mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-26 07:17:21 +08:00
883 lines
29 KiB
C
883 lines
29 KiB
C
/*!
|
|
\file gd32f4xx_spi.c
|
|
\brief SPI driver
|
|
|
|
\version 2016-08-15, V1.0.0, firmware for GD32F4xx
|
|
\version 2018-12-12, V2.0.0, firmware for GD32F4xx
|
|
\version 2020-09-30, V2.1.0, firmware for GD32F4xx
|
|
*/
|
|
|
|
/*
|
|
Copyright (c) 2020, GigaDevice Semiconductor Inc.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
3. Neither the name of the copyright holder nor the names of its contributors
|
|
may be used to endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include "gd32f4xx_spi.h"
|
|
#include "gd32f4xx_rcu.h"
|
|
|
|
/* SPI/I2S parameter initialization mask */
|
|
#define SPI_INIT_MASK ((uint32_t)0x00003040U) /*!< SPI parameter initialization mask */
|
|
#define I2S_INIT_MASK ((uint32_t)0x0000F047U) /*!< I2S parameter initialization mask */
|
|
#define I2S_FULL_DUPLEX_MASK ((uint32_t)0x00000480U) /*!< I2S full duples mode configure parameter initialization mask */
|
|
|
|
/* default value */
|
|
#define SPI_I2SPSC_DEFAULT_VALUE ((uint32_t)0x00000002U) /*!< default value of SPI_I2SPSC register */
|
|
|
|
/*!
|
|
\brief deinitialize SPI and I2S
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5),include I2S1_ADD and I2S2_ADD
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_i2s_deinit(uint32_t spi_periph)
|
|
{
|
|
switch(spi_periph){
|
|
case SPI0:
|
|
/* reset SPI0 */
|
|
rcu_periph_reset_enable(RCU_SPI0RST);
|
|
rcu_periph_reset_disable(RCU_SPI0RST);
|
|
break;
|
|
case SPI1:
|
|
/* reset SPI1,I2S1 and I2S1_ADD */
|
|
rcu_periph_reset_enable(RCU_SPI1RST);
|
|
rcu_periph_reset_disable(RCU_SPI1RST);
|
|
break;
|
|
case SPI2:
|
|
/* reset SPI2,I2S2 and I2S2_ADD */
|
|
rcu_periph_reset_enable(RCU_SPI2RST);
|
|
rcu_periph_reset_disable(RCU_SPI2RST);
|
|
break;
|
|
case SPI3:
|
|
/* reset SPI3 */
|
|
rcu_periph_reset_enable(RCU_SPI3RST);
|
|
rcu_periph_reset_disable(RCU_SPI3RST);
|
|
break;
|
|
case SPI4:
|
|
/* reset SPI4 */
|
|
rcu_periph_reset_enable(RCU_SPI4RST);
|
|
rcu_periph_reset_disable(RCU_SPI4RST);
|
|
break;
|
|
case SPI5:
|
|
/* reset SPI5 */
|
|
rcu_periph_reset_enable(RCU_SPI5RST);
|
|
rcu_periph_reset_disable(RCU_SPI5RST);
|
|
break;
|
|
default :
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief initialize the parameters of SPI struct with default values
|
|
\param[in] none
|
|
\param[out] spi_parameter_struct: the initialized struct spi_parameter_struct pointer
|
|
\retval none
|
|
*/
|
|
void spi_struct_para_init(spi_parameter_struct *spi_struct)
|
|
{
|
|
/* configure the structure with default value */
|
|
spi_struct->device_mode = SPI_SLAVE;
|
|
spi_struct->trans_mode = SPI_TRANSMODE_FULLDUPLEX;
|
|
spi_struct->frame_size = SPI_FRAMESIZE_8BIT;
|
|
spi_struct->nss = SPI_NSS_HARD;
|
|
spi_struct->clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE;
|
|
spi_struct->prescale = SPI_PSC_2;
|
|
spi_struct->endian = SPI_ENDIAN_MSB;
|
|
}
|
|
/*!
