERFWM_SHIFT) + 1U;
uint64_t irqMask =
(uint64_t)kFLEXCAN_ERxFifoUnderflowInterruptEnable | (uint64_t)kFLEXCAN_ERxFifoOverflowInterruptEnable;
/* Check if Enhanced Rx FIFO is idle. */
if ((uint8_t)kFLEXCAN_StateIdle == handle->rxFifoState)
{
handle->rxFifoState = (uint8_t)kFLEXCAN_StateRxFifo;
/* Register Message Buffer. */
handle->rxFifoFDFrameBuf = pFifoXfer->framefd;
handle->frameNum = pFifoXfer->frameNum;
handle->transferTotalNum = pFifoXfer->frameNum;
if (handle->transferTotalNum >= watermark)
{
/* Enable watermark interrupt. */
irqMask |= (uint64_t)kFLEXCAN_ERxFifoWatermarkInterruptEnable;
}
else
{
/* Enable data available interrupt. */
irqMask |= (uint64_t)kFLEXCAN_ERxFifoDataAvlInterruptEnable;
}
/* Enable Enhanced Rx FIFO Interrupt. */
FLEXCAN_EnableInterrupts(base, irqMask);
status = kStatus_Success;
}
else
{
status = kStatus_FLEXCAN_RxFifoBusy;
}
return status;
}
/*!
* brief Gets the Enhanced Rx Fifo transfer status during a interrupt non-blocking receive.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param count Number of CAN messages receive so far by the non-blocking transaction.
* retval kStatus_InvalidArgument count is Invalid.
* retval kStatus_Success Successfully return the count.
*/
status_t FLEXCAN_TransferGetReceiveEnhancedFifoCount(CAN_Type *base, flexcan_handle_t *handle, size_t *count)
{
assert(NULL != handle);
status_t result = kStatus_Success;
if (handle->rxFifoState == (uint32_t)kFLEXCAN_StateIdle)
{
result = kStatus_NoTransferInProgress;
}
else
{
*count = handle->transferTotalNum - handle->frameNum;
}
return result;
}
#endif
/*!
* brief Aborts the interrupt driven message send process.
*
* This function aborts the interrupt driven message send process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param mbIdx The FlexCAN Message Buffer index.
*/
void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
uint16_t timestamp;
/* Assertion. */
assert(NULL != handle);
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64mask = 1;
FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
#else
uint32_t u32mask = 1;
FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
#endif
/* Update the TX frame 's time stamp by MB[mbIdx].cs. */
timestamp = (uint16_t)((base->MB[mbIdx].CS & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
handle->timestamp[mbIdx] = timestamp;
/* Clean Message Buffer. */
FLEXCAN_SetTxMbConfig(base, mbIdx, true);
handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Aborts the interrupt driven message send process.
*
* This function aborts the interrupt driven message send process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param mbIdx The FlexCAN FD Message Buffer index.
*/
void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
volatile uint32_t *mbAddr;
uint32_t offset;
uint16_t timestamp;
/* Assertion. */
assert(NULL != handle);
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64mask = 1;
FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
#else
uint32_t u32mask = 1;
FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
#endif
/* Update the TX frame 's time stamp by base->MB[offset for CAN FD].CS. */
mbAddr = &(base->MB[0].CS);
offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
timestamp = (uint16_t)((mbAddr[offset] & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
handle->timestamp[mbIdx] = timestamp;
/* Clean Message Buffer. */
FLEXCAN_SetFDTxMbConfig(base, mbIdx, true);
handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
}
/*!
* brief Aborts the interrupt driven message receive process.
*
* This function aborts the interrupt driven message receive process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param mbIdx The FlexCAN FD Message Buffer index.
*/
void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
/* Assertion. */
assert(NULL != handle);
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64mask = 1;
FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
#else
uint32_t u32mask = 1;
FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
#endif
/* Un-register handle. */
handle->mbFDFrameBuf[mbIdx] = NULL;
handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
}
#endif
/*!
* brief Aborts the interrupt driven message receive process.
*
* This function aborts the interrupt driven message receive process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param mbIdx The FlexCAN Message Buffer index.
*/
void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
/* Assertion. */
assert(NULL != handle);
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
#if !defined(NDEBUG)
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
#endif
/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64mask = 1;
FLEXCAN_DisableMbInterrupts(base, (u64mask << mbIdx));
#else
uint32_t u32mask = 1;
FLEXCAN_DisableMbInterrupts(base, (u32mask << mbIdx));
#endif
/* Un-register handle. */
handle->mbFrameBuf[mbIdx] = NULL;
handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
}
/*!
