4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-16 06:09:19 +08:00
2017-10-28 10:04:39 +08:00

843 lines
27 KiB
C

/*
* Copyright 2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_common.h"
#include "fsl_clock.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*******************************************************************************
* Variables
******************************************************************************/
/* External XTAL (OSC) clock frequency. */
uint32_t g_xtalFreq;
/* External RTC XTAL clock frequency. */
uint32_t g_rtcXtalFreq;
/*******************************************************************************
* Prototypes
******************************************************************************/
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t CLOCK_GetPeriphClkFreq(void)
{
uint32_t freq;
/* Periph_clk2_clk ---> Periph_clk */
if (CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK)
{
switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK)
{
/* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */
case CCM_CBCMR_PERIPH_CLK2_SEL(0U):
freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
break;
/* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */
case CCM_CBCMR_PERIPH_CLK2_SEL(1U):
freq = CLOCK_GetOscFreq();
break;
case CCM_CBCMR_PERIPH_CLK2_SEL(2U):
case CCM_CBCMR_PERIPH_CLK2_SEL(3U):
default:
freq = 0U;
break;
}
freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U);
}
/* Pre_Periph_clk ---> Periph_clk */
else
{
switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
{
/* PLL2 ---> Pre_Periph_clk ---> Periph_clk */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U):
freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
break;
/* PLL2 PFD2 ---> Pre_Periph_clk ---> Periph_clk */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U):
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
break;
/* PLL2 PFD0 ---> Pre_Periph_clk ---> Periph_clk */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U):
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
break;
/* PLL1 divided(/2) ---> Pre_Periph_clk ---> Periph_clk */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U):
freq = CLOCK_GetPllFreq(kCLOCK_PllArm) / (((CCM->CACRR & CCM_CACRR_ARM_PODF_MASK) >> CCM_CACRR_ARM_PODF_SHIFT) + 1U);
break;
default:
freq = 0U;
break;
}
}
return freq;
}
void CLOCK_InitExternalClk(bool bypassXtalOsc)
{
/* This device does not support bypass XTAL OSC. */
assert(!bypassXtalOsc);
CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power up */
while ((XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_XTALOSC_PWRUP_STAT_MASK) == 0)
{
}
CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; /* detect freq */
while ((CCM_ANALOG->MISC0 & CCM_ANALOG_MISC0_OSC_XTALOK_MASK) == 0)
{
}
CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK;
}
void CLOCK_DeinitExternalClk(void)
{
CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */
}
void CLOCK_SwitchOsc(clock_osc_t osc)
{
if (osc == kCLOCK_RcOsc)
XTALOSC24M->LOWPWR_CTRL_SET = XTALOSC24M_LOWPWR_CTRL_SET_OSC_SEL_MASK;
else
XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK;
}
void CLOCK_InitRcOsc24M(void)
{
XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
}
void CLOCK_DeinitRcOsc24M(void)
{
XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
}
uint32_t CLOCK_GetFreq(clock_name_t name)
{
uint32_t freq;
switch (name)
{
case kCLOCK_CpuClk:
/* Periph_clk ---> AHB Clock */
case kCLOCK_AhbClk:
/* Periph_clk ---> AHB Clock */
freq = CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
break;
case kCLOCK_SemcClk:
/* SEMC alternative clock ---> SEMC Clock */
if (CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK)
{
/* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
if (CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK)
{
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
}
/* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
else
{
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
}
}
/* Periph_clk ---> SEMC Clock */
else
{
freq = CLOCK_GetPeriphClkFreq();
}
freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
break;
case kCLOCK_IpgClk:
/* Periph_clk ---> AHB Clock ---> IPG Clock */
freq = CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
freq /= (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U);
break;
case kCLOCK_OscClk:
freq = CLOCK_GetOscFreq();
break;
case kCLOCK_RtcClk:
freq = CLOCK_GetRtcFreq();
break;
case kCLOCK_ArmPllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllArm);
break;
case kCLOCK_Usb1PllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
break;
case kCLOCK_Usb1PllPfd0Clk:
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd0);
break;
case kCLOCK_Usb1PllPfd1Clk:
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
break;
case kCLOCK_Usb1PllPfd2Clk:
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
