mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-02-05 11:14:35 +08:00
1809 lines
71 KiB
C
1809 lines
71 KiB
C
/**
|
||
******************************************************************************
|
||
* @file stm32f4xx_rcc.c
|
||
* @author MCD Application Team
|
||
* @version V1.0.0
|
||
* @date 30-September-2011
|
||
* @brief This file provides firmware functions to manage the following
|
||
* functionalities of the Reset and clock control (RCC) peripheral:
|
||
* - Internal/external clocks, PLL, CSS and MCO configuration
|
||
* - System, AHB and APB busses clocks configuration
|
||
* - Peripheral clocks configuration
|
||
* - Interrupts and flags management
|
||
*
|
||
* @verbatim
|
||
*
|
||
* ===================================================================
|
||
* RCC specific features
|
||
* ===================================================================
|
||
*
|
||
* After reset the device is running from Internal High Speed oscillator
|
||
* (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache
|
||
* and I-Cache are disabled, and all peripherals are off except internal
|
||
* SRAM, Flash and JTAG.
|
||
* - There is no prescaler on High speed (AHB) and Low speed (APB) busses;
|
||
* all peripherals mapped on these busses are running at HSI speed.
|
||
* - The clock for all peripherals is switched off, except the SRAM and FLASH.
|
||
* - All GPIOs are in input floating state, except the JTAG pins which
|
||
* are assigned to be used for debug purpose.
|
||
*
|
||
* Once the device started from reset, the user application has to:
|
||
* - Configure the clock source to be used to drive the System clock
|
||
* (if the application needs higher frequency/performance)
|
||
* - Configure the System clock frequency and Flash settings
|
||
* - Configure the AHB and APB busses prescalers
|
||
* - Enable the clock for the peripheral(s) to be used
|
||
* - Configure the clock source(s) for peripherals which clocks are not
|
||
* derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)
|
||
*
|
||
* @endverbatim
|
||
*
|
||
******************************************************************************
|
||
* @attention
|
||
*
|
||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
|
||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
|
||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
|
||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
|
||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
|
||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
|
||
*
|
||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
|
||
******************************************************************************
|
||
*/
|
||
|
||
/* Includes ------------------------------------------------------------------*/
|
||
#include "stm32f4xx_rcc.h"
|
||
|
||
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
||
* @{
|
||
*/
|
||
|
||
/** @defgroup RCC
|
||
* @brief RCC driver modules
|
||
* @{
|
||
*/
|
||
|
||
/* Private typedef -----------------------------------------------------------*/
|
||
/* Private define ------------------------------------------------------------*/
|
||
/* ------------ RCC registers bit address in the alias region ----------- */
|
||
#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
|
||
/* --- CR Register ---*/
|
||
/* Alias word address of HSION bit */
|
||
#define CR_OFFSET (RCC_OFFSET + 0x00)
|
||
#define HSION_BitNumber 0x00
|
||
#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
|
||
/* Alias word address of CSSON bit */
|
||
#define CSSON_BitNumber 0x13
|
||
#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
|
||
/* Alias word address of PLLON bit */
|
||
#define PLLON_BitNumber 0x18
|
||
#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
|
||
/* Alias word address of PLLI2SON bit */
|
||
#define PLLI2SON_BitNumber 0x1A
|
||
#define CR_PLLI2SON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLI2SON_BitNumber * 4))
|
||
|
||
/* --- CFGR Register ---*/
|
||
/* Alias word address of I2SSRC bit */
|
||
#define CFGR_OFFSET (RCC_OFFSET + 0x08)
|
||
#define I2SSRC_BitNumber 0x17
|
||
#define CFGR_I2SSRC_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (I2SSRC_BitNumber * 4))
|
||
|
||
/* --- BDCR Register ---*/
|
||
/* Alias word address of RTCEN bit */
|
||
#define BDCR_OFFSET (RCC_OFFSET + 0x70)
|
||
#define RTCEN_BitNumber 0x0F
|
||
#define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4))
|
||
/* Alias word address of BDRST bit */
|
||
#define BDRST_BitNumber 0x10
|
||
#define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4))
|
||
/* --- CSR Register ---*/
|
||
/* Alias word address of LSION bit */
|
||
#define CSR_OFFSET (RCC_OFFSET + 0x74)
|
||
#define LSION_BitNumber 0x00
|
||
#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
|
||
/* ---------------------- RCC registers bit mask ------------------------ */
|
||
/* CFGR register bit mask */
|
||
#define CFGR_MCO2_RESET_MASK ((uint32_t)0x07FFFFFF)
|
||
#define CFGR_MCO1_RESET_MASK ((uint32_t)0xF89FFFFF)
|
||
|
||
/* RCC Flag Mask */
|
||
#define FLAG_MASK ((uint8_t)0x1F)
|
||
|
||
/* CR register byte 3 (Bits[23:16]) base address */
|
||
#define CR_BYTE3_ADDRESS ((uint32_t)0x40023802)
|
||
|
||
/* CIR register byte 2 (Bits[15:8]) base address */
|
||
#define CIR_BYTE2_ADDRESS ((uint32_t)(RCC_BASE + 0x0C + 0x01))
|
||
|
||
/* CIR register byte 3 (Bits[23:16]) base address */
|
||
#define CIR_BYTE3_ADDRESS ((uint32_t)(RCC_BASE + 0x0C + 0x02))
|
||
|
||
/* BDCR register base address */
|
||
#define BDCR_ADDRESS (PERIPH_BASE + BDCR_OFFSET)
|
||
|
||
/* Private macro -------------------------------------------------------------*/
|
||
/* Private variables ---------------------------------------------------------*/
|
||
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
|
||
|
||
/* Private function prototypes -----------------------------------------------*/
|
||
/* Private functions ---------------------------------------------------------*/
|
||
|
||
/** @defgroup RCC_Private_Functions
|
||
* @{
|
||
*/
|
||
|
||
/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
|
||
* @brief Internal and external clocks, PLL, CSS and MCO configuration functions
|
||
*
|
||
@verbatim
|
||
===============================================================================
|
||
Internal/external clocks, PLL, CSS and MCO configuration functions
|
||
===============================================================================
|
||
|
||
This section provide functions allowing to configure the internal/external clocks,
|
||
PLLs, CSS and MCO pins.
|
||
|
||
1. HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
|
||
the PLL as System clock source.
|
||
|
||
2. LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
|
||
clock source.
|
||
|
||
3. HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or
|
||
through the PLL as System clock source. Can be used also as RTC clock source.
|
||
|
||
4. LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
|
||
|
||
5. PLL (clocked by HSI or HSE), featuring two different output clocks:
|
||
- The first output is used to generate the high speed system clock (up to 168 MHz)
|
||
- The second output is used to generate the clock for the USB OTG FS (48 MHz),
|
||
the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz).
|
||
|
||
6. PLLI2S (clocked by HSI or HSE), used to generate an accurate clock to achieve
|
||
high-quality audio performance on the I2S interface.
|
||
|
||
7. CSS (Clock security system), once enable and if a HSE clock failure occurs
|
||
(HSE used directly or through PLL as System clock source), the System clock
|
||
is automatically switched to HSI and an interrupt is generated if enabled.
|
||
The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt)
|
||
exception vector.
|
||
|
||
8. MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL
|
||
clock (through a configurable prescaler) on PA8 pin.
|
||
|
||
9. MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S
|
||
clock (through a configurable prescaler) on PC9 pin.
|
||
|
||
@endverbatim
|
||
* @{
|
||
*/
|
||
|
||
/**
|
||
* @brief Resets the RCC clock configuration to the default reset state.
|
||
* @note The default reset state of the clock configuration is given below:
|
||
* - HSI ON and used as system clock source
|
||
* - HSE, PLL and PLLI2S OFF
|
||
* - AHB, APB1 and APB2 prescaler set to 1.
