4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 14:17:23 +08:00
2018-12-05 11:44:53 +08:00

1328 lines
42 KiB
C

/*
* The Clear BSD License
* Copyright 2017 NXP
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <math.h>
#include <stdarg.h>
#include <stdlib.h>
#include "fsl_str.h"
#include "fsl_debug_console_conf.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief The overflow value.*/
#ifndef HUGE_VAL
#define HUGE_VAL (99.e99)
#endif /* HUGE_VAL */
#if SCANF_FLOAT_ENABLE
static double fnum = 0.0;
#endif /* SCANF_FLOAT_ENABLE */
#if PRINTF_ADVANCED_ENABLE
/*! @brief Specification modifier flags for printf. */
enum _debugconsole_printf_flag
{
kPRINTF_Minus = 0x01U, /*!< Minus FLag. */
kPRINTF_Plus = 0x02U, /*!< Plus Flag. */
kPRINTF_Space = 0x04U, /*!< Space Flag. */
kPRINTF_Zero = 0x08U, /*!< Zero Flag. */
kPRINTF_Pound = 0x10U, /*!< Pound Flag. */
kPRINTF_LengthChar = 0x20U, /*!< Length: Char Flag. */
kPRINTF_LengthShortInt = 0x40U, /*!< Length: Short Int Flag. */
kPRINTF_LengthLongInt = 0x80U, /*!< Length: Long Int Flag. */
kPRINTF_LengthLongLongInt = 0x100U, /*!< Length: Long Long Int Flag. */
};
#endif /* PRINTF_ADVANCED_ENABLE */
/*! @brief Specification modifier flags for scanf. */
enum _debugconsole_scanf_flag
{
kSCANF_Suppress = 0x2U, /*!< Suppress Flag. */
kSCANF_DestMask = 0x7cU, /*!< Destination Mask. */
kSCANF_DestChar = 0x4U, /*!< Destination Char Flag. */
kSCANF_DestString = 0x8U, /*!< Destination String FLag. */
kSCANF_DestSet = 0x10U, /*!< Destination Set Flag. */
kSCANF_DestInt = 0x20U, /*!< Destination Int Flag. */
kSCANF_DestFloat = 0x30U, /*!< Destination Float Flag. */
kSCANF_LengthMask = 0x1f00U, /*!< Length Mask Flag. */
#if SCANF_ADVANCED_ENABLE
kSCANF_LengthChar = 0x100U, /*!< Length Char Flag. */
kSCANF_LengthShortInt = 0x200U, /*!< Length ShortInt Flag. */
kSCANF_LengthLongInt = 0x400U, /*!< Length LongInt Flag. */
kSCANF_LengthLongLongInt = 0x800U, /*!< Length LongLongInt Flag. */
#endif /* SCANF_ADVANCED_ENABLE */
#if PRINTF_FLOAT_ENABLE
kSCANF_LengthLongLongDouble = 0x1000U, /*!< Length LongLongDuoble Flag. */
#endif /*PRINTF_FLOAT_ENABLE */
kSCANF_TypeSinged = 0x2000U, /*!< TypeSinged Flag. */
};
/*! @brief Keil: suppress ellipsis warning in va_arg usage below. */
#if defined(__CC_ARM)
#pragma diag_suppress 1256
#endif /* __CC_ARM */
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Scanline function which ignores white spaces.
*
* @param[in] s The address of the string pointer to update.
* @return String without white spaces.
*/
static uint32_t ScanIgnoreWhiteSpace(const char **s);
/*!
* @brief Converts a radix number to a string and return its length.
*
* @param[in] numstr Converted string of the number.
* @param[in] nump Pointer to the number.
* @param[in] neg Polarity of the number.
* @param[in] radix The radix to be converted to.
* @param[in] use_caps Used to identify %x/X output format.
* @return Length of the converted string.
*/
static int32_t ConvertRadixNumToString(char *numstr, void *nump, int32_t neg, int32_t radix, bool use_caps);
#if PRINTF_FLOAT_ENABLE
/*!
* @brief Converts a floating radix number to a string and return its length.
*
* @param[in] numstr Converted string of the number.
* @param[in] nump Pointer to the number.