* brief Aborts the interrupt driven message receive from Legacy Rx FIFO process.
*
* This function aborts the interrupt driven message receive from Legacy Rx FIFO process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
*/
void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle)
{
/* Assertion. */
assert(NULL != handle);
/* Check if Rx FIFO is enabled. */
if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
{
/* Disable Rx Message FIFO Interrupts. */
FLEXCAN_DisableMbInterrupts(base, (uint32_t)kFLEXCAN_RxFifoOverflowFlag | (uint32_t)kFLEXCAN_RxFifoWarningFlag |
(uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
/* Un-register handle. */
handle->rxFifoFrameBuf = NULL;
}
handle->rxFifoState = (uint8_t)kFLEXCAN_StateIdle;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
/*!
* brief Aborts the interrupt driven message receive from Enhanced Rx FIFO process.
*
* This function aborts the interrupt driven message receive from Rx FIFO process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
*/
void FLEXCAN_TransferAbortReceiveEnhancedFifo(CAN_Type *base, flexcan_handle_t *handle)
{
/* Assertion. */
assert(NULL != handle);
/* Check if Enhanced Rx FIFO is enabled. */
if (0U != (base->ERFCR & CAN_ERFCR_ERFEN_MASK))
{
/* Disable all Rx Message FIFO interrupts. */
FLEXCAN_DisableInterrupts(base, (uint64_t)kFLEXCAN_ERxFifoUnderflowInterruptEnable |
(uint64_t)kFLEXCAN_ERxFifoOverflowInterruptEnable |
(uint64_t)kFLEXCAN_ERxFifoWatermarkInterruptEnable |
(uint64_t)kFLEXCAN_ERxFifoDataAvlInterruptEnable);
/* Un-register handle. */
handle->rxFifoFDFrameBuf = NULL;
/* Clear transfer count. */
handle->frameNum = 0U;
handle->transferTotalNum = 0U;
}
handle->rxFifoState = (uint8_t)kFLEXCAN_StateIdle;
}
#endif
/*!
* brief Gets the detail index of Mailbox's Timestamp by handle.
*
* Then function can only be used when calling non-blocking Data transfer (TX/RX) API,
* After TX/RX data transfer done (User can get the status by handler's callback function),
* we can get the detail index of Mailbox's timestamp by handle,
* Detail non-blocking data transfer API (TX/RX) contain.
* -FLEXCAN_TransferSendNonBlocking
* -FLEXCAN_TransferFDSendNonBlocking
* -FLEXCAN_TransferReceiveNonBlocking
* -FLEXCAN_TransferFDReceiveNonBlocking
* -FLEXCAN_TransferReceiveFifoNonBlocking
*
* param handle FlexCAN handle pointer.
* param mbIdx The FlexCAN FD Message Buffer index.
* return the index of mailbox 's timestamp stored in the handle.
*
*/
uint32_t FLEXCAN_GetTimeStamp(flexcan_handle_t *handle, uint8_t mbIdx)
{
/* Assertion. */
assert(NULL != handle);
return (uint32_t)(handle->timestamp[mbIdx]);
}
/*!
* brief Check unhandle interrupt events
*
* param base FlexCAN peripheral base address.
* return TRUE if unhandled interrupt action exist, FALSE if no unhandlered interrupt action exist.
*/
static bool FLEXCAN_CheckUnhandleInterruptEvents(CAN_Type *base)
{
uint64_t tempmask;
uint64_t tempflag;
bool fgRet = false;
/* Checking exist error or status flag. */
if (0U == (FLEXCAN_GetStatusFlags(base) & (FLEXCAN_ERROR_AND_STATUS_INIT_FLAG | FLEXCAN_WAKE_UP_FLAG)))
{
tempmask = (uint64_t)base->IMASK1;
tempflag = (uint64_t)base->IFLAG1;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
/* Checking whether exist MB interrupt status and legacy RX FIFO interrupt status. */
tempmask |= ((uint64_t)base->IMASK2) << 32;
tempflag |= ((uint64_t)base->IFLAG2) << 32;
#endif
fgRet = (0U != (tempmask & tempflag));
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
else if (0U == (FLEXCAN_GetStatusFlags(base) & FLEXCAN_MEMORY_ENHANCED_RX_FIFO_INIT_FLAG))
{
/* Checking whether exist enhanced RX FIFO interrupt status. */
tempmask = (uint64_t)base->ERFIER;
tempflag = (uint64_t)base->ERFSR;
fgRet = (0U != (tempmask & tempflag));
}
#endif
else
{
fgRet = true;
}
return fgRet;
}
/*!