|
||
* - CSS, MCO1 and MCO2 OFF
|
||
* - All interrupts disabled
|
||
* @note This function doesn't modify the configuration of the
|
||
* - Peripheral clocks
|
||
* - LSI, LSE and RTC clocks
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
void RCC_DeInit(void)
|
||
{
|
||
/* Set HSION bit */
|
||
RCC->CR |= (uint32_t)0x00000001;
|
||
|
||
/* Reset CFGR register */
|
||
RCC->CFGR = 0x00000000;
|
||
|
||
/* Reset HSEON, CSSON and PLLON bits */
|
||
RCC->CR &= (uint32_t)0xFEF6FFFF;
|
||
|
||
/* Reset PLLCFGR register */
|
||
RCC->PLLCFGR = 0x24003010;
|
||
|
||
/* Reset HSEBYP bit */
|
||
RCC->CR &= (uint32_t)0xFFFBFFFF;
|
||
|
||
/* Disable all interrupts */
|
||
RCC->CIR = 0x00000000;
|
||
}
|
||
|
||
/**
|
||
* @brief Configures the External High Speed oscillator (HSE).
|
||
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
|
||
* software should wait on HSERDY flag to be set indicating that HSE clock
|
||
* is stable and can be used to clock the PLL and/or system clock.
|
||
* @note HSE state can not be changed if it is used directly or through the
|
||
* PLL as system clock. In this case, you have to select another source
|
||
* of the system clock then change the HSE state (ex. disable it).
|
||
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
|
||
* @note This function reset the CSSON bit, so if the Clock security system(CSS)
|
||
* was previously enabled you have to enable it again after calling this
|
||
* function.
|
||
* @param RCC_HSE: specifies the new state of the HSE.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
|
||
* 6 HSE oscillator clock cycles.
|
||
* @arg RCC_HSE_ON: turn ON the HSE oscillator
|
||
* @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
|
||
* @retval None
|
||
*/
|
||
void RCC_HSEConfig(uint8_t RCC_HSE)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_HSE(RCC_HSE));
|
||
|
||
/* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
|
||
*(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE_OFF;
|
||
|
||
/* Set the new HSE configuration -------------------------------------------*/
|
||
*(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE;
|
||
}
|
||
|
||
/**
|
||
* @brief Waits for HSE start-up.
|
||
* @note This functions waits on HSERDY flag to be set and return SUCCESS if
|
||
* this flag is set, otherwise returns ERROR if the timeout is reached
|
||
* and this flag is not set. The timeout value is defined by the constant
|
||
* HSE_STARTUP_TIMEOUT in stm32f4xx.h file. You can tailor it depending
|
||
* on the HSE crystal used in your application.
|
||
* @param None
|
||
* @retval An ErrorStatus enumeration value:
|
||
* - SUCCESS: HSE oscillator is stable and ready to use
|
||
* - ERROR: HSE oscillator not yet ready
|
||
*/
|
||
ErrorStatus RCC_WaitForHSEStartUp(void)
|
||
{
|
||
__IO uint32_t startupcounter = 0;
|
||
ErrorStatus status = ERROR;
|
||
FlagStatus hsestatus = RESET;
|
||
/* Wait till HSE is ready and if Time out is reached exit */
|
||
do
|
||
{
|
||
hsestatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
|
||
startupcounter++;
|
||
} while((startupcounter != HSE_STARTUP_TIMEOUT) && (hsestatus == RESET));
|
||
|
||
if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
|
||
{
|
||
status = SUCCESS;
|
||
}
|
||
else
|
||
{
|
||
status = ERROR;
|
||
}
|
||
return (status);
|
||
}
|
||
|
||
/**
|
||
* @brief Adjusts the Internal High Speed oscillator (HSI) calibration value.
|
||
* @note The calibration is used to compensate for the variations in voltage
|
||
* and temperature that influence the frequency of the internal HSI RC.
|
||
* @param HSICalibrationValue: specifies the calibration trimming value.
|
||
* This parameter must be a number between 0 and 0x1F.
|
||
* @retval None
|
||
*/
|
||
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
|
||
{
|
||
uint32_t tmpreg = 0;
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue));
|
||
|
||
tmpreg = RCC->CR;
|
||
|
||
/* Clear HSITRIM[4:0] bits */
|
||
tmpreg &= ~RCC_CR_HSITRIM;
|
||
|
||
/* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
|
||
tmpreg |= (uint32_t)HSICalibrationValue << 3;
|
||
|
||
/* Store the new value */
|
||
RCC->CR = tmpreg;
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the Internal High Speed oscillator (HSI).
|
||
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
|
||
* It is used (enabled by hardware) as system clock source after startup
|
||
* from Reset, wakeup from STOP and STANDBY mode, or in case of failure
|
||
* of the HSE used directly or indirectly as system clock (if the Clock
|
||
* Security System CSS is enabled).
|
||
* @note HSI can not be stopped if it is used as system clock source. In this case,
|
||
* you have to select another source of the system clock then stop the HSI.
|
||
* @note After enabling the HSI, the application software should wait on HSIRDY
|
||
* flag to be set indicating that HSI clock is stable and can be used as
|
||
* system clock source.
|
||
* @param NewState: new state of the HSI.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
|
||
* clock cycles.
|
||
* @retval None
|
||
*/
|
||
void RCC_HSICmd(FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
*(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
|
||
}
|
||
|
||
/**
|
||
* @brief Configures the External Low Speed oscillator (LSE).
|
||
* @note As the LSE is in the Backup domain and write access is denied to
|
||
* this domain after reset, you have to enable write access using
|
||
* PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
|
||
* (to be done once after reset).
|
||
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
|
||
* software should wait on LSERDY flag to be set indicating that LSE clock
|
||
* is stable and can be used to clock the RTC.
|
||
* @param RCC_LSE: specifies the new state of the LSE.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
|
||
* 6 LSE oscillator clock cycles.
|
||
* @arg RCC_LSE_ON: turn ON the LSE oscillator
|
||
* @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
|
||
* @retval None
|
||
*/
|
||
void RCC_LSEConfig(uint8_t RCC_LSE)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_LSE(RCC_LSE));
|
||
|
||
/* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
|
||
/* Reset LSEON bit */
|
||
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF;
|
||
|
||
/* Reset LSEBYP bit */
|
||
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF;
|
||
|
||
/* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */
|
||
switch (RCC_LSE)
|
||
{
|
||
case RCC_LSE_ON:
|
||
/* Set LSEON bit */
|
||
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_ON;
|
||
break;
|
||
case RCC_LSE_Bypass:
|
||
/* Set LSEBYP and LSEON bits */
|
||
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_Bypass | RCC_LSE_ON;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the Internal Low Speed oscillator (LSI).
|
||
* @note After enabling the LSI, the application software should wait on
|
||
* LSIRDY flag to be set indicating that LSI clock is stable and can
|
||
* be used to clock the IWDG and/or the RTC.
|
||
* @note LSI can not be disabled if the IWDG is running.
|
||
* @param NewState: new state of the LSI.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
|
||
* clock cycles.
|
||
* @retval None
|
||
*/
|
||
void RCC_LSICmd(FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
*(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
|
||
}
|
||
|
||
/**
|
||
* @brief Configures the main PLL clock source, multiplication and division factors.
|
||
* @note This function must be used only when the main PLL is disabled.
|
||
*
|
||
* @param RCC_PLLSource: specifies the PLL entry clock source.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_PLLSource_HSI: HSI oscillator clock selected as PLL clock entry
|
||
* @arg RCC_PLLSource_HSE: HSE oscillator clock selected as PLL clock entry
|
||
* @note This clock source (RCC_PLLSource) is common for the main PLL and PLLI2S.
|
||
*
|
||
* @param PLLM: specifies the division factor for PLL VCO input clock
|
||
* This parameter must be a number between 0 and 63.
|
||
* @note You have to set the PLLM parameter correctly to ensure that the VCO input
|
||
* frequency ranges from 1 to 2 MHz. It is recommended to select a frequency
|
||
* of 2 MHz to limit PLL jitter.
|
||
*
|
||
* @param PLLN: specifies the multiplication factor for PLL VCO output clock
|
||
* This parameter must be a number between 192 and 432.
|
||
* @note You have to set the PLLN parameter correctly to ensure that the VCO
|
||
* output frequency is between 192 and 432 MHz.
|
||
*
|
||
* @param PLLP: specifies the division factor for main system clock (SYSCLK)
|
||
* This parameter must be a number in the range {2, 4, 6, or 8}.