* @param[in] radix The radix to be converted to.
* @param[in] precision_width Specify the precision width.
* @return Length of the converted string.
*/
static int32_t ConvertFloatRadixNumToString(char *numstr, void *nump, int32_t radix, uint32_t precision_width);
#endif /* PRINTF_FLOAT_ENABLE */
/*!
*
*/
double modf(double input_dbl, double *intpart_ptr);
/*************Code for process formatted data*******************************/
static uint32_t ScanIgnoreWhiteSpace(const char **s)
{
uint8_t count = 0;
uint8_t c;
c = **s;
while ((c == ' ') || (c == '\t') || (c == '\n') || (c == '\r') || (c == '\v') || (c == '\f'))
{
count++;
(*s)++;
c = **s;
}
return count;
}
static int32_t ConvertRadixNumToString(char *numstr, void *nump, int32_t neg, int32_t radix, bool use_caps)
{
#if PRINTF_ADVANCED_ENABLE
int64_t a;
int64_t b;
int64_t c;
uint64_t ua;
uint64_t ub;
uint64_t uc;
#else
int32_t a;
int32_t b;
int32_t c;
uint32_t ua;
uint32_t ub;
uint32_t uc;
#endif /* PRINTF_ADVANCED_ENABLE */
int32_t nlen;
char *nstrp;
nlen = 0;
nstrp = numstr;
*nstrp++ = '\0';
if (neg)
{
#if PRINTF_ADVANCED_ENABLE
a = *(int64_t *)nump;
#else
a = *(int32_t *)nump;
#endif /* PRINTF_ADVANCED_ENABLE */
if (a == 0)
{
*nstrp = '0';
++nlen;
return nlen;
}
while (a != 0)
{
#if PRINTF_ADVANCED_ENABLE
b = (int64_t)a / (int64_t)radix;
c = (int64_t)a - ((int64_t)b * (int64_t)radix);
if (c < 0)
{
uc = (uint64_t)c;
c = (int64_t)(~uc) + 1 + '0';
}
#else
b = a / radix;
c = a - (b * radix);
if (c < 0)
{
uc = (uint32_t)c;
c = (uint32_t)(~uc) + 1 + '0';
}
#endif /* PRINTF_ADVANCED_ENABLE */
else
{
c = c + '0';
}
a = b;
*nstrp++ = (char)c;
++nlen;
}
}
else
{
#if PRINTF_ADVANCED_ENABLE
ua = *(uint64_t *)nump;
#else
ua = *(uint32_t *)nump;
#endif /* PRINTF_ADVANCED_ENABLE */
if (ua == 0)
{
*nstrp = '0';
++nlen;
return nlen;
}
while (ua != 0)
{
#if PRINTF_ADVANCED_ENABLE
ub = (uint64_t)ua / (uint64_t)radix;
uc = (uint64_t)ua - ((uint64_t)ub * (uint64_t)radix);
#else
ub = ua / (uint32_t)radix;
uc = ua - (ub * (uint32_t)radix);
#endif /* PRINTF_ADVANCED_ENABLE */
if (uc < 10)
{
uc = uc + '0';
}
else
{
uc = uc - 10 + (use_caps ? 'A' : 'a');
}
ua = ub;
*nstrp++ = (char)uc;
++nlen;
}
}
return nlen;
}
#if PRINTF_FLOAT_ENABLE
static int32_t ConvertFloatRadixNumToString(char *numstr, void *nump, int32_t radix, uint32_t precision_width)
{
int32_t a;
int32_t b;
int32_t c;
int32_t i;
uint32_t uc;
double fa;
double dc;
double fb;
double r;
double fractpart;
double intpart;
int32_t nlen;
char *nstrp;
nlen = 0;
nstrp = numstr;
*nstrp++ = '\0';
r = *(double *)nump;
if (!r)
{
*nstrp = '0';
++nlen;
return nlen;
}
fractpart = modf((double)r, (double *)&intpart);
/* Process fractional part. */
for (i = 0; i < precision_width; i++)
{
fractpart *= radix;
}
if (r >= 0)
{
fa = fractpart + (double)0.5;
if (fa >= pow(10, precision_width))
{
intpart++;
}
}
else
{