break;
case kCLOCK_Usb1PllPfd3Clk:
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3);
break;
case kCLOCK_Usb2PllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllUsb2);
break;
case kCLOCK_SysPllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
break;
case kCLOCK_SysPllPfd0Clk:
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
break;
case kCLOCK_SysPllPfd1Clk:
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd1);
break;
case kCLOCK_SysPllPfd2Clk:
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
break;
case kCLOCK_SysPllPfd3Clk:
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3);
break;
case kCLOCK_EnetPll0Clk:
freq = CLOCK_GetPllFreq(kCLOCK_PllEnet0);
break;
case kCLOCK_EnetPll1Clk:
freq = CLOCK_GetPllFreq(kCLOCK_PllEnet1);
break;
case kCLOCK_EnetPll2Clk:
freq = CLOCK_GetPllFreq(kCLOCK_PllEnet2);
break;
case kCLOCK_AudioPllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
break;
case kCLOCK_VideoPllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
break;
default:
freq = 0U;
break;
}
return freq;
}
void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
{
CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_ENABLE_MASK |
CCM_ANALOG_PLL_ARM_DIV_SELECT(config->loopDivider);
while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0)
{
}
}
void CLOCK_DeinitArmPll(void)
{
CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK;
}
void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
{
CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_ENABLE_MASK |
CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider);
while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0)
{
}
}
void CLOCK_DeinitSysPll(void)
{
CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK;
}
void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
{
CCM_ANALOG->PLL_USB1 = CCM_ANALOG_PLL_USB1_ENABLE_MASK |
CCM_ANALOG_PLL_USB1_POWER_MASK |
CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK |
CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider);
while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0)
{
}
}
void CLOCK_DeinitUsb1Pll(void)
{
CCM_ANALOG->PLL_USB1 = 0U;
}
void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config)
{
CCM_ANALOG->PLL_USB2 = CCM_ANALOG_PLL_USB2_ENABLE_MASK |
CCM_ANALOG_PLL_USB2_POWER_MASK |
CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK |
CCM_ANALOG_PLL_USB2_DIV_SELECT(config->loopDivider);
while ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_LOCK_MASK) == 0)
{
}
}
void CLOCK_DeinitUsb2Pll(void)
{
CCM_ANALOG->PLL_USB2 = 0U;
}
void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
{
uint32_t pllAudio;
uint32_t misc2 = 0;
CCM_ANALOG->PLL_AUDIO_NUM = CCM_ANALOG_PLL_AUDIO_NUM_A(config->numerator);
CCM_ANALOG->PLL_AUDIO_DENOM = CCM_ANALOG_PLL_AUDIO_DENOM_B(config->denominator);
/*
* Set post divider:
*
* ------------------------------------------------------------------------
* | config->postDivider | PLL_AUDIO[POST_DIV_SELECT] | MISC2[AUDIO_DIV] |
* ------------------------------------------------------------------------
* | 1 | 2 | 0 |
* ------------------------------------------------------------------------
* | 2 | 1 | 0 |
* ------------------------------------------------------------------------
* | 4 | 2 | 3 |
* ------------------------------------------------------------------------
* | 8 | 1 | 3 |
* ------------------------------------------------------------------------
* | 16 | 0 | 3 |
* ------------------------------------------------------------------------
*/
pllAudio = CCM_ANALOG_PLL_AUDIO_ENABLE_MASK | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(config->loopDivider);
switch (config->postDivider)
{
case 16:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0);
misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
break;
case 8:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
break;
case 4:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
break;
case 2:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
break;
default:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
break;
}
CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~(CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK))
| misc2;
CCM_ANALOG->PLL_AUDIO = pllAudio;
while ((CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK_MASK) == 0)
{
}
}
void CLOCK_DeinitAudioPll(void)
{
CCM_ANALOG->PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK;
}
void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
{
uint32_t pllVideo;
uint32_t misc2 = 0;
CCM_ANALOG->PLL_VIDEO_NUM = CCM_ANALOG_PLL_VIDEO_NUM_A(config->numerator);
CCM_ANALOG->PLL_VIDEO_DENOM = CCM_ANALOG_PLL_VIDEO_DENOM_B(config->denominator);
/*
* Set post divider:
*
* ------------------------------------------------------------------------
* | config->postDivider | PLL_VIDEO[POST_DIV_SELECT] | MISC2[VIDEO_DIV] |
