rt-thread-official/bsp/maxim/libraries/MAX32660PeriphDriver/Source/spimss.c

515 lines
16 KiB
C

/**
* @file spimss.c
* @brief This file contains the function implementations for the
* Serial Peripheral Interface (SPIMSS) peripheral module.
*/
/* *****************************************************************************
* Copyright (C) 2017 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*
* $Date: 2019-05-06 14:44:04 -0500 (Mon, 06 May 2019) $
* $Revision: 43157 $
*
**************************************************************************** */
/* **** Includes **** */
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include "mxc_config.h"
#include "mxc_assert.h"
#include "mxc_sys.h"
#include "spimss.h"
#include "mxc_lock.h"
/**
* @ingroup spimss
* @{
*/
/* **** Definitions **** */
/* **** Globals **** */
typedef struct {
spimss_req_t *req;
} spimss_req_state_t;
static spimss_req_state_t states[MXC_SPIMSS_INSTANCES];
/* **** Functions **** */
static int SPIMSS_TransSetup(mxc_spimss_regs_t *spi, spimss_req_t *req, int master);
static uint32_t SPIMSS_MasterTransHandler(mxc_spimss_regs_t *spi, spimss_req_t *req);
static uint32_t SPIMSS_TransHandler(mxc_spimss_regs_t *spi, spimss_req_t *req);
static uint32_t SPIMSS_SlaveTransHandler(mxc_spimss_regs_t *spi, spimss_req_t *req);
/* ************************************************************************** */
int SPIMSS_Init(mxc_spimss_regs_t *spi, unsigned mode, unsigned freq, const sys_cfg_spimss_t* sys_cfg)
{
int spi_num, error;
unsigned int spimss_clk;
unsigned int pol, pha; // Polarity and phase of the clock (SPI mode)
spi_num = MXC_SPIMSS_GET_IDX(spi);
MXC_ASSERT(spi_num >= 0);
if (mode > 3) {
return E_BAD_PARAM;
}
if ((error = SYS_SPIMSS_Init(spi, sys_cfg)) != E_NO_ERROR) {
return error;
}
states[spi_num].req = NULL;
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_SPIEN); // Keep the SPI Disabled (This is the SPI Start)
// Check if frequency is too high
if (freq > PeripheralClock) {
return E_BAD_PARAM;
}
// Set the bit rate
spimss_clk = PeripheralClock;
spi->brg = (spimss_clk / freq) >> 1;
// Set the mode
pol = mode >> 1; // Get the polarity out of the mode input value
pha = mode & 1; // Get the phase out of the mode input value
spi->ctrl = (spi->ctrl & ~(MXC_F_SPIMSS_CTRL_CLKPOL)) | (pol << MXC_F_SPIMSS_CTRL_CLKPOL_POS); // polarity
spi->ctrl = (spi->ctrl & ~(MXC_F_SPIMSS_CTRL_PHASE)) | (pha << MXC_F_SPIMSS_CTRL_PHASE_POS); // phase
spi->status &= ~(MXC_F_SPIMSS_STATUS_IRQ);
return E_NO_ERROR;
}
/* ************************************************************************* */
int SPIMSS_Shutdown(mxc_spimss_regs_t *spi)
{
int spi_num, err;
spimss_req_t *temp_req;
// Disable and turn off the SPI transaction.
spi->ctrl = 0; // Interrupts, SPI transaction all turned off
spi->status = 0;
spi->mod = 0;
// Reset FIFO counters
spi->dma &= ~(MXC_F_SPIMSS_DMA_RX_FIFO_CNT|MXC_F_SPIMSS_DMA_TX_FIFO_CNT);
// Call all of the pending callbacks for this SPI
spi_num = MXC_SPIMSS_GET_IDX(spi);
if (states[spi_num].req != NULL) {
// Save the request
temp_req = states[spi_num].req;
// Unlock this SPI
mxc_free_lock((uint32_t*)&states[spi_num].req);
// Callback if not NULL
if (temp_req->callback != NULL) {
temp_req->callback(temp_req, E_SHUTDOWN);
}
}
spi->status = 0;
// Clear system level configurations
if ((err = SYS_SPIMSS_Shutdown(spi)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/* ************************************************************************** */
int SPIMSS_TransSetup(mxc_spimss_regs_t *spi, spimss_req_t *req, int master)
{
int spi_num;
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_SPIEN); // Make sure the Initiation
// of SPI Start is disabled.