* brief Sub Handler Data Trasfered Events
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param pResult Pointer to the Handle result.
*
* return the status after handle each data transfered event.
*/
static status_t FLEXCAN_SubHandlerForDataTransfered(CAN_Type *base, flexcan_handle_t *handle, uint32_t *pResult)
{
status_t status = kStatus_FLEXCAN_UnHandled;
uint32_t result = 0xFFU;
/* For this implementation, we solve the Message with lowest MB index first. */
for (result = 0U; result < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); result++)
{
/* Get the lowest unhandled Message Buffer */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64flag = 1;
if (0U != FLEXCAN_GetMbStatusFlags(base, u64flag << result))
#else
uint32_t u32flag = 1;
if (0U != FLEXCAN_GetMbStatusFlags(base, u32flag << result))
#endif
{
if (FLEXCAN_IsMbIntEnabled(base, (uint8_t)result))
{
break;
}
}
}
/* find Message to deal with. */
if (result < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base))
{
/* Solve Legacy Rx FIFO interrupt. */
if (((uint8_t)kFLEXCAN_StateIdle != handle->rxFifoState) && (result <= (uint32_t)CAN_IFLAG1_BUF7I_SHIFT) &&
((base->MCR & CAN_MCR_RFEN_MASK) != 0U))
{
uint32_t u32mask = 1;
switch (u32mask << result)
{
case kFLEXCAN_RxFifoOverflowFlag:
status = kStatus_FLEXCAN_RxFifoOverflow;
break;
case kFLEXCAN_RxFifoWarningFlag:
status = kStatus_FLEXCAN_RxFifoWarning;
break;
case kFLEXCAN_RxFifoFrameAvlFlag:
status = FLEXCAN_ReadRxFifo(base, handle->rxFifoFrameBuf);
if (kStatus_Success == status)
{
/* Align the current (index 0) rxfifo timestamp to the timestamp array by handle. */
handle->timestamp[0] = handle->rxFifoFrameBuf->timestamp;
status = kStatus_FLEXCAN_RxFifoIdle;
}
FLEXCAN_TransferAbortReceiveFifo(base, handle);
break;
default:
status = kStatus_FLEXCAN_UnHandled;
break;
}
}
else
{
/* Get current State of Message Buffer. */
switch (handle->mbState[result])
{
/* Solve Rx Data Frame. */
case (uint8_t)kFLEXCAN_StateRxData:
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
{
status = FLEXCAN_ReadFDRxMb(base, (uint8_t)result, handle->mbFDFrameBuf[result]);
if (kStatus_Success == status)
{
/* Align the current index of RX MB timestamp to the timestamp array by handle. */
handle->timestamp[result] = handle->mbFDFrameBuf[result]->timestamp;
status = kStatus_FLEXCAN_RxIdle;
}
}
else
#endif
{
status = FLEXCAN_ReadRxMb(base, (uint8_t)result, handle->mbFrameBuf[result]);
if (kStatus_Success == status)
{
/* Align the current index of RX MB timestamp to the timestamp array by handle. */
handle->timestamp[result] = handle->mbFrameBuf[result]->timestamp;
status = kStatus_FLEXCAN_RxIdle;
}
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
{
FLEXCAN_TransferFDAbortReceive(base, handle, (uint8_t)result);
}
else
#endif
{
FLEXCAN_TransferAbortReceive(base, handle, (uint8_t)result);
}
break;
/* Sove Rx Remote Frame. User need to Read the frame in Mail box in time by Read from MB API. */
case (uint8_t)kFLEXCAN_StateRxRemote:
status = kStatus_FLEXCAN_RxRemote;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
{
FLEXCAN_TransferFDAbortReceive(base, handle, (uint8_t)result);
}
else
#endif
{
FLEXCAN_TransferAbortReceive(base, handle, (uint8_t)result);
}
break;
/* Solve Tx Data Frame. */
case (uint8_t)kFLEXCAN_StateTxData:
status = kStatus_FLEXCAN_TxIdle;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
{
FLEXCAN_TransferFDAbortSend(base, handle, (uint8_t)result);
}
else
#endif
{
FLEXCAN_TransferAbortSend(base, handle, (uint8_t)result);
}
break;
/* Solve Tx Remote Frame. */
case (uint8_t)kFLEXCAN_StateTxRemote:
handle->mbState[result] = (uint8_t)kFLEXCAN_StateRxRemote;
status = kStatus_FLEXCAN_TxSwitchToRx;
break;
default:
status = kStatus_FLEXCAN_UnHandled;
break;
}
}
/* Clear resolved Message Buffer IRQ. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint64_t u64flag = 1;
FLEXCAN_ClearMbStatusFlags(base, u64flag << result);
#else
uint32_t u32flag = 1;
FLEXCAN_ClearMbStatusFlags(base, u32flag << result);
#endif
}
*pResult = result;
return status;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
/*!