|
|
\brief initialize SPI parameter
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] spi_struct: SPI parameter initialization stuct members of the structure
|
|
and the member values are shown as below:
|
|
device_mode: SPI_MASTER, SPI_SLAVE.
|
|
trans_mode: SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY,
|
|
SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT
|
|
frame_size: SPI_FRAMESIZE_16BIT, SPI_FRAMESIZE_8BIT
|
|
nss: SPI_NSS_SOFT, SPI_NSS_HARD
|
|
endian: SPI_ENDIAN_MSB, SPI_ENDIAN_LSB
|
|
clock_polarity_phase: SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE
|
|
SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE
|
|
prescale: SPI_PSC_n (n=2,4,8,16,32,64,128,256)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct)
|
|
{
|
|
uint32_t reg = 0U;
|
|
reg = SPI_CTL0(spi_periph);
|
|
reg &= SPI_INIT_MASK;
|
|
|
|
/* select SPI as master or slave */
|
|
reg |= spi_struct->device_mode;
|
|
/* select SPI transfer mode */
|
|
reg |= spi_struct->trans_mode;
|
|
/* select SPI frame size */
|
|
reg |= spi_struct->frame_size;
|
|
/* select SPI nss use hardware or software */
|
|
reg |= spi_struct->nss;
|
|
/* select SPI LSB or MSB */
|
|
reg |= spi_struct->endian;
|
|
/* select SPI polarity and phase */
|
|
reg |= spi_struct->clock_polarity_phase;
|
|
/* select SPI prescale to adjust transmit speed */
|
|
reg |= spi_struct->prescale;
|
|
|
|
/* write to SPI_CTL0 register */
|
|
SPI_CTL0(spi_periph) = (uint32_t)reg;
|
|
|
|
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL);
|
|
}
|
|
|
|
/*!
|
|
\brief enable SPI
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_enable(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN;
|
|
}
|
|
|
|
/*!
|
|
\brief disable SPI
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_disable(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN);
|
|
}
|
|
|
|
/*!
|
|
\brief initialize I2S parameter
|
|
\param[in] spi_periph: SPIx(x=1,2)
|
|
\param[in] i2s_mode: I2S operation mode
|
|
only one parameter can be selected which is shown as below:
|
|
\arg I2S_MODE_SLAVETX : I2S slave transmit mode
|
|
\arg I2S_MODE_SLAVERX : I2S slave receive mode
|
|
\arg I2S_MODE_MASTERTX : I2S master transmit mode
|
|
\arg I2S_MODE_MASTERRX : I2S master receive mode
|
|
\param[in] i2s_standard: I2S standard
|
|
only one parameter can be selected which is shown as below:
|
|
\arg I2S_STD_PHILLIPS : I2S phillips standard
|
|
\arg I2S_STD_MSB : I2S MSB standard
|
|
\arg I2S_STD_LSB : I2S LSB standard
|
|
\arg I2S_STD_PCMSHORT : I2S PCM short standard
|
|
\arg I2S_STD_PCMLONG : I2S PCM long standard
|
|
\param[in] i2s_ckpl: I2S idle state clock polarity
|
|
only one parameter can be selected which is shown as below:
|
|
\arg I2S_CKPL_LOW : I2S clock polarity low level
|
|
\arg I2S_CKPL_HIGH : I2S clock polarity high level
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void i2s_init(uint32_t spi_periph, uint32_t i2s_mode, uint32_t i2s_standard, uint32_t i2s_ckpl)
|
|
{
|
|
uint32_t reg= 0U;
|
|
reg = SPI_I2SCTL(spi_periph);
|
|
reg &= I2S_INIT_MASK;
|
|
|
|
/* enable I2S mode */
|
|
reg |= (uint32_t)SPI_I2SCTL_I2SSEL;
|
|
/* select I2S mode */
|
|
reg |= (uint32_t)i2s_mode;
|
|
/* select I2S standard */
|
|
reg |= (uint32_t)i2s_standard;
|
|
/* select I2S polarity */
|
|
reg |= (uint32_t)i2s_ckpl;
|
|
|
|
/* write to SPI_I2SCTL register */
|
|
SPI_I2SCTL(spi_periph) = (uint32_t)reg;
|
|
}
|
|
|
|
/*!