spi->mod |= MXC_F_SPIMSS_MOD_TX_LJ; // Making sure data is left
// justified.
if ((req->tx_data == NULL) && (req->rx_data == NULL)) {
return -1;
}
spi_num = MXC_SPIMSS_GET_IDX(spi);
MXC_ASSERT(spi_num >= 0);
if (req->len == 0) {
return 0;
}
req->tx_num = 0;
req->rx_num = 0;
if (mxc_get_lock((uint32_t*)&states[spi_num].req, (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
if (master) { // Enable master mode
spi->ctrl |= MXC_F_SPIMSS_CTRL_MMEN; // SPI configured as master.
spi->mod |= MXC_F_SPIMSS_CTRL_MMEN; // SSEL pin is an output.
} else { // Enable slave mode
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_MMEN); // SPI configured as slave.
spi->mod &= ~(MXC_F_SPIMSS_CTRL_MMEN); // SSEL pin is an input.
}
// Setup the character size
if (req->bits <16) {
MXC_SETFIELD(spi->mod, MXC_F_SPIMSS_MOD_NUMBITS , req->bits << MXC_F_SPIMSS_MOD_NUMBITS_POS);
} else {
MXC_SETFIELD(spi->mod, MXC_F_SPIMSS_MOD_NUMBITS , 0 << MXC_F_SPIMSS_MOD_NUMBITS_POS);
}
// Setup the slave select
spi->mod |= MXC_F_SPIMSS_MOD_SSV; // Assert a high on Slave Select,
// to get the line ready for active low later
// Clear the TX and RX FIFO
spi->dma |= (MXC_F_SPIMSS_DMA_TX_FIFO_CLEAR | MXC_F_SPIMSS_DMA_RX_FIFO_CLEAR);
return E_NO_ERROR;
}
/* ************************************************************************** */
void SPIMSS_Handler(mxc_spimss_regs_t *spi) // From the IRQ
{
int spi_num;
uint32_t flags;
unsigned int int_enable;
flags = spi->status;
spi->status = flags;
spi->status|= 0x80; // clear interrupt
spi_num = MXC_SPIMSS_GET_IDX(spi);
int_enable = 0;
if (states[spi_num].req != NULL) {
if ((spi->ctrl & MXC_F_SPIMSS_CTRL_MMEN) >> MXC_F_SPIMSS_CTRL_MMEN_POS) {
int_enable = SPIMSS_MasterTransHandler(spi, states[spi_num].req);
} else {
int_enable = SPIMSS_SlaveTransHandler(spi, states[spi_num].req);
}
}
if (int_enable==1) {
spi->ctrl |= (MXC_F_SPIMSS_CTRL_IRQE );
}
}
/* ************************************************************************** */
int SPIMSS_MasterTrans(mxc_spimss_regs_t *spi, spimss_req_t *req)
{
int error;
if ((error = SPIMSS_TransSetup(spi, req, 1)) != E_NO_ERROR) {
return error;
}
req->callback = NULL;
spi->mod &= ~(MXC_F_SPIMSS_MOD_SSV); // This will assert the Slave Select.
spi->ctrl |= MXC_F_SPIMSS_CTRL_SPIEN; // Enable/Start SPI
while (SPIMSS_MasterTransHandler(spi,req)!=0) {
}
spi->mod |= MXC_F_SPIMSS_MOD_SSV;
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_SPIEN); // Last of the SPIMSS value has been transmitted...
// stop the transmission...
return E_NO_ERROR;
}
/* ************************************************************************** */
int SPIMSS_SlaveTrans(mxc_spimss_regs_t *spi, spimss_req_t *req)
{
int error;
if ((error = SPIMSS_TransSetup(spi, req,0)) != E_NO_ERROR) {
return error;
}
while (SPIMSS_SlaveTransHandler(spi,req)!=0) {
spi->ctrl |= MXC_F_SPIMSS_CTRL_SPIEN; // Enable/Start SPI
while ((spi->status & MXC_F_SPIMSS_STATUS_TXST) == MXC_F_SPIMSS_STATUS_TXST) {}
}
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_SPIEN); // Last of the SPIMSS value has been transmitted...