* brief Sub Handler Ehanced Rx FIFO event
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param flags FlexCAN interrupt flags.
*
* return the status after handle Ehanced Rx FIFO event.
*/
static status_t FLEXCAN_SubHandlerForEhancedRxFifo(CAN_Type *base, flexcan_handle_t *handle, uint64_t flags)
{
uint32_t watermark = ((base->ERFCR & CAN_ERFCR_ERFWM_MASK) >> CAN_ERFCR_ERFWM_SHIFT) + 1U;
uint32_t transferFrames;
status_t status;
/* Solve Ehanced Rx FIFO interrupt. */
if ((0u != (flags & (uint64_t)kFLEXCAN_ERxFifoDataAvlIntFlag)) && (0u != (base->ERFIER & CAN_ERFIER_ERFDAIE_MASK)))
{
/* Whether still has CAN messages remaining to be received. */
if (handle->frameNum > 0U)
{
status = FLEXCAN_ReadEnhancedRxFifo(base, handle->rxFifoFDFrameBuf);
if (kStatus_Success == status)
{
handle->rxFifoFDFrameBuf++;
handle->frameNum--;
}
else
{
return status;
}
}
if (handle->frameNum == 0U)
{
/* Stop receiving Ehanced Rx FIFO when the transmission is over. */
FLEXCAN_TransferAbortReceiveEnhancedFifo(base, handle);
status = kStatus_FLEXCAN_RxFifoIdle;
}
else
{
/* Continue use data avaliable interrupt. */
status = kStatus_FLEXCAN_RxFifoBusy;
}
}
else if ((0u != (flags & (uint64_t)kFLEXCAN_ERxFifoWatermarkIntFlag)) &&
(0u != (base->ERFIER & CAN_ERFIER_ERFWMIIE_MASK)))
{
/* Whether the number of CAN messages remaining to be received is greater than the watermark. */
transferFrames = (handle->frameNum > watermark) ? watermark : handle->frameNum;
for (uint32_t i = 0; i < transferFrames; i++)
{
status = FLEXCAN_ReadEnhancedRxFifo(base, handle->rxFifoFDFrameBuf);
if (kStatus_Success == status)
{
handle->rxFifoFDFrameBuf++;
handle->frameNum--;
}
else
{
return status;
}
}
if (handle->frameNum == 0U)
{
/* Stop receiving Ehanced Rx FIFO when the transmission is over. */
FLEXCAN_TransferAbortReceiveEnhancedFifo(base, handle);
status = kStatus_FLEXCAN_RxFifoIdle;
}
else if (handle->frameNum < watermark)
{
/* Disable watermark interrupt and enable data avaliable interrupt. */
FLEXCAN_DisableInterrupts(base, (uint64_t)kFLEXCAN_ERxFifoWatermarkInterruptEnable);
FLEXCAN_EnableInterrupts(base, (uint64_t)kFLEXCAN_ERxFifoDataAvlInterruptEnable);
status = kStatus_FLEXCAN_RxFifoBusy;
}
else
{
/* Continue use watermark interrupt. */
status = kStatus_FLEXCAN_RxFifoBusy;
}
}
else if ((0u != (flags & (uint64_t)kFLEXCAN_ERxFifoUnderflowIntFlag)) &&
(0u != (base->ERFIER & CAN_ERFIER_ERFUFWIE_MASK)))
{
status = kStatus_FLEXCAN_RxFifoUnderflow;
FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_ERxFifoUnderflowIntFlag);
}
else if ((0u != (flags & (uint64_t)kFLEXCAN_ERxFifoOverflowIntFlag)) &&
(0u != (base->ERFIER & CAN_ERFIER_ERFOVFIE_MASK)))
{
status = kStatus_FLEXCAN_RxOverflow;
FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_ERxFifoOverflowIntFlag);
}
else
{
status = kStatus_FLEXCAN_UnHandled;
}
return status;
}
#endif
/*!