|
|
\brief configure I2S prescale
|
|
\param[in] spi_periph: SPIx(x=1,2)
|
|
\param[in] i2s_audiosample: I2S audio sample rate
|
|
only one parameter can be selected which is shown as below:
|
|
\arg I2S_AUDIOSAMPLE_8K: audio sample rate is 8KHz
|
|
\arg I2S_AUDIOSAMPLE_11K: audio sample rate is 11KHz
|
|
\arg I2S_AUDIOSAMPLE_16K: audio sample rate is 16KHz
|
|
\arg I2S_AUDIOSAMPLE_22K: audio sample rate is 22KHz
|
|
\arg I2S_AUDIOSAMPLE_32K: audio sample rate is 32KHz
|
|
\arg I2S_AUDIOSAMPLE_44K: audio sample rate is 44KHz
|
|
\arg I2S_AUDIOSAMPLE_48K: audio sample rate is 48KHz
|
|
\arg I2S_AUDIOSAMPLE_96K: audio sample rate is 96KHz
|
|
\arg I2S_AUDIOSAMPLE_192K: audio sample rate is 192KHz
|
|
\param[in] i2s_frameformat: I2S data length and channel length
|
|
only one parameter can be selected which is shown as below:
|
|
\arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
|
|
\arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
|
|
\arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
|
|
\arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
|
|
\param[in] i2s_mckout: I2S master clock output
|
|
only one parameter can be selected which is shown as below:
|
|
\arg I2S_MCKOUT_ENABLE: I2S master clock output enable
|
|
\arg I2S_MCKOUT_DISABLE: I2S master clock output disable
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void i2s_psc_config(uint32_t spi_periph, uint32_t i2s_audiosample, uint32_t i2s_frameformat, uint32_t i2s_mckout)
|
|
{
|
|
uint32_t i2sdiv = 2U, i2sof = 0U;
|
|
uint32_t clks = 0U;
|
|
uint32_t i2sclock = 0U;
|
|
|
|
#ifndef I2S_EXTERNAL_CLOCK_IN
|
|
uint32_t plli2sm = 0U, plli2sn = 0U, plli2sr = 0U;
|
|
#endif /* I2S_EXTERNAL_CLOCK_IN */
|
|
|
|
/* deinit SPI_I2SPSC register */
|
|
SPI_I2SPSC(spi_periph) = SPI_I2SPSC_DEFAULT_VALUE;
|
|
|
|
#ifdef I2S_EXTERNAL_CLOCK_IN
|
|
rcu_i2s_clock_config(RCU_I2SSRC_I2S_CKIN);
|
|
|
|
/* set the I2S clock to the external clock input value */
|
|
i2sclock = I2S_EXTERNAL_CLOCK_IN;
|
|
#else
|
|
|
|
/* turn on the oscillator HXTAL */
|
|
rcu_osci_on(RCU_HXTAL);
|
|
/* wait for oscillator stabilization flags is SET */
|
|
rcu_osci_stab_wait(RCU_HXTAL);
|
|
/* turn on the PLLI2S */
|
|
rcu_osci_on(RCU_PLLI2S_CK);
|
|
/* wait for PLLI2S flags is SET */
|
|
rcu_osci_stab_wait(RCU_PLLI2S_CK);
|
|
/* configure the I2S clock source selection */
|
|
rcu_i2s_clock_config(RCU_I2SSRC_PLLI2S);
|
|
|
|
/* get the RCU_PLL_PLLPSC value */
|
|
plli2sm = (uint32_t)(RCU_PLL & RCU_PLL_PLLPSC);
|
|
/* get the RCU_PLLI2S_PLLI2SN value */
|
|
plli2sn = (uint32_t)((RCU_PLLI2S & RCU_PLLI2S_PLLI2SN) >> 6);
|
|
/* get the RCU_PLLI2S_PLLI2SR value */
|
|
plli2sr = (uint32_t)((RCU_PLLI2S & RCU_PLLI2S_PLLI2SR) >> 28);