fa = fractpart - (double)0.5;
if (fa <= -pow(10, precision_width))
{
intpart--;
}
}
for (i = 0; i < precision_width; i++)
{
fb = fa / (int32_t)radix;
dc = (fa - (int64_t)fb * (int32_t)radix);
c = (int32_t)dc;
if (c < 0)
{
uc = (uint32_t)c;
c = (int32_t)(~uc) + 1 + '0';
}
else
{
c = c + '0';
}
fa = fb;
*nstrp++ = (char)c;
++nlen;
}
*nstrp++ = (char)'.';
++nlen;
a = (int32_t)intpart;
if (a == 0)
{
*nstrp++ = '0';
++nlen;
}
else
{
while (a != 0)
{
b = (int32_t)a / (int32_t)radix;
c = (int32_t)a - ((int32_t)b * (int32_t)radix);
if (c < 0)
{
uc = (uint32_t)c;
c = (int32_t)(~uc) + 1 + '0';
}
else
{
c = c + '0';
}
a = b;
*nstrp++ = (char)c;
++nlen;
}
}
return nlen;
}
#endif /* PRINTF_FLOAT_ENABLE */
int StrFormatPrintf(const char *fmt, va_list ap, char *buf, printfCb cb)
{
/* va_list ap; */
char *p;
int32_t c;
char vstr[33];
char *vstrp = NULL;
int32_t vlen = 0;
int32_t done;
int32_t count = 0;
uint32_t field_width;
uint32_t precision_width;
char *sval;
int32_t cval;
bool use_caps;
uint8_t radix = 0;
#if PRINTF_ADVANCED_ENABLE
uint32_t flags_used;
int32_t schar, dschar;
int64_t ival;
uint64_t uval = 0;
bool valid_precision_width;
#else
int32_t ival;
uint32_t uval = 0;
#endif /* PRINTF_ADVANCED_ENABLE */
#if PRINTF_FLOAT_ENABLE
double fval;
#endif /* PRINTF_FLOAT_ENABLE */
/* Start parsing apart the format string and display appropriate formats and data. */
for (p = (char *)fmt; (c = *p) != 0; p++)
{
/*
* All formats begin with a '%' marker. Special chars like
* '\n' or '\t' are normally converted to the appropriate
* character by the __compiler__. Thus, no need for this
* routine to account for the '\' character.
*/
if (c != '%')
{
cb(buf, &count, c, 1);
/* By using 'continue', the next iteration of the loop is used, skipping the code that follows. */
continue;
}
use_caps = true;
#if PRINTF_ADVANCED_ENABLE
/* First check for specification modifier flags. */
flags_used = 0;
done = false;
while (!done)
{
switch (*++p)
{
case '-':
flags_used |= kPRINTF_Minus;
break;
case '+':
flags_used |= kPRINTF_Plus;
break;
case ' ':
flags_used |= kPRINTF_Space;
break;
case '0':
flags_used |= kPRINTF_Zero;
break;
case '#':
flags_used |= kPRINTF_Pound;
break;
default:
/* We've gone one char too far. */
--p;
done = true;
break;
}
}
#endif /* PRINTF_ADVANCED_ENABLE */
/* Next check for minimum field width. */
field_width = 0;
done = false;
while (!done)
{
c = *++p;
if ((c >= '0') && (c <= '9'))
{
field_width = (field_width * 10) + (c - '0');
}
#if PRINTF_ADVANCED_ENABLE
else if (c == '*')
{
field_width = (uint32_t)va_arg(ap, uint32_t);
}
#endif /* PRINTF_ADVANCED_ENABLE */
else
{
/* We've gone one char too far. */
--p;
done = true;
}
}
/* Next check for the width and precision field separator. */
precision_width = 6;
#if PRINTF_ADVANCED_ENABLE
valid_precision_width = false;
#endif /* PRINTF_ADVANCED_ENABLE */
if (*++p == '.')