// stop the transmission...
return E_NO_ERROR;
}
/* ************************************************************************** */
int SPIMSS_MasterTransAsync(mxc_spimss_regs_t *spi, spimss_req_t *req)
{
int error;
uint8_t int_enable;
if ((error = SPIMSS_TransSetup(spi, req, 1) )!= E_NO_ERROR) {
return error;
}
int_enable = SPIMSS_MasterTransHandler(spi,req);
spi->mod ^= MXC_F_SPIMSS_MOD_SSV; // This will assert the Slave Select.
spi->ctrl |= MXC_F_SPIMSS_CTRL_SPIEN; // Enable/Start SPI
if (int_enable==1) {
spi->ctrl |= (MXC_F_SPIMSS_CTRL_IRQE | MXC_F_SPIMSS_CTRL_STR);
}
return E_NO_ERROR;
}
/* ************************************************************************** */
int SPIMSS_SlaveTransAsync(mxc_spimss_regs_t *spi, spimss_req_t *req)
{
int error;
uint8_t int_enable;
if ((error = SPIMSS_TransSetup(spi, req, 0)) != E_NO_ERROR) {
return error;
}
int_enable = SPIMSS_SlaveTransHandler(spi,req);
spi->ctrl |= MXC_F_SPIMSS_CTRL_SPIEN; // Enable/Start SPI
if (int_enable==1) { // Trigger a SPI Interrupt
spi->ctrl |= (MXC_F_SPIMSS_CTRL_IRQE );
}
return E_NO_ERROR;
}
/* ************************************************************************** */
uint32_t SPIMSS_MasterTransHandler(mxc_spimss_regs_t *spi, spimss_req_t *req)
{
unsigned start_set = 0;
uint32_t retval;
if (!start_set) {
start_set = 1;
retval = SPIMSS_TransHandler(spi,req);
}
return retval;
}
/* ************************************************************************** */
uint32_t SPIMSS_SlaveTransHandler(mxc_spimss_regs_t *spi, spimss_req_t *req)
{
return SPIMSS_TransHandler(spi,req);
}
/* ************************************************************************** */
uint32_t SPIMSS_TransHandler(mxc_spimss_regs_t *spi, spimss_req_t *req)
{
unsigned tx_avail, rx_avail;
int remain, spi_num;
uint32_t int_en =0;
uint32_t length =req->len;
spi_num = MXC_SPIMSS_GET_IDX(spi);
// Read the RX FIFO
if (req->rx_data != NULL) {
// Wait for there to be data in the RX FIFO
rx_avail = ((spi->dma & MXC_F_SPIMSS_DMA_RX_FIFO_CNT) >> MXC_F_SPIMSS_DMA_RX_FIFO_CNT_POS);
if ((length - req->rx_num) < rx_avail) {
rx_avail = (length - req->rx_num);
}
// Read from the FIFO
while (rx_avail) {
// Don't read less than 2 bytes if we are using greater than 8 bit characters
if (req->bits>8) {
((uint16_t*)req->rx_data)[req->rx_num++] = spi->data16;
rx_avail -= 1;
} else {
((uint8_t*)req->rx_data)[req->rx_num++] = spi->data8[0];
rx_avail -= 1;
}
rx_avail = ((spi->dma & MXC_F_SPIMSS_DMA_RX_FIFO_CNT) >> MXC_F_SPIMSS_DMA_RX_FIFO_CNT_POS);
if ((length - req->rx_num) < rx_avail) {
rx_avail = (length - req->rx_num);
}
}
remain = length - req->rx_num;
if (remain) {
if (remain > MXC_SPIMSS_FIFO_DEPTH) {
spi->dma = ((spi->dma & ~MXC_F_SPIMSS_DMA_RX_FIFO_CNT) | ((2) << MXC_F_SPIMSS_DMA_RX_FIFO_CNT_POS));
} else {
spi->dma = ((spi->dma & ~MXC_F_SPIMSS_DMA_RX_FIFO_CNT) | ((remain-1) << MXC_F_SPIMSS_DMA_RX_FIFO_CNT_POS));
}
int_en = 1;
}
// Break out if we've received all the bytes and we're not transmitting
if ((req->tx_data == NULL) && (req->rx_num == length)) {
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_IRQE | MXC_F_SPIMSS_CTRL_STR);
int_en = 0;
mxc_free_lock((uint32_t*)&states[spi_num].req);
// Callback if not NULL
if (req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
}
}
// Note:- spi->dma shows the FIFO TX count and FIFO RX count in
// Words, while the calculation below is in bytes.