|
||
* @note You have to set the PLLP parameter correctly to not exceed 168 MHz on
|
||
* the System clock frequency.
|
||
*
|
||
* @param PLLQ: specifies the division factor for OTG FS, SDIO and RNG clocks
|
||
* This parameter must be a number between 4 and 15.
|
||
* @note If the USB OTG FS is used in your application, you have to set the
|
||
* PLLQ parameter correctly to have 48 MHz clock for the USB. However,
|
||
* the SDIO and RNG need a frequency lower than or equal to 48 MHz to work
|
||
* correctly.
|
||
*
|
||
* @retval None
|
||
*/
|
||
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t PLLM, uint32_t PLLN, uint32_t PLLP, uint32_t PLLQ)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
|
||
assert_param(IS_RCC_PLLM_VALUE(PLLM));
|
||
assert_param(IS_RCC_PLLN_VALUE(PLLN));
|
||
assert_param(IS_RCC_PLLP_VALUE(PLLP));
|
||
assert_param(IS_RCC_PLLQ_VALUE(PLLQ));
|
||
|
||
RCC->PLLCFGR = PLLM | (PLLN << 6) | (((PLLP >> 1) -1) << 16) | (RCC_PLLSource) |
|
||
(PLLQ << 24);
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the main PLL.
|
||
* @note After enabling the main PLL, the application software should wait on
|
||
* PLLRDY flag to be set indicating that PLL clock is stable and can
|
||
* be used as system clock source.
|
||
* @note The main PLL can not be disabled if it is used as system clock source
|
||
* @note The main PLL is disabled by hardware when entering STOP and STANDBY modes.
|
||
* @param NewState: new state of the main PLL. This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_PLLCmd(FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
*(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
|
||
}
|
||
|
||
/**
|
||
* @brief Configures the PLLI2S clock multiplication and division factors.
|
||
*
|
||
* @note This function must be used only when the PLLI2S is disabled.
|
||
* @note PLLI2S clock source is common with the main PLL (configured in
|
||
* RCC_PLLConfig function )
|
||
*
|
||
* @param PLLI2SN: specifies the multiplication factor for PLLI2S VCO output clock
|
||
* This parameter must be a number between 192 and 432.
|
||
* @note You have to set the PLLI2SN parameter correctly to ensure that the VCO
|
||
* output frequency is between 192 and 432 MHz.
|
||
*
|
||
* @param PLLI2SR: specifies the division factor for I2S clock
|
||
* This parameter must be a number between 2 and 7.
|
||
* @note You have to set the PLLI2SR parameter correctly to not exceed 192 MHz
|
||
* on the I2S clock frequency.
|
||
*
|
||
* @retval None
|
||
*/
|
||
void RCC_PLLI2SConfig(uint32_t PLLI2SN, uint32_t PLLI2SR)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_PLLI2SN_VALUE(PLLI2SN));
|
||
assert_param(IS_RCC_PLLI2SR_VALUE(PLLI2SR));
|
||
|
||
RCC->PLLI2SCFGR = (PLLI2SN << 6) | (PLLI2SR << 28);
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the PLLI2S.
|
||
* @note The PLLI2S is disabled by hardware when entering STOP and STANDBY modes.
|
||
* @param NewState: new state of the PLLI2S. This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_PLLI2SCmd(FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
*(__IO uint32_t *) CR_PLLI2SON_BB = (uint32_t)NewState;
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the Clock Security System.
|
||
* @note If a failure is detected on the HSE oscillator clock, this oscillator
|
||
* is automatically disabled and an interrupt is generated to inform the
|
||
* software about the failure (Clock Security System Interrupt, CSSI),
|
||
* allowing the MCU to perform rescue operations. The CSSI is linked to
|
||
* the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
|
||
* @param NewState: new state of the Clock Security System.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
*(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
|
||
}
|
||
|
||
/**
|
||
* @brief Selects the clock source to output on MCO1 pin(PA8).
|
||
* @note PA8 should be configured in alternate function mode.
|
||
* @param RCC_MCO1Source: specifies the clock source to output.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_MCO1Source_HSI: HSI clock selected as MCO1 source
|
||
* @arg RCC_MCO1Source_LSE: LSE clock selected as MCO1 source
|
||
* @arg RCC_MCO1Source_HSE: HSE clock selected as MCO1 source
|
||
* @arg RCC_MCO1Source_PLLCLK: main PLL clock selected as MCO1 source
|
||
* @param RCC_MCO1Div: specifies the MCO1 prescaler.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_MCO1Div_1: no division applied to MCO1 clock
|
||
* @arg RCC_MCO1Div_2: division by 2 applied to MCO1 clock
|
||
* @arg RCC_MCO1Div_3: division by 3 applied to MCO1 clock
|
||
* @arg RCC_MCO1Div_4: division by 4 applied to MCO1 clock
|
||
* @arg RCC_MCO1Div_5: division by 5 applied to MCO1 clock
|
||
* @retval None
|
||
*/
|
||
void RCC_MCO1Config(uint32_t RCC_MCO1Source, uint32_t RCC_MCO1Div)
|
||
{
|
||
uint32_t tmpreg = 0;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_MCO1SOURCE(RCC_MCO1Source));
|
||
assert_param(IS_RCC_MCO1DIV(RCC_MCO1Div));
|
||
|
||
tmpreg = RCC->CFGR;
|
||
|
||
/* Clear MCO1[1:0] and MCO1PRE[2:0] bits */
|
||
tmpreg &= CFGR_MCO1_RESET_MASK;
|
||
|
||
/* Select MCO1 clock source and prescaler */
|
||
tmpreg |= RCC_MCO1Source | RCC_MCO1Div;
|
||
|
||
/* Store the new value */
|
||
RCC->CFGR = tmpreg;
|
||
}
|
||
|
||
/**
|
||
* @brief Selects the clock source to output on MCO2 pin(PC9).
|
||
* @note PC9 should be configured in alternate function mode.
|
||
* @param RCC_MCO2Source: specifies the clock source to output.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_MCO2Source_SYSCLK: System clock (SYSCLK) selected as MCO2 source
|
||
* @arg RCC_MCO2Source_PLLI2SCLK: PLLI2S clock selected as MCO2 source
|
||
* @arg RCC_MCO2Source_HSE: HSE clock selected as MCO2 source
|
||
* @arg RCC_MCO2Source_PLLCLK: main PLL clock selected as MCO2 source
|
||
* @param RCC_MCO2Div: specifies the MCO2 prescaler.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_MCO2Div_1: no division applied to MCO2 clock
|
||
* @arg RCC_MCO2Div_2: division by 2 applied to MCO2 clock
|
||
* @arg RCC_MCO2Div_3: division by 3 applied to MCO2 clock
|
||
* @arg RCC_MCO2Div_4: division by 4 applied to MCO2 clock
|
||
* @arg RCC_MCO2Div_5: division by 5 applied to MCO2 clock
|
||
* @retval None
|
||
*/
|
||
void RCC_MCO2Config(uint32_t RCC_MCO2Source, uint32_t RCC_MCO2Div)
|
||
{
|
||
uint32_t tmpreg = 0;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_MCO2SOURCE(RCC_MCO2Source));
|
||
assert_param(IS_RCC_MCO2DIV(RCC_MCO2Div));
|
||
|
||
tmpreg = RCC->CFGR;
|
||
|
||
/* Clear MCO2 and MCO2PRE[2:0] bits */
|
||
tmpreg &= CFGR_MCO2_RESET_MASK;
|
||
|
||
/* Select MCO2 clock source and prescaler */
|
||
tmpreg |= RCC_MCO2Source | RCC_MCO2Div;
|
||
|
||
/* Store the new value */
|
||
RCC->CFGR = tmpreg;
|
||
}
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions
|
||
* @brief System, AHB and APB busses clocks configuration functions
|
||
*
|
||
@verbatim
|
||
===============================================================================
|
||
System, AHB and APB busses clocks configuration functions
|
||
===============================================================================
|
||
|
||
This section provide functions allowing to configure the System, AHB, APB1 and
|
||
APB2 busses clocks.