{
/* Must get precision field width, if present. */
precision_width = 0;
done = false;
while (!done)
{
c = *++p;
if ((c >= '0') && (c <= '9'))
{
precision_width = (precision_width * 10) + (c - '0');
#if PRINTF_ADVANCED_ENABLE
valid_precision_width = true;
#endif /* PRINTF_ADVANCED_ENABLE */
}
#if PRINTF_ADVANCED_ENABLE
else if (c == '*')
{
precision_width = (uint32_t)va_arg(ap, uint32_t);
valid_precision_width = true;
}
#endif /* PRINTF_ADVANCED_ENABLE */
else
{
/* We've gone one char too far. */
--p;
done = true;
}
}
}
else
{
/* We've gone one char too far. */
--p;
}
#if PRINTF_ADVANCED_ENABLE
/*
* Check for the length modifier.
*/
switch (/* c = */ *++p)
{
case 'h':
if (*++p != 'h')
{
flags_used |= kPRINTF_LengthShortInt;
--p;
}
else
{
flags_used |= kPRINTF_LengthChar;
}
break;
case 'l':
if (*++p != 'l')
{
flags_used |= kPRINTF_LengthLongInt;
--p;
}
else
{
flags_used |= kPRINTF_LengthLongLongInt;
}
break;
default:
/* we've gone one char too far */
--p;
break;
}
#endif /* PRINTF_ADVANCED_ENABLE */
/* Now we're ready to examine the format. */
c = *++p;
{
if ((c == 'd') || (c == 'i') || (c == 'f') || (c == 'F') || (c == 'x') || (c == 'X') || (c == 'o') ||
(c == 'b') || (c == 'p') || (c == 'u'))
{
if ((c == 'd') || (c == 'i'))
{
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_LengthLongLongInt)
{
ival = (int64_t)va_arg(ap, int64_t);
}
else
#endif /* PRINTF_ADVANCED_ENABLE */
{
ival = (int32_t)va_arg(ap, int32_t);
}
vlen = ConvertRadixNumToString(vstr, &ival, true, 10, use_caps);
vstrp = &vstr[vlen];
#if PRINTF_ADVANCED_ENABLE
if (ival < 0)
{
schar = '-';
++vlen;
}
else
{
if (flags_used & kPRINTF_Plus)
{
schar = '+';
++vlen;
}
else
{
if (flags_used & kPRINTF_Space)
{
schar = ' ';
++vlen;
}
else
{
schar = 0;
}
}
}
dschar = false;
/* Do the ZERO pad. */
if (flags_used & kPRINTF_Zero)
{
if (schar)
{
cb(buf, &count, schar, 1);
}
dschar = true;
cb(buf, &count, '0', field_width - vlen);
vlen = field_width;
}
else
{
if (!(flags_used & kPRINTF_Minus))
{
cb(buf, &count, ' ', field_width - vlen);
if (schar)
{
cb(buf, &count, schar, 1);
}
dschar = true;
}
}
/* The string was built in reverse order, now display in correct order. */
if ((!dschar) && schar)
{
cb(buf, &count, schar, 1);
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
#if PRINTF_FLOAT_ENABLE
if ((c == 'f') || (c == 'F'))
{
fval = (double)va_arg(ap, double);
vlen = ConvertFloatRadixNumToString(vstr, &fval, 10, precision_width);
vstrp = &vstr[vlen];
#if PRINTF_ADVANCED_ENABLE
if (fval < 0)
{
schar = '-';
++vlen;
}
else
{
if (flags_used & kPRINTF_Plus)
{
schar = '+';
++vlen;
}
else
{
if (flags_used & kPRINTF_Space)
{
schar = ' ';
++vlen;
}
else
{
schar = 0;
}
}
}
dschar = false;
if (flags_used & kPRINTF_Zero)
{
if (schar)
{
cb(buf, &count, schar, 1);
}
dschar = true;
cb(buf, &count, '0', field_width - vlen);
vlen = field_width;
}
else
{
if (!(flags_used & kPRINTF_Minus))
{
cb(buf, &count, ' ', field_width - vlen);
if (schar)
{
cb(buf, &count, schar, 1);
}
dschar = true;
}
}
if ((!dschar) && schar)
{
cb(buf, &count, schar, 1);
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
#endif /* PRINTF_FLOAT_ENABLE */
if ((c == 'X') || (c == 'x'))
{
if (c == 'x')
{
use_caps = false;
}
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_LengthLongLongInt)
{
uval = (uint64_t)va_arg(ap, uint64_t);
}
else
#endif /* PRINTF_ADVANCED_ENABLE */
{
uval = (uint32_t)va_arg(ap, uint32_t);
}
vlen = ConvertRadixNumToString(vstr, &uval, false, 16, use_caps);
vstrp = &vstr[vlen];
#if PRINTF_ADVANCED_ENABLE
dschar = false;
if (flags_used & kPRINTF_Zero)
{
if (flags_used & kPRINTF_Pound)
{
cb(buf, &count, '0', 1);
cb(buf, &count, (use_caps ? 'X' : 'x'), 1);
dschar = true;
}