|
|
|
|
if((RCU_PLL & RCU_PLL_PLLSEL) == RCU_PLLSRC_HXTAL)
|
|
{
|
|
/* get the I2S source clock value */
|
|
i2sclock = (uint32_t)(((HXTAL_VALUE / plli2sm) * plli2sn) / plli2sr);
|
|
}
|
|
else
|
|
{ /* get the I2S source clock value */
|
|
i2sclock = (uint32_t)(((IRC16M_VALUE / plli2sm) * plli2sn) / plli2sr);
|
|
}
|
|
#endif /* I2S_EXTERNAL_CLOCK_IN */
|
|
|
|
/* config the prescaler depending on the mclk output state, the frame format and audio sample rate */
|
|
if(I2S_MCKOUT_ENABLE == i2s_mckout){
|
|
clks = (uint32_t)(((i2sclock / 256U) * 10U) / i2s_audiosample);
|
|
}else{
|
|
if(I2S_FRAMEFORMAT_DT16B_CH16B == i2s_frameformat){
|
|
clks = (uint32_t)(((i2sclock / 32U) *10U ) / i2s_audiosample);
|
|
}else{
|
|
clks = (uint32_t)(((i2sclock / 64U) *10U ) / i2s_audiosample);
|
|
}
|
|
}
|
|
/* remove the floating point */
|
|
clks = (clks + 5U) / 10U;
|
|
i2sof = (clks & 0x00000001U);
|
|
i2sdiv = ((clks - i2sof) / 2U);
|
|
i2sof = (i2sof << 8U);
|
|
|
|
/* set the default values */
|
|
if((i2sdiv< 2U) || (i2sdiv > 255U)){
|
|
i2sdiv = 2U;
|
|
i2sof = 0U;
|
|
}
|
|
|
|
/* configure SPI_I2SPSC */
|
|
SPI_I2SPSC(spi_periph) = (uint32_t)(i2sdiv | i2sof | i2s_mckout);
|
|
|
|
/* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */
|
|
SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN|SPI_I2SCTL_CHLEN));
|
|
/* configure data frame format */
|
|
SPI_I2SCTL(spi_periph) |= (uint32_t)i2s_frameformat;
|
|
}
|
|
|
|
/*!
|
|
\brief enable I2S
|
|
\param[in] spi_periph: SPIx(x=1,2)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void i2s_enable(uint32_t spi_periph)
|
|
{
|
|
SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN;
|
|
}
|
|
|
|
/*!
|
|
\brief disable I2S
|
|
\param[in] spi_periph: SPIx(x=1,2)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void i2s_disable(uint32_t spi_periph)
|
|
{
|
|
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN);
|
|
}
|
|
|
|
/*!
|
|
\brief enable SPI nss output
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_nss_output_enable(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV;
|
|
}
|
|
|
|
/*!
|
|
\brief disable SPI nss output
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_nss_output_disable(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV);
|
|
}
|
|
|
|
/*!
|
|
\brief SPI nss pin high level in software mode
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_nss_internal_high(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS;
|
|
}
|
|
|
|
/*!
|
|
\brief SPI nss pin low level in software mode
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_nss_internal_low(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS);
|
|
}
|
|
|
|
/*!