* ------------------------------------------------------------------------
* | 1 | 2 | 0 |
* ------------------------------------------------------------------------
* | 2 | 1 | 0 |
* ------------------------------------------------------------------------
* | 4 | 2 | 3 |
* ------------------------------------------------------------------------
* | 8 | 1 | 3 |
* ------------------------------------------------------------------------
* | 16 | 0 | 3 |
* ------------------------------------------------------------------------
*/
pllVideo = CCM_ANALOG_PLL_VIDEO_ENABLE_MASK | CCM_ANALOG_PLL_VIDEO_DIV_SELECT(config->loopDivider);
switch (config->postDivider)
{
case 16:
pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0);
misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
break;
case 8:
pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
break;
case 4:
pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
break;
case 2:
pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
break;
default:
pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
break;
}
CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~CCM_ANALOG_MISC2_VIDEO_DIV_MASK) | misc2;
CCM_ANALOG->PLL_VIDEO = pllVideo;
while ((CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) == 0)
{
}
}
void CLOCK_DeinitVideoPll(void)
{
CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK;
}
void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
{
uint32_t enet_pll = CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT(config->loopDivider1) |
CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT(config->loopDivider0);
if (config->enableClkOutput0)
{
enet_pll |= CCM_ANALOG_PLL_ENET_ENET1_125M_EN_MASK;
}
if (config->enableClkOutput1)
{
enet_pll |= CCM_ANALOG_PLL_ENET_ENET2_125M_EN_MASK;
}
if (config->enableClkOutput2)
{
enet_pll |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
}
CCM_ANALOG->PLL_ENET = enet_pll;
/* Wait for stable */
while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0)
{
}
}
void CLOCK_DeinitEnetPll(void)
{
CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK;
}
uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
{
uint32_t freq;
uint32_t divSelect;
uint64_t freqTmp;
const uint32_t enetRefClkFreq[] = {
25000000U, /* 25M */
50000000U, /* 50M */
100000000U, /* 100M */
125000000U /* 125M */
};
switch (pll)
{
case kCLOCK_PllArm:
freq = ((CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT)) >> 1U);
break;
case kCLOCK_PllSys:
freq = CLOCK_GetOscFreq();
/* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_SYS_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_SYS_DENOM));
if (CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK)
{
freq *= 22U;
}
else
{
freq *= 20U;
}
freq += (uint32_t)freqTmp;
break;
case kCLOCK_PllUsb1:
freq = (CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) ? 22U : 20U));
break;
case kCLOCK_PllAudio:
freq = CLOCK_GetOscFreq();
/* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
divSelect = (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT;
freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_AUDIO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_AUDIO_DENOM));
freq = freq * divSelect + (uint32_t)freqTmp;
/* AUDIO PLL output = PLL output frequency / POSTDIV. */
/*
* Post divider:
*
* PLL_AUDIO[POST_DIV_SELECT]:
* 0x00: 4
* 0x01: 2
* 0x02: 1
*
* MISC2[AUDO_DIV]:
* 0x00: 1
* 0x01: 2
* 0x02: 1
* 0x03: 4
*/
switch (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT_MASK)
{
case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0U):
freq = freq >> 2U;
break;
case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1U):
freq = freq >> 1U;
break;
default:
break;
}
switch (CCM_ANALOG->MISC2 & (CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK))
{
case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
freq >>= 2U;
break;
case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
freq >>= 1U;
break;
default:
break;
}
break;
case kCLOCK_PllVideo:
freq = CLOCK_GetOscFreq();
/* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
divSelect = (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT;
freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_VIDEO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_VIDEO_DENOM));
freq = freq * divSelect + (uint32_t)freqTmp;
/* VIDEO PLL output = PLL output frequency / POSTDIV. */
/*
* Post divider:
*
* PLL_VIDEO[POST_DIV_SELECT]:
* 0x00: 4
* 0x01: 2
* 0x02: 1
*
* MISC2[VIDEO_DIV]:
* 0x00: 1
* 0x01: 2
* 0x02: 1
* 0x03: 4
*/
switch (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK)
{
case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0U):
freq = freq >> 2U;
break;
case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1U):
freq = freq >> 1U;
break;
default:
break;
}
switch (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV_MASK)
{