cb(buf, &count, '0', field_width - vlen);
vlen = field_width;
}
else
{
if (!(flags_used & kPRINTF_Minus))
{
if (flags_used & kPRINTF_Pound)
{
vlen += 2;
}
cb(buf, &count, ' ', field_width - vlen);
if (flags_used & kPRINTF_Pound)
{
cb(buf, &count, '0', 1);
cb(buf, &count, (use_caps ? 'X' : 'x'), 1);
dschar = true;
}
}
}
if ((flags_used & kPRINTF_Pound) && (!dschar))
{
cb(buf, &count, '0', 1);
cb(buf, &count, (use_caps ? 'X' : 'x'), 1);
vlen += 2;
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
if ((c == 'o') || (c == 'b') || (c == 'p') || (c == 'u'))
{
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_LengthLongLongInt)
{
uval = (uint64_t)va_arg(ap, uint64_t);
}
else
#endif /* PRINTF_ADVANCED_ENABLE */
{
uval = (uint32_t)va_arg(ap, uint32_t);
}
if (c == 'o')
{
radix = 8;
}
else if (c == 'b')
{
radix = 2;
}
else if (c == 'p')
{
radix = 16;
}
else
{
radix = 10;
}
vlen = ConvertRadixNumToString(vstr, &uval, false, radix, use_caps);
vstrp = &vstr[vlen];
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_Zero)
{
cb(buf, &count, '0', field_width - vlen);
vlen = field_width;
}
else
{
if (!(flags_used & kPRINTF_Minus))
{
cb(buf, &count, ' ', field_width - vlen);
}
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
#if !PRINTF_ADVANCED_ENABLE
cb(buf, &count, ' ', field_width - vlen);
#endif /* !PRINTF_ADVANCED_ENABLE */
if (vstrp != NULL)
{
while (*vstrp)
{
cb(buf, &count, *vstrp--, 1);
}
}
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_Minus)
{
cb(buf, &count, ' ', field_width - vlen);
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
else if (c == 'c')
{
cval = (char)va_arg(ap, uint32_t);
cb(buf, &count, cval, 1);
}
else if (c == 's')
{
sval = (char *)va_arg(ap, char *);
if (sval)
{
#if PRINTF_ADVANCED_ENABLE
if (valid_precision_width)
{
vlen = precision_width;
}
else
{
vlen = strlen(sval);
}
#else
vlen = strlen(sval);
#endif /* PRINTF_ADVANCED_ENABLE */
#if PRINTF_ADVANCED_ENABLE
if (!(flags_used & kPRINTF_Minus))
#endif /* PRINTF_ADVANCED_ENABLE */
{
cb(buf, &count, ' ', field_width - vlen);
}
#if PRINTF_ADVANCED_ENABLE
if (valid_precision_width)
{
while ((*sval) && (vlen > 0))
{
cb(buf, &count, *sval++, 1);
vlen--;
}
/* In case that vlen sval is shorter than vlen */
vlen = precision_width - vlen;
}
else
{
#endif /* PRINTF_ADVANCED_ENABLE */
while (*sval)
{
cb(buf, &count, *sval++, 1);
}
#if PRINTF_ADVANCED_ENABLE
}
#endif /* PRINTF_ADVANCED_ENABLE */
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_Minus)
{
cb(buf, &count, ' ', field_width - vlen);
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
}
else
{
cb(buf, &count, c, 1);
}
}
}
return count;
}
int StrFormatScanf(const char *line_ptr, char *format, va_list args_ptr)
{
uint8_t base;
int8_t neg;
/* Identifier for the format string. */
char *c = format;
char temp;
char *buf;
/* Flag telling the conversion specification. */
uint32_t flag = 0;
/* Filed width for the matching input streams. */
uint32_t field_width;
/* How many arguments are assigned except the suppress. */
uint32_t nassigned = 0;
/* How many characters are read from the input streams. */
uint32_t n_decode = 0;
int32_t val;
const char *s;
/* Identifier for the input string. */
const char *p = line_ptr;
/* Return EOF error before any conversion. */
if (*p == '\0')
{
return -1;
}
/* Decode directives. */
while ((*c) && (*p))
{
/* Ignore all white-spaces in the format strings. */
if (ScanIgnoreWhiteSpace((const char **)&c))
{
n_decode += ScanIgnoreWhiteSpace(&p);
}
else if ((*c != '%') || ((*c == '%') && (*(c + 1) == '%')))
{
/* Ordinary characters. */
c++;
if (*p == *c)
{
n_decode++;
p++;
c++;
}
else
{
/* Match failure. Misalignment with C99, the unmatched characters need to be pushed back to stream.