|
|
\brief enable SPI DMA send or receive
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] spi_dma: SPI DMA mode
|
|
only one parameter can be selected which is shown as below:
|
|
\arg SPI_DMA_TRANSMIT: SPI transmit data use DMA
|
|
\arg SPI_DMA_RECEIVE: SPI receive data use DMA
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_dma_enable(uint32_t spi_periph, uint8_t spi_dma)
|
|
{
|
|
if(SPI_DMA_TRANSMIT == spi_dma){
|
|
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN;
|
|
}else{
|
|
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief diable SPI DMA send or receive
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] spi_dma: SPI DMA mode
|
|
only one parameter can be selected which is shown as below:
|
|
\arg SPI_DMA_TRANSMIT: SPI transmit data use DMA
|
|
\arg SPI_DMA_RECEIVE: SPI receive data use DMA
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_dma_disable(uint32_t spi_periph, uint8_t spi_dma)
|
|
{
|
|
if(SPI_DMA_TRANSMIT == spi_dma){
|
|
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN);
|
|
}else{
|
|
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief configure SPI/I2S data frame format
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] frame_format: SPI frame size
|
|
only one parameter can be selected which is shown as below:
|
|
\arg SPI_FRAMESIZE_16BIT: SPI frame size is 16 bits
|
|
\arg SPI_FRAMESIZE_8BIT: SPI frame size is 8 bits
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format)
|
|
{
|
|
/* clear SPI_CTL0_FF16 bit */
|
|
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16);
|
|
/* configure SPI_CTL0_FF16 bit */
|
|
SPI_CTL0(spi_periph) |= (uint32_t)frame_format;
|
|
}
|
|
|
|
/*!
|
|
\brief SPI transmit data
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] data: 16-bit data
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data)
|
|
{
|
|
SPI_DATA(spi_periph) = (uint32_t)data;
|
|
}
|
|
|
|
/*!
|
|
\brief SPI receive data
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval 16-bit data
|
|
*/
|
|
uint16_t spi_i2s_data_receive(uint32_t spi_periph)
|
|
{
|
|
return ((uint16_t)SPI_DATA(spi_periph));
|
|
}
|
|
|
|
/*!
|
|
\brief configure SPI bidirectional transfer direction
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] transfer_direction: SPI transfer direction
|
|
only one parameter can be selected which is shown as below:
|
|
\arg SPI_BIDIRECTIONAL_TRANSMIT: SPI work in transmit-only mode
|
|
\arg SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode
|
|
\retval none
|
|
*/
|
|
void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction)
|
|
{
|
|
if(SPI_BIDIRECTIONAL_TRANSMIT == transfer_direction){
|
|
/* set the transmit only mode */
|
|
SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TRANSMIT;
|
|
}else{
|
|
/* set the receive only mode */
|
|
SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief set SPI CRC polynomial
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] crc_poly: CRC polynomial value
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly)
|
|
{
|
|
/* enable SPI CRC */
|
|
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
|
|
|
|
/* set SPI CRC polynomial */
|
|
SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly;
|
|
}
|
|
|
|
/*!
|
|
\brief get SPI CRC polynomial
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval 16-bit CRC polynomial
|
|
*/
|
|
uint16_t spi_crc_polynomial_get(uint32_t spi_periph)
|
|
{
|
|
return ((uint16_t)SPI_CRCPOLY(spi_periph));
|
|
}
|
|
|
|
/*!
|
|
\brief turn on CRC function
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_crc_on(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
|
|
}
|
|
|
|
/*!
|
|
\brief turn off CRC function
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_crc_off(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN);
|
|
}
|
|
|
|
/*!
|
|
\brief SPI next data is CRC value
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_crc_next(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT;
|
|
}
|
|
|
|
/*!
