rt-thread-official/bsp/hpmicro/hpm6300evk/board/eth_phy_port.c

300 lines
8.2 KiB
C

/*
* Copyright (c) 2021 - 2022 hpmicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Change Logs:
* Date Author Notes
* 2022-01-11 hpmicro First version
*/
#include "rtthread.h"
#ifdef RT_USING_PHY
#include <rtdevice.h>
#include <rtdbg.h>
#include "hpm_enet_drv.h"
#include "eth_phy_port.h"
#include "hpm_soc.h"
#include "netif/ethernetif.h"
#include "board.h"
typedef struct
{
char *mdio_name;
ENET_Type *instance;
struct eth_device *eth_dev;
phy_device_t *phy_dev;
struct rt_mdio_bus *mdio_bus;
} eth_phy_handle_t;
typedef struct
{
uint8_t phy_handle_cnt;
eth_phy_handle_t **phy_handle;
} eth_phy_monitor_handle_t;
#ifdef BSP_USING_ETH0
extern struct eth_device eth0_dev;
static struct rt_mdio_bus mdio0_bus;
static phy_device_t phy0_dev;
static uint8_t phy0_reg_list[]= {PHY0_REG_LIST};
static eth_phy_handle_t eth0_phy_handle =
{
.instance = HPM_ENET0,
.eth_dev = &eth0_dev,
.phy_dev = &phy0_dev,
.mdio_name = "MDIO0",
.mdio_bus = &mdio0_bus,
};
#endif
#ifdef BSP_USING_ETH1
extern struct eth_device eth1_dev;
static struct rt_mdio_bus mdio1_bus;
static phy_device_t phy1_dev;
static uint8_t phy1_reg_list[]= {PHY1_REG_LIST};
static eth_phy_handle_t eth1_phy_handle =
{
.instance = HPM_ENET1,
.eth_dev = &eth1_dev,
.phy_dev = &phy1_dev,
.mdio_name = "MDIO1",
.mdio_bus = &mdio1_bus,
};
#endif
static eth_phy_handle_t *s_gphys[] =
{
#ifdef BSP_USING_ETH0
&eth0_phy_handle,
#endif
#ifdef BSP_USING_ETH1
&eth1_phy_handle
#endif
};
static uint8_t *s_gphy_reg_list[] =
{
#ifdef BSP_USING_ETH0
phy0_reg_list,
#endif
#ifdef BSP_USING_ETH1
phy1_reg_list,
#endif
};
eth_phy_monitor_handle_t phy_monitor_handle =
{
.phy_handle_cnt = ARRAY_SIZE(s_gphys),
.phy_handle = s_gphys
};
static struct rt_phy_ops phy_ops;
static rt_phy_status phy_init(void *object, rt_uint32_t phy_addr, rt_uint32_t src_clock_hz)
{
return PHY_STATUS_OK;
}
static rt_size_t phy_read(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size)
{
*(uint16_t *)data = enet_read_phy(((struct rt_mdio_bus *)bus)->hw_obj, addr, reg);
return size;
}
static rt_size_t phy_write(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size)
{
enet_write_phy(((struct rt_mdio_bus *)bus)->hw_obj, addr, reg, *(uint16_t *)data);
return size;
}
static rt_phy_status phy_get_link_status(rt_phy_t *phy, rt_bool_t *status)
{
uint16_t reg_status;
reg_status = enet_read_phy(phy->bus->hw_obj, phy->addr, phy->reg_list[PHY_BASIC_STATUS_REG_IDX]);
#if PHY_AUTO_NEGO
reg_status &= PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK;
*status = reg_status ? RT_TRUE : RT_FALSE;
#else
reg_status &= PHY_LINKED_STATUS_MASK;
*status = reg_status ? RT_TRUE : RT_FALSE;
#endif
return PHY_STATUS_OK;
}
static rt_phy_status phy_get_link_speed_duplex(rt_phy_t *phy, rt_uint32_t *speed, rt_uint32_t *duplex)
{
uint16_t reg_status;
reg_status = enet_read_phy(phy->bus->hw_obj, phy->addr, phy->reg_list[PHY_STATUS_REG_IDX]);
*speed = PHY_STATUS_SPEED_100M(reg_status) ? PHY_SPEED_100M : PHY_SPEED_10M;
*duplex = PHY_STATUS_FULL_DUPLEX(reg_status) ? PHY_FULL_DUPLEX: PHY_HALF_DUPLEX;
return PHY_STATUS_OK;
}
static void phy_poll_status(void *parameter)
{
int ret;
phy_info_t phy_info;
rt_bool_t status;
rt_device_t dev;
rt_phy_msg_t msg;
rt_uint32_t speed, duplex;
phy_device_t *phy_dev;
struct eth_device* eth_dev;
char const *ps[] = {"10Mbps", "100Mbps", "1000Mbps"};
enet_line_speed_t line_speed[] = {enet_line_speed_10mbps, enet_line_speed_100mbps, enet_line_speed_1000mbps};
eth_phy_monitor_handle_t *phy_monitor_handle = (eth_phy_monitor_handle_t *)parameter;
for (uint32_t i = 0; i < phy_monitor_handle->phy_handle_cnt; i++)