* However, it is deserted now. */
break;
}
}
else
{
/* convernsion specification */
c++;
/* Reset. */
flag = 0;
field_width = 0;
base = 0;
/* Loop to get full conversion specification. */
while ((*c) && (!(flag & kSCANF_DestMask)))
{
switch (*c)
{
#if SCANF_ADVANCED_ENABLE
case '*':
if (flag & kSCANF_Suppress)
{
/* Match failure. */
return nassigned;
}
flag |= kSCANF_Suppress;
c++;
break;
case 'h':
if (flag & kSCANF_LengthMask)
{
/* Match failure. */
return nassigned;
}
if (c[1] == 'h')
{
flag |= kSCANF_LengthChar;
c++;
}
else
{
flag |= kSCANF_LengthShortInt;
}
c++;
break;
case 'l':
if (flag & kSCANF_LengthMask)
{
/* Match failure. */
return nassigned;
}
if (c[1] == 'l')
{
flag |= kSCANF_LengthLongLongInt;
c++;
}
else
{
flag |= kSCANF_LengthLongInt;
}
c++;
break;
#endif /* SCANF_ADVANCED_ENABLE */
#if SCANF_FLOAT_ENABLE
case 'L':
if (flag & kSCANF_LengthMask)
{
/* Match failure. */
return nassigned;
}
flag |= kSCANF_LengthLongLongDouble;
c++;
break;
#endif /* SCANF_FLOAT_ENABLE */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (field_width)
{
/* Match failure. */
return nassigned;
}
do
{
field_width = field_width * 10 + *c - '0';
c++;
} while ((*c >= '0') && (*c <= '9'));
break;
case 'd':
base = 10;
flag |= kSCANF_TypeSinged;
flag |= kSCANF_DestInt;
c++;
break;
case 'u':
base = 10;
flag |= kSCANF_DestInt;
c++;
break;
case 'o':
base = 8;
flag |= kSCANF_DestInt;
c++;
break;
case 'x':
case 'X':
base = 16;
flag |= kSCANF_DestInt;
c++;
break;
case 'i':
base = 0;
flag |= kSCANF_DestInt;
c++;
break;
#if SCANF_FLOAT_ENABLE
case 'a':
case 'A':
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
flag |= kSCANF_DestFloat;
c++;
break;
#endif /* SCANF_FLOAT_ENABLE */
case 'c':
flag |= kSCANF_DestChar;
if (!field_width)
{
field_width = 1;
}
c++;
break;
case 's':
flag |= kSCANF_DestString;
c++;
break;
default:
return nassigned;
}
}
if (!(flag & kSCANF_DestMask))
{
/* Format strings are exhausted. */
return nassigned;
}
if (!field_width)
{
/* Large than length of a line. */
field_width = 99;
}
/* Matching strings in input streams and assign to argument. */
switch (flag & kSCANF_DestMask)
{
case kSCANF_DestChar:
s = (const char *)p;
buf = va_arg(args_ptr, char *);
while ((field_width--) && (*p))
{
if (!(flag & kSCANF_Suppress))
{
*buf++ = *p++;
}
else
{
p++;
}
n_decode++;
}
if ((!(flag & kSCANF_Suppress)) && (s != p))
{
nassigned++;
}
break;
case kSCANF_DestString:
n_decode += ScanIgnoreWhiteSpace(&p);
s = p;
buf = va_arg(args_ptr, char *);
while ((field_width--) && (*p != '\0') && (*p != ' ') && (*p != '\t') && (*p != '\n') &&
(*p != '\r') && (*p != '\v') && (*p != '\f'))
{
if (flag & kSCANF_Suppress)
{
p++;
}
else
{
*buf++ = *p++;
}
n_decode++;
}
if ((!(flag & kSCANF_Suppress)) && (s != p))