if (req->tx_data != NULL) {
if (req->tx_num < length) {
// Calculate how many bytes we can write to the FIFO (tx_avail holds that value)
tx_avail = MXC_SPIMSS_FIFO_DEPTH - (((spi->dma & MXC_F_SPIMSS_DMA_TX_FIFO_CNT) >> MXC_F_SPIMSS_DMA_TX_FIFO_CNT_POS)); // in bytes
if ((length - req->tx_num) < tx_avail) {
tx_avail = (length - req->tx_num); // This is for the last spin
}
if (req->bits > 8) {
tx_avail &= ~(unsigned)0x1;
}
// Write the FIFO
while (tx_avail) {
if (req->bits >8) {
spi->data16 = ((uint16_t*)req->tx_data)[req->tx_num++];
tx_avail -= 1;
} else {
spi->data8[0] = ((uint8_t*)req->tx_data)[req->tx_num++];
tx_avail -=1;
}
}
}
remain = length - req->tx_num;
// If there are values remaining to be transmitted, this portion will get
// executed and int_en set, to indicate that this must spin and come back again...
if (remain) {
if (remain > MXC_SPIMSS_FIFO_DEPTH) { // more tx rounds will happen... Transfer the maximum,
spi->dma = ((spi->dma & ~MXC_F_SPIMSS_DMA_TX_FIFO_CNT) | ((MXC_SPIMSS_FIFO_DEPTH) << MXC_F_SPIMSS_DMA_TX_FIFO_CNT_POS));
} else { // only one more tx round will be done... Transfer whatever remains,
spi->dma = ((spi->dma & ~MXC_F_SPIMSS_DMA_TX_FIFO_CNT) | ((remain) << MXC_F_SPIMSS_DMA_TX_FIFO_CNT_POS));
}
int_en = 1; // This will act as a trigger for the next round...
}
// Break out if we've transmitted all the bytes and not receiving
if ((req->rx_data == NULL) && (req->tx_num == length)) {
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_IRQE | MXC_F_SPIMSS_CTRL_STR);
int_en = 0;
mxc_free_lock((uint32_t*)&states[spi_num].req);
// Callback if not NULL
if (req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
}
}
// Break out once we've transmitted and received all of the data
if ((req->rx_num == length) && (req->tx_num == length)) {
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_IRQE | MXC_F_SPIMSS_CTRL_STR);
int_en = 0;
mxc_free_lock((uint32_t*)&states[spi_num].req);
// Callback if not NULL
if (req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
}
return int_en;
}
/* ************************************************************************* */
int SPIMSS_AbortAsync(spimss_req_t *req)
{
int spi_num;
mxc_spimss_regs_t *spi;
// Check the input parameters
if (req == NULL) {
return E_BAD_PARAM;
}
// Find the request, set to NULL
for (spi_num = 0; spi_num < MXC_SPIMSS_INSTANCES; spi_num++) {
if (req == states[spi_num].req) {
spi = MXC_SPIMSS_GET_SPI(spi_num);
// Disable interrupts, clear the flags
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_IRQE | MXC_F_SPIMSS_CTRL_STR);
// Disable and turn off the SPI transaction.
spi->ctrl &= ~(MXC_F_SPIMSS_CTRL_SPIEN);
// Unlock this SPI
mxc_free_lock((uint32_t*)&states[spi_num].req);
// Callback if not NULL
if (req->callback != NULL) {
req->callback(req, E_ABORT);
}
return E_NO_ERROR;
}
}
return E_BAD_PARAM;
}
/**@} end of group spimss */