|
||
|
||
1. Several clock sources can be used to drive the System clock (SYSCLK): HSI,
|
||
HSE and PLL.
|
||
The AHB clock (HCLK) is derived from System clock through configurable prescaler
|
||
and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA, GPIO...).
|
||
APB1 (PCLK1) and APB2 (PCLK2) clocks are derived from AHB clock through
|
||
configurable prescalers and used to clock the peripherals mapped on these busses.
|
||
You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks.
|
||
|
||
@note All the peripheral clocks are derived from the System clock (SYSCLK) except:
|
||
- I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or
|
||
from an external clock mapped on the I2S_CKIN pin.
|
||
You have to use RCC_I2SCLKConfig() function to configure this clock.
|
||
- RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
|
||
divided by 2 to 31. You have to use RCC_RTCCLKConfig() and RCC_RTCCLKCmd()
|
||
functions to configure this clock.
|
||
- USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz
|
||
to work correctly, while the SDIO require a frequency equal or lower than
|
||
to 48. This clock is derived of the main PLL through PLLQ divider.
|
||
- IWDG clock which is always the LSI clock.
|
||
|
||
2. The maximum frequency of the SYSCLK and HCLK is 168 MHz, PCLK2 82 MHz and PCLK1 42 MHz.
|
||
Depending on the device voltage range, the maximum frequency should be
|
||
adapted accordingly:
|
||
+-------------------------------------------------------------------------------------+
|
||
| Latency | HCLK clock frequency (MHz) |
|
||
| |---------------------------------------------------------------------|
|
||
| | voltage range | voltage range | voltage range | voltage range |
|
||
| | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V |
|
||
|---------------|----------------|----------------|-----------------|-----------------|
|
||
|0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 18 |0 < HCLK <= 16 |
|
||
|---------------|----------------|----------------|-----------------|-----------------|
|
||
|1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |18 < HCLK <= 36 |16 < HCLK <= 32 |
|
||
|---------------|----------------|----------------|-----------------|-----------------|
|
||
|2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |36 < HCLK <= 54 |32 < HCLK <= 48 |
|
||
|---------------|----------------|----------------|-----------------|-----------------|
|
||
|3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |54 < HCLK <= 72 |48 < HCLK <= 64 |
|
||
|---------------|----------------|----------------|-----------------|-----------------|
|
||
|4WS(5CPU cycle)|120< HCLK <= 150|96 < HCLK <= 120|72 < HCLK <= 90 |64 < HCLK <= 80 |
|
||
|---------------|----------------|----------------|-----------------|-----------------|
|
||
|5WS(6CPU cycle)|120< HCLK <= 168|120< HCLK <= 144|90 < HCLK <= 108 |80 < HCLK <= 96 |
|
||
|---------------|----------------|----------------|-----------------|-----------------|
|
||
|6WS(7CPU cycle)| NA |144< HCLK <= 168|108 < HCLK <= 120|96 < HCLK <= 112 |
|
||
|---------------|----------------|----------------|-----------------|-----------------|
|
||
|7WS(8CPU cycle)| NA | NA |120 < HCLK <= 138|112 < HCLK <= 120|
|
||
+-------------------------------------------------------------------------------------+
|
||
@note When VOS bit (in PWR_CR register) is reset to '0<>, the maximum value of HCLK is 144 MHz.
|
||
You can use PWR_MainRegulatorModeConfig() function to set or reset this bit.
|
||
|
||
@endverbatim
|
||
* @{
|
||
*/
|
||
|
||
/**
|
||
* @brief Configures the system clock (SYSCLK).
|
||
* @note The HSI is used (enabled by hardware) as system clock source after
|
||
* startup from Reset, wake-up from STOP and STANDBY mode, or in case
|
||
* of failure of the HSE used directly or indirectly as system clock
|
||
* (if the Clock Security System CSS is enabled).
|
||
* @note A switch from one clock source to another occurs only if the target
|
||
* clock source is ready (clock stable after startup delay or PLL locked).
|
||
* If a clock source which is not yet ready is selected, the switch will
|
||
* occur when the clock source will be ready.
|
||
* You can use RCC_GetSYSCLKSource() function to know which clock is
|
||
* currently used as system clock source.
|
||
* @param RCC_SYSCLKSource: specifies the clock source used as system clock.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_SYSCLKSource_HSI: HSI selected as system clock source
|
||
* @arg RCC_SYSCLKSource_HSE: HSE selected as system clock source
|
||
* @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
|
||
* @retval None
|
||
*/
|
||
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
|
||
{
|
||
uint32_t tmpreg = 0;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
|
||
|
||
tmpreg = RCC->CFGR;
|
||
|
||
/* Clear SW[1:0] bits */
|
||
tmpreg &= ~RCC_CFGR_SW;
|
||
|
||
/* Set SW[1:0] bits according to RCC_SYSCLKSource value */
|
||
tmpreg |= RCC_SYSCLKSource;
|
||
|
||
/* Store the new value */
|
||
RCC->CFGR = tmpreg;
|
||
}
|
||
|
||
/**
|
||
* @brief Returns the clock source used as system clock.
|
||
* @param None
|
||
* @retval The clock source used as system clock. The returned value can be one
|
||
* of the following:
|
||
* - 0x00: HSI used as system clock
|
||
* - 0x04: HSE used as system clock
|
||
* - 0x08: PLL used as system clock
|
||
*/
|
||
uint8_t RCC_GetSYSCLKSource(void)
|
||
{
|
||
return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
|
||
}
|
||
|
||
/**
|
||
* @brief Configures the AHB clock (HCLK).
|
||
* @note Depending on the device voltage range, the software has to set correctly
|
||
* these bits to ensure that HCLK not exceed the maximum allowed frequency
|
||
* (for more details refer to section above
|
||
* "CPU, AHB and APB busses clocks configuration functions")
|
||
* @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
|
||
* the system clock (SYSCLK).
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
|
||
* @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
|
||
* @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
|
||
* @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
|
||
* @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
|
||
* @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
|
||
* @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
|
||
* @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
|
||
* @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
|
||
* @retval None
|
||
*/
|
||
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
|
||
{
|
||
uint32_t tmpreg = 0;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_HCLK(RCC_SYSCLK));
|
||
|
||
tmpreg = RCC->CFGR;
|
||
|
||
/* Clear HPRE[3:0] bits */
|
||
tmpreg &= ~RCC_CFGR_HPRE;
|
||
|
||
/* Set HPRE[3:0] bits according to RCC_SYSCLK value */
|
||
tmpreg |= RCC_SYSCLK;
|
||
|
||
/* Store the new value */
|
||
RCC->CFGR = tmpreg;
|
||
}
|
||
|
||
|
||
/**
|
||
* @brief Configures the Low Speed APB clock (PCLK1).
|
||
* @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from
|
||
* the AHB clock (HCLK).
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_HCLK_Div1: APB1 clock = HCLK
|
||
* @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
|
||
* @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
|
||
* @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
|
||
* @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
|
||
* @retval None
|
||
*/
|
||
void RCC_PCLK1Config(uint32_t RCC_HCLK)
|
||
{
|
||
uint32_t tmpreg = 0;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_PCLK(RCC_HCLK));
|
||
|
||
tmpreg = RCC->CFGR;
|
||
|
||
/* Clear PPRE1[2:0] bits */
|
||
tmpreg &= ~RCC_CFGR_PPRE1;
|
||
|
||
/* Set PPRE1[2:0] bits according to RCC_HCLK value */
|
||
tmpreg |= RCC_HCLK;
|
||
|
||
/* Store the new value */
|
||
RCC->CFGR = tmpreg;
|
||
}
|
||
|
||
/**
|
||
* @brief Configures the High Speed APB clock (PCLK2).
|
||
* @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from
|
||
* the AHB clock (HCLK).