* brief FlexCAN IRQ handle function.
*
* This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
*/
void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
{
/* Assertion. */
assert(NULL != handle);
status_t status;
uint32_t mbNum = 0xFFU;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
uint64_t result = 0U;
#else
uint32_t result = 0U;
#endif
do
{
/* Get Current FlexCAN Module Error and Status. */
result = FLEXCAN_GetStatusFlags(base);
/* To handle FlexCAN Error and Status Interrupt first. */
if (0U != (result & FLEXCAN_ERROR_AND_STATUS_INIT_FLAG))
{
status = kStatus_FLEXCAN_ErrorStatus;
/* Clear FlexCAN Error and Status Interrupt. */
FLEXCAN_ClearStatusFlags(base, FLEXCAN_ERROR_AND_STATUS_INIT_FLAG);
}
else if (0U != (result & FLEXCAN_WAKE_UP_FLAG))
{
status = kStatus_FLEXCAN_WakeUp;
FLEXCAN_ClearStatusFlags(base, FLEXCAN_WAKE_UP_FLAG);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
else if ((0U != (result & FLEXCAN_MEMORY_ENHANCED_RX_FIFO_INIT_FLAG)) &&
(0u != (base->ERFIER & FLEXCAN_MEMORY_ENHANCED_RX_FIFO_INIT_MASK)))
{
status = FLEXCAN_SubHandlerForEhancedRxFifo(base, handle, result);
}
#endif
else
{
/* To handle Message Buffer or Legacy Rx FIFO transfer. */
status = FLEXCAN_SubHandlerForDataTransfered(base, handle, &mbNum);
result = mbNum;
}
/* Calling Callback Function if has one. */
if (handle->callback != NULL)
{
handle->callback(base, handle, status, result, handle->userData);
}
} while (FLEXCAN_CheckUnhandleInterruptEvents(base));
}
#if defined(CAN0)
void CAN0_DriverIRQHandler(void);
void CAN0_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[0]);
s_flexcanIsr(CAN0, s_flexcanHandle[0]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(CAN1)
void CAN1_DriverIRQHandler(void);
void CAN1_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[1]);
s_flexcanIsr(CAN1, s_flexcanHandle[1]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(CAN2)
void CAN2_DriverIRQHandler(void);
void CAN2_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[2]);
s_flexcanIsr(CAN2, s_flexcanHandle[2]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(CAN3)
void CAN3_DriverIRQHandler(void);
void CAN3_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[3]);
s_flexcanIsr(CAN3, s_flexcanHandle[3]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(CAN4)
void CAN4_DriverIRQHandler(void);
void CAN4_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[4]);
s_flexcanIsr(CAN4, s_flexcanHandle[4]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(DMA__CAN0)
void DMA_FLEXCAN0_INT_DriverIRQHandler(void);
void DMA_FLEXCAN0_INT_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
s_flexcanIsr(DMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(DMA__CAN1)
void DMA_FLEXCAN1_INT_DriverIRQHandler(void);
void DMA_FLEXCAN1_INT_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
s_flexcanIsr(DMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(DMA__CAN2)
void DMA_FLEXCAN2_INT_DriverIRQHandler(void);
void DMA_FLEXCAN2_INT_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
s_flexcanIsr(DMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(ADMA__CAN0)
void ADMA_FLEXCAN0_INT_DriverIRQHandler(void);
void ADMA_FLEXCAN0_INT_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
s_flexcanIsr(ADMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(ADMA__CAN1)
void ADMA_FLEXCAN1_INT_DriverIRQHandler(void);
void ADMA_FLEXCAN1_INT_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
s_flexcanIsr(ADMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(ADMA__CAN2)
void ADMA_FLEXCAN2_INT_DriverIRQHandler(void);
void ADMA_FLEXCAN2_INT_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
s_flexcanIsr(ADMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(FLEXCAN1)
void CAN_FD1_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[1]);
s_flexcanIsr(FLEXCAN1, s_flexcanHandle[1]);
SDK_ISR_EXIT_BARRIER;
}
#endif
#if defined(FLEXCAN2)
void CAN_FD2_DriverIRQHandler(void)
{
assert(NULL != s_flexcanHandle[2]);
s_flexcanIsr(FLEXCAN1, s_flexcanHandle[2]);
SDK_ISR_EXIT_BARRIER;
}
#endif