|
|
\brief get SPI CRC send value or receive value
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] spi_crc: SPI crc value
|
|
only one parameter can be selected which is shown as below:
|
|
\arg SPI_CRC_TX: get transmit crc value
|
|
\arg SPI_CRC_RX: get receive crc value
|
|
\param[out] none
|
|
\retval 16-bit CRC value
|
|
*/
|
|
uint16_t spi_crc_get(uint32_t spi_periph,uint8_t spi_crc)
|
|
{
|
|
if(SPI_CRC_TX == spi_crc){
|
|
return ((uint16_t)(SPI_TCRC(spi_periph)));
|
|
}else{
|
|
return ((uint16_t)(SPI_RCRC(spi_periph)));
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief enable SPI TI mode
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_ti_mode_enable(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD;
|
|
}
|
|
|
|
/*!
|
|
\brief disable SPI TI mode
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_ti_mode_disable(uint32_t spi_periph)
|
|
{
|
|
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD);
|
|
}
|
|
|
|
/*!
|
|
\brief configure i2s full duplex mode
|
|
\param[in] i2s_add_periph: I2Sx_ADD(x=1,2)
|
|
\param[in] i2s_mode:
|
|
\arg I2S_MODE_SLAVETX : I2S slave transmit mode
|
|
\arg I2S_MODE_SLAVERX : I2S slave receive mode
|
|
\arg I2S_MODE_MASTERTX : I2S master transmit mode
|
|
\arg I2S_MODE_MASTERRX : I2S master receive mode
|
|
\param[in] i2s_standard:
|
|
\arg I2S_STD_PHILLIPS : I2S phillips standard
|
|
\arg I2S_STD_MSB : I2S MSB standard
|
|
\arg I2S_STD_LSB : I2S LSB standard
|
|
\arg I2S_STD_PCMSHORT : I2S PCM short standard
|
|
\arg I2S_STD_PCMLONG : I2S PCM long standard
|
|
\param[in] i2s_ckpl:
|
|
\arg I2S_CKPL_LOW : I2S clock polarity low level
|
|
\arg I2S_CKPL_HIGH : I2S clock polarity high level
|
|
\param[in] i2s_frameformat:
|
|
\arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
|
|
\arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
|
|
\arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
|
|
\arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void i2s_full_duplex_mode_config(uint32_t i2s_add_periph, uint32_t i2s_mode, uint32_t i2s_standard,
|
|
uint32_t i2s_ckpl, uint32_t i2s_frameformat)
|
|
{
|
|
uint32_t reg = 0U, tmp = 0U;
|
|
|
|
reg = I2S_ADD_I2SCTL(i2s_add_periph);
|
|
reg &= I2S_FULL_DUPLEX_MASK;
|
|
|
|
/* get the mode of the extra I2S module I2Sx_ADD */
|
|
if((I2S_MODE_MASTERTX == i2s_mode) || (I2S_MODE_SLAVETX == i2s_mode)){
|
|
tmp = I2S_MODE_SLAVERX;
|
|
}else{
|
|
tmp = I2S_MODE_SLAVETX;
|
|
}
|
|
|
|
/* enable I2S mode */
|
|
reg |= (uint32_t)SPI_I2SCTL_I2SSEL;
|
|
/* select I2S mode */
|
|
reg |= (uint32_t)tmp;
|
|
/* select I2S standard */
|
|
reg |= (uint32_t)i2s_standard;
|
|
/* select I2S polarity */
|
|
reg |= (uint32_t)i2s_ckpl;
|
|
/* configure data frame format */
|
|
reg |= (uint32_t)i2s_frameformat;
|
|
|
|
/* write to SPI_I2SCTL register */
|
|
I2S_ADD_I2SCTL(i2s_add_periph) = (uint32_t)reg;
|
|
}
|
|
|
|
/*!
|
|
\brief enable quad wire SPI
|
|
\param[in] spi_periph: SPIx(only x=5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void qspi_enable(uint32_t spi_periph)
|
|
{
|
|
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD;
|
|
}
|
|
|
|
/*!