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_HCLK_Div1: APB2 clock = HCLK
|
||
* @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
|
||
* @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
|
||
* @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
|
||
* @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
|
||
* @retval None
|
||
*/
|
||
void RCC_PCLK2Config(uint32_t RCC_HCLK)
|
||
{
|
||
uint32_t tmpreg = 0;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_PCLK(RCC_HCLK));
|
||
|
||
tmpreg = RCC->CFGR;
|
||
|
||
/* Clear PPRE2[2:0] bits */
|
||
tmpreg &= ~RCC_CFGR_PPRE2;
|
||
|
||
/* Set PPRE2[2:0] bits according to RCC_HCLK value */
|
||
tmpreg |= RCC_HCLK << 3;
|
||
|
||
/* Store the new value */
|
||
RCC->CFGR = tmpreg;
|
||
}
|
||
|
||
/**
|
||
* @brief Returns the frequencies of different on chip clocks; SYSCLK, HCLK,
|
||
* PCLK1 and PCLK2.
|
||
*
|
||
* @note The system frequency computed by this function is not the real
|
||
* frequency in the chip. It is calculated based on the predefined
|
||
* constant and the selected clock source:
|
||
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
|
||
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
|
||
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
|
||
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
|
||
* @note (*) HSI_VALUE is a constant defined in stm32f4xx.h file (default value
|
||
* 16 MHz) but the real value may vary depending on the variations
|
||
* in voltage and temperature.
|
||
* @note (**) HSE_VALUE is a constant defined in stm32f4xx.h file (default value
|
||
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
|
||
* frequency of the crystal used. Otherwise, this function may
|
||
* have wrong result.
|
||
*
|
||
* @note The result of this function could be not correct when using fractional
|
||
* value for HSE crystal.
|
||
*
|
||
* @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
|
||
* the clocks frequencies.
|
||
*
|
||
* @note This function can be used by the user application to compute the
|
||
* baudrate for the communication peripherals or configure other parameters.
|
||
* @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
|
||
* must be called to update the structure's field. Otherwise, any
|
||
* configuration based on this function will be incorrect.
|
||
*
|
||
* @retval None
|
||
*/
|
||
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
|
||
{
|
||
uint32_t tmp = 0, presc = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2;
|
||
|
||
/* Get SYSCLK source -------------------------------------------------------*/
|
||
tmp = RCC->CFGR & RCC_CFGR_SWS;
|
||
|
||
switch (tmp)
|
||
{
|
||
case 0x00: /* HSI used as system clock source */
|
||
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
|
||
break;
|
||
case 0x04: /* HSE used as system clock source */
|
||
RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
|
||
break;
|
||
case 0x08: /* PLL used as system clock source */
|
||
|
||
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
|
||
SYSCLK = PLL_VCO / PLLP
|
||
*/
|
||
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22;
|
||
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
|
||
|
||
if (pllsource != 0)
|
||
{
|
||
/* HSE used as PLL clock source */
|
||
pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
|
||
}
|
||
else
|
||
{
|
||
/* HSI used as PLL clock source */
|
||
pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
|
||
}
|
||
|
||
pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2;
|
||
RCC_Clocks->SYSCLK_Frequency = pllvco/pllp;
|
||
break;
|
||
default:
|
||
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
|
||
break;
|
||
}
|
||
/* Compute HCLK, PCLK1 and PCLK2 clocks frequencies ------------------------*/
|
||
|
||
/* Get HCLK prescaler */
|
||
tmp = RCC->CFGR & RCC_CFGR_HPRE;
|
||
tmp = tmp >> 4;
|
||
presc = APBAHBPrescTable[tmp];
|
||
/* HCLK clock frequency */
|
||
RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
|
||
|
||
/* Get PCLK1 prescaler */
|
||
tmp = RCC->CFGR & RCC_CFGR_PPRE1;
|
||
tmp = tmp >> 10;
|
||
presc = APBAHBPrescTable[tmp];
|
||
/* PCLK1 clock frequency */
|
||
RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
|
||
|
||
/* Get PCLK2 prescaler */
|
||
tmp = RCC->CFGR & RCC_CFGR_PPRE2;
|
||
tmp = tmp >> 13;
|
||
presc = APBAHBPrescTable[tmp];
|
||
/* PCLK2 clock frequency */
|
||
RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
|
||
}
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/** @defgroup RCC_Group3 Peripheral clocks configuration functions
|
||
* @brief Peripheral clocks configuration functions
|
||
*
|
||
@verbatim
|
||
===============================================================================
|
||
Peripheral clocks configuration functions
|
||
===============================================================================
|
||
|
||
This section provide functions allowing to configure the Peripheral clocks.
|
||
|
||
1. The RTC clock which is derived from the LSI, LSE or HSE clock divided by 2 to 31.
|
||
|
||
2. After restart from Reset or wakeup from STANDBY, all peripherals are off
|
||
except internal SRAM, Flash and JTAG. Before to start using a peripheral you
|
||
have to enable its interface clock. You can do this using RCC_AHBPeriphClockCmd()
|
||
, RCC_APB2PeriphClockCmd() and RCC_APB1PeriphClockCmd() functions.
|
||
|
||
3. To reset the peripherals configuration (to the default state after device reset)
|
||
you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() and
|
||
RCC_APB1PeriphResetCmd() functions.
|
||
|
||
4. To further reduce power consumption in SLEEP mode the peripheral clocks can
|
||
be disabled prior to executing the WFI or WFE instructions. You can do this
|
||
using RCC_AHBPeriphClockLPModeCmd(), RCC_APB2PeriphClockLPModeCmd() and
|
||
RCC_APB1PeriphClockLPModeCmd() functions.
|
||
|
||
@endverbatim
|
||
* @{
|
||
*/
|
||
|
||
/**
|
||
* @brief Configures the RTC clock (RTCCLK).
|
||
* @note As the RTC clock configuration bits are in the Backup domain and write
|
||
* access is denied to this domain after reset, you have to enable write
|
||
* access using PWR_BackupAccessCmd(ENABLE) function before to configure
|
||
* the RTC clock source (to be done once after reset).
|
||
* @note Once the RTC clock is configured it can't be changed unless the
|
||
* Backup domain is reset using RCC_BackupResetCmd() function, or by
|
||
* a Power On Reset (POR).
|
||
*
|
||
* @param RCC_RTCCLKSource: specifies the RTC clock source.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
|
||
* @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
|
||
* @arg RCC_RTCCLKSource_HSE_Divx: HSE clock divided by x selected
|
||
* as RTC clock, where x:[2,31]
|
||
*
|
||
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to
|
||
* work in STOP and STANDBY modes, and can be used as wakeup source.
|
||
* However, when the HSE clock is used as RTC clock source, the RTC
|
||
* cannot be used in STOP and STANDBY modes.
|
||
* @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
|
||
* RTC clock source).
|
||
*
|
||
* @retval None
|
||
*/
|
||
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
|
||
{
|
||
uint32_t tmpreg = 0;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
|
||
|
||
if ((RCC_RTCCLKSource & 0x00000300) == 0x00000300)
|
||
{ /* If HSE is selected as RTC clock source, configure HSE division factor for RTC clock */
|
||
tmpreg = RCC->CFGR;
|
||
|
||
/* Clear RTCPRE[4:0] bits */
|
||
tmpreg &= ~RCC_CFGR_RTCPRE;
|
||
|
||
/* Configure HSE division factor for RTC clock */
|
||
tmpreg |= (RCC_RTCCLKSource & 0xFFFFCFF);
|
||
|
||
/* Store the new value */
|
||
RCC->CFGR = tmpreg;
|
||
}
|
||
|
||
/* Select the RTC clock source */
|
||
RCC->BDCR |= (RCC_RTCCLKSource & 0x00000FFF);
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the RTC clock.
|
||
* @note This function must be used only after the RTC clock source was selected
|
||
* using the RCC_RTCCLKConfig function.
|
||
* @param NewState: new state of the RTC clock. This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_RTCCLKCmd(FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
*(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState;
|
||
}
|
||
|
||
/**
|
||
* @brief Forces or releases the Backup domain reset.
|
||
* @note This function resets the RTC peripheral (including the backup registers)
|
||
* and the RTC clock source selection in RCC_CSR register.
|
||
* @note The BKPSRAM is not affected by this reset.
|
||
* @param NewState: new state of the Backup domain reset.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_BackupResetCmd(FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
*(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState;
|
||
}
|
||
|
||
/**
|
||
* @brief Configures the I2S clock source (I2SCLK).