case CCM_ANALOG_MISC2_VIDEO_DIV(3):
freq >>= 2U;
break;
case CCM_ANALOG_MISC2_VIDEO_DIV(1):
freq >>= 1U;
break;
default:
break;
}
break;
case kCLOCK_PllEnet0:
divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT_MASK)
>> CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT_SHIFT;
freq = enetRefClkFreq[divSelect];
break;
case kCLOCK_PllEnet1:
divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT_MASK)
>> CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT_SHIFT;
freq = enetRefClkFreq[divSelect];
break;
case kCLOCK_PllEnet2:
/* ref_enetpll2 if fixed at 25MHz. */
freq = 25000000UL;
break;
case kCLOCK_PllUsb2:
freq = (CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK) ? 22U : 20U));
break;
default:
freq = 0U;
break;
}
return freq;
}
void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
{
uint32_t pfdIndex = (uint32_t)pfd;
uint32_t pfd528;
pfd528 = CCM_ANALOG->PFD_528 & ~((CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) << (8 * pfdIndex));
/* Disable the clock output first. */
CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfdIndex));
/* Set the new value and enable output. */
CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
}
void CLOCK_DeinitSysPfd(clock_pfd_t pfd)
{
CCM_ANALOG->PFD_528 |= CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfd);
}
void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
{
uint32_t pfdIndex = (uint32_t)pfd;
uint32_t pfd480;
pfd480 = CCM_ANALOG->PFD_480 & ~((CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) << (8 * pfdIndex));
/* Disable the clock output first. */
CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfdIndex));
/* Set the new value and enable output. */
CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
}
void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)
{
CCM_ANALOG->PFD_480 |= CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfd);
}
uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
{
uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
switch (pfd)
{
case kCLOCK_Pfd0:
freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT);
break;
case kCLOCK_Pfd1:
freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD1_FRAC_SHIFT);
break;
case kCLOCK_Pfd2:
freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT);
break;
case kCLOCK_Pfd3:
freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD3_FRAC_SHIFT);
break;
default:
freq = 0U;
break;
}
freq *= 18U;
return freq;
}
uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
{
uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
switch (pfd)
{
case kCLOCK_Pfd0:
freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD0_FRAC_SHIFT);
break;
case kCLOCK_Pfd1:
freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD1_FRAC_SHIFT);
break;
case kCLOCK_Pfd2:
freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD2_FRAC_SHIFT);
break;
case kCLOCK_Pfd3:
freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD3_FRAC_SHIFT);
break;
default:
freq = 0U;
break;
}
freq *= 18U;
return freq;
}
bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
{
CCM->CCGR6 |= CCM_CCGR6_CG0_MASK ;
USB1->USBCMD |= USBHS_USBCMD_RST_MASK;
for (volatile uint32_t i = 0; i < 400000; i++) /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
{
__ASM("nop");
}
PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
return true;
}
bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
{
CCM->CCGR6 |= CCM_CCGR6_CG0_MASK ;
USB2->USBCMD |= USBHS_USBCMD_RST_MASK;
for (volatile uint32_t i = 0; i < 400000; i++) /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
{
__ASM("nop");
}
PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
return true;
}
bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{
const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
USBPHY1->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
USBPHY1->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
USBPHY1->PWD = 0;
USBPHY1->CTRL |=
USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK |
USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
USBPHY_CTRL_ENUTMILEVEL2_MASK |
USBPHY_CTRL_ENUTMILEVEL3_MASK;
return true;
}
bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{
const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
CLOCK_InitUsb2Pll(&g_ccmConfigUsbPll);
USBPHY2->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
USBPHY2->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
USBPHY2->PWD = 0;
USBPHY2->CTRL |=
USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK |
USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
USBPHY_CTRL_ENUTMILEVEL2_MASK |
USBPHY_CTRL_ENUTMILEVEL3_MASK;
return true;
}
void CLOCK_DisableUsbhs0PhyPllClock(void)
{
CLOCK_DeinitUsb1Pll();
USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
}
void CLOCK_DisableUsbhs1PhyPllClock(void)
{
CLOCK_DeinitUsb2Pll();
USBPHY2->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
}