|
|
\brief disable quad wire SPI
|
|
\param[in] spi_periph: SPIx(only x=5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void qspi_disable(uint32_t spi_periph)
|
|
{
|
|
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD);
|
|
}
|
|
|
|
/*!
|
|
\brief enable quad wire SPI write
|
|
\param[in] spi_periph: SPIx(only x=5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void qspi_write_enable(uint32_t spi_periph)
|
|
{
|
|
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD);
|
|
}
|
|
|
|
/*!
|
|
\brief enable quad wire SPI read
|
|
\param[in] spi_periph: SPIx(only x=5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void qspi_read_enable(uint32_t spi_periph)
|
|
{
|
|
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD;
|
|
}
|
|
|
|
/*!
|
|
\brief enable SPI_IO2 and SPI_IO3 pin output
|
|
\param[in] spi_periph: SPIx(only x=5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void qspi_io23_output_enable(uint32_t spi_periph)
|
|
{
|
|
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV;
|
|
}
|
|
|
|
/*!
|
|
\brief disable SPI_IO2 and SPI_IO3 pin output
|
|
\param[in] spi_periph: SPIx(only x=5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void qspi_io23_output_disable(uint32_t spi_periph)
|
|
{
|
|
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV);
|
|
}
|
|
|
|
/*!
|
|
\brief enable SPI and I2S interrupt
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] spi_i2s_int: SPI/I2S interrupt
|
|
only one parameter can be selected which is shown as below:
|
|
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
|
|
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
|
|
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
|
|
transmission underrun error and format error interrupt
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t spi_i2s_int)
|
|
{
|
|
switch(spi_i2s_int){
|
|
/* SPI/I2S transmit buffer empty interrupt */
|
|
case SPI_I2S_INT_TBE:
|
|
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TBEIE;
|
|
break;
|
|
/* SPI/I2S receive buffer not empty interrupt */
|
|
case SPI_I2S_INT_RBNE:
|
|
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_RBNEIE;
|
|
break;
|
|
/* SPI/I2S error */
|
|
case SPI_I2S_INT_ERR:
|
|
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_ERRIE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief disable SPI and I2S interrupt
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] spi_i2s_int: SPI/I2S interrupt
|
|
only one parameter can be selected which is shown as below:
|
|
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
|
|
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
|
|
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
|
|
transmission underrun error and format error interrupt
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t spi_i2s_int)
|
|
{
|
|
switch(spi_i2s_int){
|
|
/* SPI/I2S transmit buffer empty interrupt */
|
|
case SPI_I2S_INT_TBE :
|
|
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TBEIE);
|
|
break;
|
|
/* SPI/I2S receive buffer not empty interrupt */
|
|
case SPI_I2S_INT_RBNE :
|
|
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RBNEIE);
|
|
break;
|
|
/* SPI/I2S error */
|
|
case SPI_I2S_INT_ERR :
|
|
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_ERRIE);
|
|
break;
|
|
default :
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief get SPI and I2S interrupt flag status