|
||
* @note This function must be called before enabling the I2S APB clock.
|
||
* @param RCC_I2SCLKSource: specifies the I2S clock source.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_I2S2CLKSource_PLLI2S: PLLI2S clock used as I2S clock source
|
||
* @arg RCC_I2S2CLKSource_Ext: External clock mapped on the I2S_CKIN pin
|
||
* used as I2S clock source
|
||
* @retval None
|
||
*/
|
||
void RCC_I2SCLKConfig(uint32_t RCC_I2SCLKSource)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_I2SCLK_SOURCE(RCC_I2SCLKSource));
|
||
|
||
*(__IO uint32_t *) CFGR_I2SSRC_BB = RCC_I2SCLKSource;
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the AHB1 peripheral clock.
|
||
* @note After reset, the peripheral clock (used for registers read/write access)
|
||
* is disabled and the application software has to enable this clock before
|
||
* using it.
|
||
* @param RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_AHB1Periph_GPIOA: GPIOA clock
|
||
* @arg RCC_AHB1Periph_GPIOB: GPIOB clock
|
||
* @arg RCC_AHB1Periph_GPIOC: GPIOC clock
|
||
* @arg RCC_AHB1Periph_GPIOD: GPIOD clock
|
||
* @arg RCC_AHB1Periph_GPIOE: GPIOE clock
|
||
* @arg RCC_AHB1Periph_GPIOF: GPIOF clock
|
||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock
|
||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock
|
||
* @arg RCC_AHB1Periph_GPIOI: GPIOI clock
|
||
* @arg RCC_AHB1Periph_CRC: CRC clock
|
||
* @arg RCC_AHB1Periph_BKPSRAM: BKPSRAM interface clock
|
||
* @arg RCC_AHB1Periph_CCMDATARAMEN CCM data RAM interface clock
|
||
* @arg RCC_AHB1Periph_DMA1: DMA1 clock
|
||
* @arg RCC_AHB1Periph_DMA2: DMA2 clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC_Tx: Ethernet Transmission clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC_Rx: Ethernet Reception clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock
|
||
* @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock
|
||
* @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB1_CLOCK_PERIPH(RCC_AHB1Periph));
|
||
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB1ENR |= RCC_AHB1Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB1ENR &= ~RCC_AHB1Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the AHB2 peripheral clock.
|
||
* @note After reset, the peripheral clock (used for registers read/write access)
|
||
* is disabled and the application software has to enable this clock before
|
||
* using it.
|
||
* @param RCC_AHBPeriph: specifies the AHB2 peripheral to gates its clock.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_AHB2Periph_DCMI: DCMI clock
|
||
* @arg RCC_AHB2Periph_CRYP: CRYP clock
|
||
* @arg RCC_AHB2Periph_HASH: HASH clock
|
||
* @arg RCC_AHB2Periph_RNG: RNG clock
|
||
* @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB2PeriphClockCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB2ENR |= RCC_AHB2Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB2ENR &= ~RCC_AHB2Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the AHB3 peripheral clock.
|
||
* @note After reset, the peripheral clock (used for registers read/write access)
|
||
* is disabled and the application software has to enable this clock before
|
||
* using it.
|
||
* @param RCC_AHBPeriph: specifies the AHB3 peripheral to gates its clock.
|
||
* This parameter must be: RCC_AHB3Periph_FSMC
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB3PeriphClockCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB3ENR |= RCC_AHB3Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB3ENR &= ~RCC_AHB3Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
|
||
* @note After reset, the peripheral clock (used for registers read/write access)
|
||
* is disabled and the application software has to enable this clock before
|
||
* using it.
|
||
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_APB1Periph_TIM2: TIM2 clock
|
||
* @arg RCC_APB1Periph_TIM3: TIM3 clock
|
||
* @arg RCC_APB1Periph_TIM4: TIM4 clock
|
||
* @arg RCC_APB1Periph_TIM5: TIM5 clock
|
||
* @arg RCC_APB1Periph_TIM6: TIM6 clock
|
||
* @arg RCC_APB1Periph_TIM7: TIM7 clock
|
||
* @arg RCC_APB1Periph_TIM12: TIM12 clock
|
||
* @arg RCC_APB1Periph_TIM13: TIM13 clock
|
||
* @arg RCC_APB1Periph_TIM14: TIM14 clock
|
||
* @arg RCC_APB1Periph_WWDG: WWDG clock
|
||
* @arg RCC_APB1Periph_SPI2: SPI2 clock
|
||
* @arg RCC_APB1Periph_SPI3: SPI3 clock
|
||
* @arg RCC_APB1Periph_USART2: USART2 clock
|
||
* @arg RCC_APB1Periph_USART3: USART3 clock
|
||
* @arg RCC_APB1Periph_UART4: UART4 clock
|
||
* @arg RCC_APB1Periph_UART5: UART5 clock
|
||
* @arg RCC_APB1Periph_I2C1: I2C1 clock
|
||
* @arg RCC_APB1Periph_I2C2: I2C2 clock
|
||
* @arg RCC_APB1Periph_I2C3: I2C3 clock
|
||
* @arg RCC_APB1Periph_CAN1: CAN1 clock
|
||
* @arg RCC_APB1Periph_CAN2: CAN2 clock
|
||
* @arg RCC_APB1Periph_PWR: PWR clock
|
||
* @arg RCC_APB1Periph_DAC: DAC clock
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->APB1ENR |= RCC_APB1Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->APB1ENR &= ~RCC_APB1Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the High Speed APB (APB2) peripheral clock.
|
||
* @note After reset, the peripheral clock (used for registers read/write access)
|
||
* is disabled and the application software has to enable this clock before
|
||
* using it.
|
||
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_APB2Periph_TIM1: TIM1 clock
|
||
* @arg RCC_APB2Periph_TIM8: TIM8 clock
|
||
* @arg RCC_APB2Periph_USART1: USART1 clock
|
||
* @arg RCC_APB2Periph_USART6: USART6 clock
|
||
* @arg RCC_APB2Periph_ADC1: ADC1 clock
|
||
* @arg RCC_APB2Periph_ADC2: ADC2 clock
|
||
* @arg RCC_APB2Periph_ADC3: ADC3 clock
|
||
* @arg RCC_APB2Periph_SDIO: SDIO clock
|
||
* @arg RCC_APB2Periph_SPI1: SPI1 clock
|
||
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
|
||
* @arg RCC_APB2Periph_TIM9: TIM9 clock
|
||
* @arg RCC_APB2Periph_TIM10: TIM10 clock
|
||
* @arg RCC_APB2Periph_TIM11: TIM11 clock
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->APB2ENR |= RCC_APB2Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->APB2ENR &= ~RCC_APB2Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Forces or releases AHB1 peripheral reset.
|
||
* @param RCC_AHB1Periph: specifies the AHB1 peripheral to reset.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_AHB1Periph_GPIOA: GPIOA clock
|
||
* @arg RCC_AHB1Periph_GPIOB: GPIOB clock
|
||
* @arg RCC_AHB1Periph_GPIOC: GPIOC clock
|
||
* @arg RCC_AHB1Periph_GPIOD: GPIOD clock
|
||
* @arg RCC_AHB1Periph_GPIOE: GPIOE clock
|
||
* @arg RCC_AHB1Periph_GPIOF: GPIOF clock
|
||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock
|
||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock
|
||
* @arg RCC_AHB1Periph_GPIOI: GPIOI clock
|
||
* @arg RCC_AHB1Periph_CRC: CRC clock
|
||
* @arg RCC_AHB1Periph_DMA1: DMA1 clock
|
||
* @arg RCC_AHB1Periph_DMA2: DMA2 clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock
|
||
* @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock
|
||
*
|
||
* @param NewState: new state of the specified peripheral reset.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB1PeriphResetCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB1_RESET_PERIPH(RCC_AHB1Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB1RSTR |= RCC_AHB1Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB1RSTR &= ~RCC_AHB1Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Forces or releases AHB2 peripheral reset.