{
/* Add NULL to end of string. */
*buf = '\0';
nassigned++;
}
break;
case kSCANF_DestInt:
n_decode += ScanIgnoreWhiteSpace(&p);
s = p;
val = 0;
if ((base == 0) || (base == 16))
{
if ((s[0] == '0') && ((s[1] == 'x') || (s[1] == 'X')))
{
base = 16;
if (field_width >= 1)
{
p += 2;
n_decode += 2;
field_width -= 2;
}
}
}
if (base == 0)
{
if (s[0] == '0')
{
base = 8;
}
else
{
base = 10;
}
}
neg = 1;
switch (*p)
{
case '-':
neg = -1;
n_decode++;
p++;
field_width--;
break;
case '+':
neg = 1;
n_decode++;
p++;
field_width--;
break;
default:
break;
}
while ((*p) && (field_width--))
{
if ((*p <= '9') && (*p >= '0'))
{
temp = *p - '0';
}
else if ((*p <= 'f') && (*p >= 'a'))
{
temp = *p - 'a' + 10;
}
else if ((*p <= 'F') && (*p >= 'A'))
{
temp = *p - 'A' + 10;
}
else
{
temp = base;
}
if (temp >= base)
{
break;
}
else
{
val = base * val + temp;
}
p++;
n_decode++;
}
val *= neg;
if (!(flag & kSCANF_Suppress))
{
#if SCANF_ADVANCED_ENABLE
switch (flag & kSCANF_LengthMask)
{
case kSCANF_LengthChar:
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed char *) = (signed char)val;
}
else
{
*va_arg(args_ptr, unsigned char *) = (unsigned char)val;
}
break;
case kSCANF_LengthShortInt:
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed short *) = (signed short)val;
}
else
{
*va_arg(args_ptr, unsigned short *) = (unsigned short)val;
}
break;
case kSCANF_LengthLongInt:
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed long int *) = (signed long int)val;
}
else
{
*va_arg(args_ptr, unsigned long int *) = (unsigned long int)val;
}
break;
case kSCANF_LengthLongLongInt:
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed long long int *) = (signed long long int)val;
}
else
{
*va_arg(args_ptr, unsigned long long int *) = (unsigned long long int)val;
}
break;
default:
/* The default type is the type int. */
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed int *) = (signed int)val;
}
else
{
*va_arg(args_ptr, unsigned int *) = (unsigned int)val;
}
break;
}
#else
/* The default type is the type int. */
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed int *) = (signed int)val;
}
else
{
*va_arg(args_ptr, unsigned int *) = (unsigned int)val;
}
#endif /* SCANF_ADVANCED_ENABLE */
nassigned++;
}
break;
#if SCANF_FLOAT_ENABLE
case kSCANF_DestFloat:
n_decode += ScanIgnoreWhiteSpace(&p);
fnum = strtod(p, (char **)&s);
if ((fnum >= HUGE_VAL) || (fnum <= -HUGE_VAL))
{
break;
}
n_decode += (int)(s) - (int)(p);
p = s;
if (!(flag & kSCANF_Suppress))
{
if (flag & kSCANF_LengthLongLongDouble)
{
*va_arg(args_ptr, double *) = fnum;
}
else
{
*va_arg(args_ptr, float *) = (float)fnum;
}
nassigned++;
}
break;
#endif /* SCANF_FLOAT_ENABLE */
default:
return nassigned;
}
}
}
return nassigned;
}