{
eth_dev = phy_monitor_handle->phy_handle[i]->eth_dev;
phy_dev = phy_monitor_handle->phy_handle[i]->phy_dev;
phy_dev->phy.ops->get_link_status(&phy_dev->phy, &status);
if (status)
{
phy_dev->phy.ops->get_link_speed_duplex(&phy_dev->phy, &phy_info.phy_speed, &phy_info.phy_duplex);
ret = memcmp(&phy_dev->phy_info, &phy_info, sizeof(phy_info_t));
if (ret != 0)
{
memcpy(&phy_dev->phy_info, &phy_info, sizeof(phy_info_t));
}
}
if (phy_dev->phy_link != status)
{
phy_dev->phy_link = status ? PHY_LINK_UP : PHY_LINK_DOWN;
eth_device_linkchange(eth_dev, status);
LOG_I("PHY Status: %s", status ? "Link up" : "Link down\n");
if (status == PHY_LINK_UP)
{
LOG_I("PHY Speed: %s", ps[phy_dev->phy_info.phy_speed]);
LOG_I("PHY Duplex: %s\n", phy_dev->phy_info.phy_duplex & PHY_FULL_DUPLEX ? "full duplex" : "half duplex");
enet_set_line_speed(phy_monitor_handle->phy_handle[i]->instance, line_speed[phy_dev->phy_info.phy_speed]);
enet_set_duplex_mode(phy_monitor_handle->phy_handle[i]->instance, phy_dev->phy_info.phy_duplex);
}
}
}
}
static void phy_detection(void *parameter)
{
uint8_t detected_count = 0;
struct rt_phy_msg msg = {0, 0};
phy_device_t *phy_dev = (phy_device_t *)parameter;
rt_uint32_t i;
msg.reg = phy_dev->phy.reg_list[PHY_ID1_REG_IDX];
phy_dev->phy.ops->init(phy_dev->phy.bus->hw_obj, phy_dev->phy.addr, PHY_MDIO_CSR_CLK_FREQ);
while(phy_dev->phy.addr == 0xffff)
{
/* Search a PHY */
for (i = 0; i <= 0x1f; i++)
{
((rt_phy_t *)(phy_dev->phy.parent.user_data))->addr = i;
phy_dev->phy.parent.read(&(phy_dev->phy.parent), 0, &msg, 1);
if (msg.value == PHY_ID1)
{
phy_dev->phy.addr = i;
LOG_D("Found a PHY device[address:0x%02x].\n", phy_dev->phy.addr);
return;
}
}
phy_dev->phy.addr = 0xffff;
detected_count++;
rt_thread_mdelay(1000);
if (detected_count > 3)
{
LOG_E("No any PHY device is detected! Please check your hardware!\n");
return;
}
}
}
static void phy_monitor_thread_entry(void *args)
{
rt_timer_t phy_status_timer;
eth_phy_monitor_handle_t *phy_monitor_handle = (eth_phy_monitor_handle_t *)args;
for (uint32_t i = 0; i < phy_monitor_handle->phy_handle_cnt; i++)
{
LOG_D("Detect a PHY%d\n", i);
phy_detection(phy_monitor_handle->phy_handle[i]->phy_dev);
}
phy_status_timer = rt_timer_create("PHY_Monitor", phy_poll_status, phy_monitor_handle, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC | RT_TIMER_FLAG_SOFT_TIMER);
if (!phy_status_timer || rt_timer_start(phy_status_timer) != RT_EOK)
{
LOG_E("Failed to start link change detection timer\n");
}
}
int phy_device_register(void)
{
rt_err_t err = RT_ERROR;
rt_thread_t thread_phy_monitor;
/* Set ops for PHY */
phy_ops.init = phy_init;
phy_ops.get_link_status = phy_get_link_status;
phy_ops.get_link_speed_duplex = phy_get_link_speed_duplex;
for (uint32_t i = 0; i < ARRAY_SIZE(s_gphys); i++)
{
/* Set PHY address */
s_gphys[i]->phy_dev->phy.addr = 0xffff;
/* Set MIDO bus */
s_gphys[i]->mdio_bus->hw_obj = s_gphys[i]->instance;
s_gphys[i]->mdio_bus->name = s_gphys[i]->mdio_name;
s_gphys[i]->mdio_bus->ops->read = phy_read;
s_gphys[i]->mdio_bus->ops->write = phy_write;
s_gphys[i]->phy_dev->phy.bus = s_gphys[i]->mdio_bus;
s_gphys[i]->phy_dev->phy.ops = &phy_ops;
/* Set PHY register list */
s_gphys[i]->phy_dev->phy.reg_list = s_gphy_reg_list[i];
rt_hw_phy_register(&s_gphys[i]->phy_dev->phy, PHY_NAME);
}
/* Start PHY monitor */
thread_phy_monitor = rt_thread_create("PHY Monitor", phy_monitor_thread_entry, &phy_monitor_handle, 1024, RT_THREAD_PRIORITY_MAX - 2, 2);
if (thread_phy_monitor != RT_NULL)
{
rt_thread_startup(thread_phy_monitor);
}
else
{
err = RT_ERROR;
}
return err;
}
INIT_PREV_EXPORT(phy_device_register);
#endif /* RT_USING_PHY */