|
||
* @param RCC_AHB2Periph: specifies the AHB2 peripheral to reset.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_AHB2Periph_DCMI: DCMI clock
|
||
* @arg RCC_AHB2Periph_CRYP: CRYP clock
|
||
* @arg RCC_AHB2Periph_HASH: HASH clock
|
||
* @arg RCC_AHB2Periph_RNG: RNG clock
|
||
* @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock
|
||
* @param NewState: new state of the specified peripheral reset.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB2PeriphResetCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB2RSTR |= RCC_AHB2Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB2RSTR &= ~RCC_AHB2Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Forces or releases AHB3 peripheral reset.
|
||
* @param RCC_AHB3Periph: specifies the AHB3 peripheral to reset.
|
||
* This parameter must be: RCC_AHB3Periph_FSMC
|
||
* @param NewState: new state of the specified peripheral reset.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB3PeriphResetCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB3RSTR |= RCC_AHB3Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB3RSTR &= ~RCC_AHB3Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Forces or releases Low Speed APB (APB1) peripheral reset.
|
||
* @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_APB1Periph_TIM2: TIM2 clock
|
||
* @arg RCC_APB1Periph_TIM3: TIM3 clock
|
||
* @arg RCC_APB1Periph_TIM4: TIM4 clock
|
||
* @arg RCC_APB1Periph_TIM5: TIM5 clock
|
||
* @arg RCC_APB1Periph_TIM6: TIM6 clock
|
||
* @arg RCC_APB1Periph_TIM7: TIM7 clock
|
||
* @arg RCC_APB1Periph_TIM12: TIM12 clock
|
||
* @arg RCC_APB1Periph_TIM13: TIM13 clock
|
||
* @arg RCC_APB1Periph_TIM14: TIM14 clock
|
||
* @arg RCC_APB1Periph_WWDG: WWDG clock
|
||
* @arg RCC_APB1Periph_SPI2: SPI2 clock
|
||
* @arg RCC_APB1Periph_SPI3: SPI3 clock
|
||
* @arg RCC_APB1Periph_USART2: USART2 clock
|
||
* @arg RCC_APB1Periph_USART3: USART3 clock
|
||
* @arg RCC_APB1Periph_UART4: UART4 clock
|
||
* @arg RCC_APB1Periph_UART5: UART5 clock
|
||
* @arg RCC_APB1Periph_I2C1: I2C1 clock
|
||
* @arg RCC_APB1Periph_I2C2: I2C2 clock
|
||
* @arg RCC_APB1Periph_I2C3: I2C3 clock
|
||
* @arg RCC_APB1Periph_CAN1: CAN1 clock
|
||
* @arg RCC_APB1Periph_CAN2: CAN2 clock
|
||
* @arg RCC_APB1Periph_PWR: PWR clock
|
||
* @arg RCC_APB1Periph_DAC: DAC clock
|
||
* @param NewState: new state of the specified peripheral reset.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->APB1RSTR |= RCC_APB1Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->APB1RSTR &= ~RCC_APB1Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Forces or releases High Speed APB (APB2) peripheral reset.
|
||
* @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_APB2Periph_TIM1: TIM1 clock
|
||
* @arg RCC_APB2Periph_TIM8: TIM8 clock
|
||
* @arg RCC_APB2Periph_USART1: USART1 clock
|
||
* @arg RCC_APB2Periph_USART6: USART6 clock
|
||
* @arg RCC_APB2Periph_ADC1: ADC1 clock
|
||
* @arg RCC_APB2Periph_ADC2: ADC2 clock
|
||
* @arg RCC_APB2Periph_ADC3: ADC3 clock
|
||
* @arg RCC_APB2Periph_SDIO: SDIO clock
|
||
* @arg RCC_APB2Periph_SPI1: SPI1 clock
|
||
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
|
||
* @arg RCC_APB2Periph_TIM9: TIM9 clock
|
||
* @arg RCC_APB2Periph_TIM10: TIM10 clock
|
||
* @arg RCC_APB2Periph_TIM11: TIM11 clock
|
||
* @param NewState: new state of the specified peripheral reset.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_APB2_RESET_PERIPH(RCC_APB2Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->APB2RSTR |= RCC_APB2Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->APB2RSTR &= ~RCC_APB2Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the AHB1 peripheral clock during Low Power (Sleep) mode.
|
||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
|
||
* power consumption.
|
||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
|
||
* @note By default, all peripheral clocks are enabled during SLEEP mode.
|
||
* @param RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_AHB1Periph_GPIOA: GPIOA clock
|
||
* @arg RCC_AHB1Periph_GPIOB: GPIOB clock
|
||
* @arg RCC_AHB1Periph_GPIOC: GPIOC clock
|
||
* @arg RCC_AHB1Periph_GPIOD: GPIOD clock
|
||
* @arg RCC_AHB1Periph_GPIOE: GPIOE clock
|
||
* @arg RCC_AHB1Periph_GPIOF: GPIOF clock
|
||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock
|
||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock
|
||
* @arg RCC_AHB1Periph_GPIOI: GPIOI clock
|
||
* @arg RCC_AHB1Periph_CRC: CRC clock
|
||
* @arg RCC_AHB1Periph_BKPSRAM: BKPSRAM interface clock
|
||
* @arg RCC_AHB1Periph_DMA1: DMA1 clock
|
||
* @arg RCC_AHB1Periph_DMA2: DMA2 clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC_Tx: Ethernet Transmission clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC_Rx: Ethernet Reception clock
|
||
* @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock
|
||
* @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock
|
||
* @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB1PeriphClockLPModeCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB1_LPMODE_PERIPH(RCC_AHB1Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB1LPENR |= RCC_AHB1Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB1LPENR &= ~RCC_AHB1Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the AHB2 peripheral clock during Low Power (Sleep) mode.
|
||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
|
||
* power consumption.
|
||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
|
||
* @note By default, all peripheral clocks are enabled during SLEEP mode.
|
||
* @param RCC_AHBPeriph: specifies the AHB2 peripheral to gates its clock.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_AHB2Periph_DCMI: DCMI clock
|
||
* @arg RCC_AHB2Periph_CRYP: CRYP clock
|
||
* @arg RCC_AHB2Periph_HASH: HASH clock
|
||
* @arg RCC_AHB2Periph_RNG: RNG clock
|
||
* @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB2PeriphClockLPModeCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB2LPENR |= RCC_AHB2Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB2LPENR &= ~RCC_AHB2Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the AHB3 peripheral clock during Low Power (Sleep) mode.
|
||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
|
||
* power consumption.
|
||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
|
||
* @note By default, all peripheral clocks are enabled during SLEEP mode.
|
||
* @param RCC_AHBPeriph: specifies the AHB3 peripheral to gates its clock.
|
||
* This parameter must be: RCC_AHB3Periph_FSMC
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_AHB3PeriphClockLPModeCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->AHB3LPENR |= RCC_AHB3Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->AHB3LPENR &= ~RCC_AHB3Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the APB1 peripheral clock during Low Power (Sleep) mode.
|
||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
|
||
* power consumption.
|
||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
|
||
* @note By default, all peripheral clocks are enabled during SLEEP mode.
|
||
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_APB1Periph_TIM2: TIM2 clock
|
||
* @arg RCC_APB1Periph_TIM3: TIM3 clock
|
||
* @arg RCC_APB1Periph_TIM4: TIM4 clock
|
||
* @arg RCC_APB1Periph_TIM5: TIM5 clock
|
||
* @arg RCC_APB1Periph_TIM6: TIM6 clock
|
||
* @arg RCC_APB1Periph_TIM7: TIM7 clock
|
||
* @arg RCC_APB1Periph_TIM12: TIM12 clock
|
||
* @arg RCC_APB1Periph_TIM13: TIM13 clock
|
||
* @arg RCC_APB1Periph_TIM14: TIM14 clock
|
||
* @arg RCC_APB1Periph_WWDG: WWDG clock
|
||
* @arg RCC_APB1Periph_SPI2: SPI2 clock
|
||
* @arg RCC_APB1Periph_SPI3: SPI3 clock
|
||
* @arg RCC_APB1Periph_USART2: USART2 clock
|
||
* @arg RCC_APB1Periph_USART3: USART3 clock
|
||
* @arg RCC_APB1Periph_UART4: UART4 clock
|
||
* @arg RCC_APB1Periph_UART5: UART5 clock
|
||
* @arg RCC_APB1Periph_I2C1: I2C1 clock
|
||
* @arg RCC_APB1Periph_I2C2: I2C2 clock
|
||
* @arg RCC_APB1Periph_I2C3: I2C3 clock
|
||
* @arg RCC_APB1Periph_CAN1: CAN1 clock
|
||
* @arg RCC_APB1Periph_CAN2: CAN2 clock
|
||
* @arg RCC_APB1Periph_PWR: PWR clock
|
||
* @arg RCC_APB1Periph_DAC: DAC clock
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->APB1LPENR |= RCC_APB1Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->APB1LPENR &= ~RCC_APB1Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Enables or disables the APB2 peripheral clock during Low Power (Sleep) mode.