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] spi_i2s_int: SPI/I2S interrupt flag status
|
|
\arg SPI_I2S_INT_FLAG_TBE: transmit buffer empty interrupt flag
|
|
\arg SPI_I2S_INT_FLAG_RBNE: receive buffer not empty interrupt flag
|
|
\arg SPI_I2S_INT_FLAG_RXORERR: overrun interrupt flag
|
|
\arg SPI_INT_FLAG_CONFERR: config error interrupt flag
|
|
\arg SPI_INT_FLAG_CRCERR: CRC error interrupt flag
|
|
\arg I2S_INT_FLAG_TXURERR: underrun error interrupt flag
|
|
\arg SPI_I2S_INT_FLAG_FERR: format error interrupt flag
|
|
\param[out] none
|
|
\retval FlagStatus: SET or RESET
|
|
*/
|
|
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t spi_i2s_int)
|
|
{
|
|
uint32_t reg1 = SPI_STAT(spi_periph);
|
|
uint32_t reg2 = SPI_CTL1(spi_periph);
|
|
|
|
switch(spi_i2s_int){
|
|
/* SPI/I2S transmit buffer empty interrupt */
|
|
case SPI_I2S_INT_FLAG_TBE :
|
|
reg1 = reg1 & SPI_STAT_TBE;
|
|
reg2 = reg2 & SPI_CTL1_TBEIE;
|
|
break;
|
|
/* SPI/I2S receive buffer not empty interrupt */
|
|
case SPI_I2S_INT_FLAG_RBNE :
|
|
reg1 = reg1 & SPI_STAT_RBNE;
|
|
reg2 = reg2 & SPI_CTL1_RBNEIE;
|
|
break;
|
|
/* SPI/I2S overrun interrupt */
|
|
case SPI_I2S_INT_FLAG_RXORERR :
|
|
reg1 = reg1 & SPI_STAT_RXORERR;
|
|
reg2 = reg2 & SPI_CTL1_ERRIE;
|
|
break;
|
|
/* SPI config error interrupt */
|
|
case SPI_INT_FLAG_CONFERR :
|
|
reg1 = reg1 & SPI_STAT_CONFERR;
|
|
reg2 = reg2 & SPI_CTL1_ERRIE;
|
|
break;
|
|
/* SPI CRC error interrupt */
|
|
case SPI_INT_FLAG_CRCERR :
|
|
reg1 = reg1 & SPI_STAT_CRCERR;
|
|
reg2 = reg2 & SPI_CTL1_ERRIE;
|
|
break;
|
|
/* I2S underrun error interrupt */
|
|
case I2S_INT_FLAG_TXURERR :
|
|
reg1 = reg1 & SPI_STAT_TXURERR;
|
|
reg2 = reg2 & SPI_CTL1_ERRIE;
|
|
break;
|
|
/* SPI/I2S format error interrupt */
|
|
case SPI_I2S_INT_FLAG_FERR :
|
|
reg1 = reg1 & SPI_STAT_FERR;
|
|
reg2 = reg2 & SPI_CTL1_ERRIE;
|
|
break;
|
|
default :
|
|
break;
|
|
}
|
|
/*get SPI/I2S interrupt flag status */
|
|
if(reg1 && reg2){
|
|
return SET;
|
|
}else{
|
|
return RESET;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief get SPI and I2S flag status
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[in] spi_i2s_flag: SPI/I2S flag status
|
|
\arg SPI_FLAG_TBE: transmit buffer empty flag
|
|
\arg SPI_FLAG_RBNE: receive buffer not empty flag
|
|
\arg SPI_FLAG_TRANS: transmit on-going flag
|
|
\arg SPI_FLAG_RXORERR: receive overrun error flag
|
|
\arg SPI_FLAG_CONFERR: mode config error flag
|
|
\arg SPI_FLAG_CRCERR: CRC error flag
|
|
\arg SPI_FLAG_FERR: format error flag
|
|
\arg I2S_FLAG_TBE: transmit buffer empty flag
|
|
\arg I2S_FLAG_RBNE: receive buffer not empty flag
|
|
\arg I2S_FLAG_TRANS: transmit on-going flag
|
|
\arg I2S_FLAG_RXORERR: overrun error flag
|
|
\arg I2S_FLAG_TXURERR: underrun error flag
|
|
\arg I2S_FLAG_CH: channel side flag
|
|
\arg I2S_FLAG_FERR: format error flag
|
|
\param[out] none
|
|
\retval FlagStatus: SET or RESET
|
|
*/
|
|
FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t spi_i2s_flag)
|
|
{
|
|
if(SPI_STAT(spi_periph) & spi_i2s_flag){
|
|
return SET;
|
|
}else{
|
|
return RESET;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief clear SPI CRC error flag status
|
|
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void spi_crc_error_clear(uint32_t spi_periph)
|
|
{
|
|
SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR);
|
|
}
|
|
|