|
||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
|
||
* power consumption.
|
||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
|
||
* @note By default, all peripheral clocks are enabled during SLEEP mode.
|
||
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_APB2Periph_TIM1: TIM1 clock
|
||
* @arg RCC_APB2Periph_TIM8: TIM8 clock
|
||
* @arg RCC_APB2Periph_USART1: USART1 clock
|
||
* @arg RCC_APB2Periph_USART6: USART6 clock
|
||
* @arg RCC_APB2Periph_ADC1: ADC1 clock
|
||
* @arg RCC_APB2Periph_ADC2: ADC2 clock
|
||
* @arg RCC_APB2Periph_ADC3: ADC3 clock
|
||
* @arg RCC_APB2Periph_SDIO: SDIO clock
|
||
* @arg RCC_APB2Periph_SPI1: SPI1 clock
|
||
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
|
||
* @arg RCC_APB2Periph_TIM9: TIM9 clock
|
||
* @arg RCC_APB2Periph_TIM10: TIM10 clock
|
||
* @arg RCC_APB2Periph_TIM11: TIM11 clock
|
||
* @param NewState: new state of the specified peripheral clock.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
RCC->APB2LPENR |= RCC_APB2Periph;
|
||
}
|
||
else
|
||
{
|
||
RCC->APB2LPENR &= ~RCC_APB2Periph;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/** @defgroup RCC_Group4 Interrupts and flags management functions
|
||
* @brief Interrupts and flags management functions
|
||
*
|
||
@verbatim
|
||
===============================================================================
|
||
Interrupts and flags management functions
|
||
===============================================================================
|
||
|
||
@endverbatim
|
||
* @{
|
||
*/
|
||
|
||
/**
|
||
* @brief Enables or disables the specified RCC interrupts.
|
||
* @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_IT_LSIRDY: LSI ready interrupt
|
||
* @arg RCC_IT_LSERDY: LSE ready interrupt
|
||
* @arg RCC_IT_HSIRDY: HSI ready interrupt
|
||
* @arg RCC_IT_HSERDY: HSE ready interrupt
|
||
* @arg RCC_IT_PLLRDY: main PLL ready interrupt
|
||
* @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt
|
||
* @param NewState: new state of the specified RCC interrupts.
|
||
* This parameter can be: ENABLE or DISABLE.
|
||
* @retval None
|
||
*/
|
||
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_IT(RCC_IT));
|
||
assert_param(IS_FUNCTIONAL_STATE(NewState));
|
||
if (NewState != DISABLE)
|
||
{
|
||
/* Perform Byte access to RCC_CIR[14:8] bits to enable the selected interrupts */
|
||
*(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
|
||
}
|
||
else
|
||
{
|
||
/* Perform Byte access to RCC_CIR[14:8] bits to disable the selected interrupts */
|
||
*(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Checks whether the specified RCC flag is set or not.
|
||
* @param RCC_FLAG: specifies the flag to check.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
|
||
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
|
||
* @arg RCC_FLAG_PLLRDY: main PLL clock ready
|
||
* @arg RCC_FLAG_PLLI2SRDY: PLLI2S clock ready
|
||
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
|
||
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
|
||
* @arg RCC_FLAG_BORRST: POR/PDR or BOR reset
|
||
* @arg RCC_FLAG_PINRST: Pin reset
|
||
* @arg RCC_FLAG_PORRST: POR/PDR reset
|
||
* @arg RCC_FLAG_SFTRST: Software reset
|
||
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
|
||
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
|
||
* @arg RCC_FLAG_LPWRRST: Low Power reset
|
||
* @retval The new state of RCC_FLAG (SET or RESET).
|
||
*/
|
||
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
|
||
{
|
||
uint32_t tmp = 0;
|
||
uint32_t statusreg = 0;
|
||
FlagStatus bitstatus = RESET;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_FLAG(RCC_FLAG));
|
||
|
||
/* Get the RCC register index */
|
||
tmp = RCC_FLAG >> 5;
|
||
if (tmp == 1) /* The flag to check is in CR register */
|
||
{
|
||
statusreg = RCC->CR;
|
||
}
|
||
else if (tmp == 2) /* The flag to check is in BDCR register */
|
||
{
|
||
statusreg = RCC->BDCR;
|
||
}
|
||
else /* The flag to check is in CSR register */
|
||
{
|
||
statusreg = RCC->CSR;
|
||
}
|
||
|
||
/* Get the flag position */
|
||
tmp = RCC_FLAG & FLAG_MASK;
|
||
if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
|
||
{
|
||
bitstatus = SET;
|
||
}
|
||
else
|
||
{
|
||
bitstatus = RESET;
|
||
}
|
||
/* Return the flag status */
|
||
return bitstatus;
|
||
}
|
||
|
||
/**
|
||
* @brief Clears the RCC reset flags.
|
||
* The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST,
|
||
* RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
void RCC_ClearFlag(void)
|
||
{
|
||
/* Set RMVF bit to clear the reset flags */
|
||
RCC->CSR |= RCC_CSR_RMVF;
|
||
}
|
||
|
||
/**
|
||
* @brief Checks whether the specified RCC interrupt has occurred or not.
|
||
* @param RCC_IT: specifies the RCC interrupt source to check.
|
||
* This parameter can be one of the following values:
|
||
* @arg RCC_IT_LSIRDY: LSI ready interrupt
|
||
* @arg RCC_IT_LSERDY: LSE ready interrupt
|
||
* @arg RCC_IT_HSIRDY: HSI ready interrupt
|
||
* @arg RCC_IT_HSERDY: HSE ready interrupt
|
||
* @arg RCC_IT_PLLRDY: main PLL ready interrupt
|
||
* @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt
|
||
* @arg RCC_IT_CSS: Clock Security System interrupt
|
||
* @retval The new state of RCC_IT (SET or RESET).
|
||
*/
|
||
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
|
||
{
|
||
ITStatus bitstatus = RESET;
|
||
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_GET_IT(RCC_IT));
|
||
|
||
/* Check the status of the specified RCC interrupt */
|
||
if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
|
||
{
|
||
bitstatus = SET;
|
||
}
|
||
else
|
||
{
|
||
bitstatus = RESET;
|
||
}
|
||
/* Return the RCC_IT status */
|
||
return bitstatus;
|
||
}
|
||
|
||
/**
|
||
* @brief Clears the RCC's interrupt pending bits.
|
||
* @param RCC_IT: specifies the interrupt pending bit to clear.
|
||
* This parameter can be any combination of the following values:
|
||
* @arg RCC_IT_LSIRDY: LSI ready interrupt
|
||
* @arg RCC_IT_LSERDY: LSE ready interrupt
|
||
* @arg RCC_IT_HSIRDY: HSI ready interrupt
|
||
* @arg RCC_IT_HSERDY: HSE ready interrupt
|
||
* @arg RCC_IT_PLLRDY: main PLL ready interrupt
|
||
* @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt
|
||
* @arg RCC_IT_CSS: Clock Security System interrupt
|
||
* @retval None
|
||
*/
|
||
void RCC_ClearITPendingBit(uint8_t RCC_IT)
|
||
{
|
||
/* Check the parameters */
|
||
assert_param(IS_RCC_CLEAR_IT(RCC_IT));
|
||
|
||
/* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
|
||
pending bits */
|
||
*(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
|
||
}
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
|