4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-20 22:43:32 +08:00
Tangyuxin d724eed9fc
分离内存分配接口与内存分配算法 (#5175)
* [kernel][mem] Multiple instances of small memory allocation algorithm

* [kernel][mem] Change small memory management algorithm memory header flag

* [kernel][mem] Fix assertion problem

* [kernel][slab] Multiple instances of slab memory management algorithm

* [kernel][memheap] Remove rt_malloc/rt_free/rt_realloc and other related memory interfaces

* [kernel][mem] Clean up memory space of small memory management objects

* [kernel][kservice] Add memory application interface and thread protection interface

* [kernel][kservice] Fix function return value problem

* [kernel][memheap] Optimize memheaptrace print

* [kernel][memheap] Support best mode

* [kernel][memory] Remove semaphore lock

* [kernel][memheap] Add locked flag

* [kernel][memory] Support malloc memory in interrupt

* [kernel][memheap] Add 'memheapcheck' cmd

* [kernel][mem] Fix failure to request full memory

* [kernel][memheap] Fix compilation warning

* [kernel][mem] Fix mem realloc ASSERT

* [examples][testcases] Add small mem testcase

* [examples][mem_tc] Modify test memory size

* [examples][testcases] Add slab memory management algorithm test case

* [examples][testcases] fix small memory management algorithm test case

* [kernel][memory] Adjusting memory allocation algorithm object definition and interface

* [kernel][memory] Fix compilation warning

* [examples][utest] Fix mem test case

* [examples][utest] fix slab test case

* [utest][testcases] Shorten test time

* [kernel][memory] Formatting code

* [examples][utest] Adjust test run time

* [examples][utest] Formatting code

* [bsp] update all rtconfig.h
2021-12-16 16:23:58 +08:00

589 lines
19 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-10-14 tyx the first version
*/
#include <rtthread.h>
#include <stdlib.h>
#include "utest.h"
struct rt_small_mem_item
{
rt_ubase_t pool_ptr; /**< small memory object addr */
#ifdef ARCH_CPU_64BIT
rt_uint32_t resv;
#endif /* ARCH_CPU_64BIT */
rt_size_t next; /**< next free item */
rt_size_t prev; /**< prev free item */
#ifdef RT_USING_MEMTRACE
#ifdef ARCH_CPU_64BIT
rt_uint8_t thread[8]; /**< thread name */
#else
rt_uint8_t thread[4]; /**< thread name */
#endif /* ARCH_CPU_64BIT */
#endif /* RT_USING_MEMTRACE */
};
struct rt_small_mem
{
struct rt_memory parent; /**< inherit from rt_memory */
rt_uint8_t *heap_ptr; /**< pointer to the heap */
struct rt_small_mem_item *heap_end;
struct rt_small_mem_item *lfree;
rt_size_t mem_size_aligned; /**< aligned memory size */
};
#define MEM_SIZE(_heap, _mem) \
(((struct rt_small_mem_item *)(_mem))->next - ((rt_ubase_t)(_mem) - \
(rt_ubase_t)((_heap)->heap_ptr)) - RT_ALIGN(sizeof(struct rt_small_mem_item), RT_ALIGN_SIZE))
#define TEST_MEM_SIZE 1024
static rt_size_t max_block(struct rt_small_mem *heap)
{
struct rt_small_mem_item *mem;
rt_size_t max = 0, size;
for (mem = (struct rt_small_mem_item *)heap->heap_ptr;
mem != heap->heap_end;
mem = (struct rt_small_mem_item *)&heap->heap_ptr[mem->next])
{
if (((rt_ubase_t)mem->pool_ptr & 0x1) == 0)
{
size = MEM_SIZE(heap, mem);
if (size > max)
{
max = size;
}
}
}
return max;
}
static int _mem_cmp(void *ptr, rt_uint8_t v, rt_size_t size)
{
while (size-- != 0)
{
if (*(rt_uint8_t *)ptr != v)
return *(rt_uint8_t *)ptr - v;
}
return 0;
}
struct mem_test_context
{
void *ptr;
rt_size_t size;
rt_uint8_t magic;
};
static void mem_functional_test(void)
{
rt_size_t total_size;
rt_uint8_t *buf;
struct rt_small_mem *heap;
rt_uint8_t magic = __LINE__;
/* Prepare test memory */
buf = rt_malloc(TEST_MEM_SIZE);
uassert_not_null(buf);
uassert_int_equal(RT_ALIGN((rt_ubase_t)buf, RT_ALIGN_SIZE), (rt_ubase_t)buf);
rt_memset(buf, 0xAA, TEST_MEM_SIZE);
/* small heap init */
heap = (struct rt_small_mem *)rt_smem_init("mem_tc", buf, TEST_MEM_SIZE);
/* get total size */
total_size = max_block(heap);
uassert_int_not_equal(total_size, 0);
/*
* Allocate all memory at a time and test whether
* the memory allocation release function is effective
*/
{
struct mem_test_context ctx;
ctx.magic = magic++;
ctx.size = max_block(heap);
ctx.ptr = rt_smem_alloc(&heap->parent, ctx.size);
uassert_not_null(ctx.ptr);
rt_memset(ctx.ptr, ctx.magic, ctx.size);
uassert_int_equal(_mem_cmp(ctx.ptr, ctx.magic, ctx.size), 0);
rt_smem_free(ctx.ptr);
uassert_int_equal(max_block(heap), total_size);
}
/*
* Apply for memory release sequentially and
* test whether memory block merging is effective
*/
{
rt_size_t i, max_free = 0;
struct mem_test_context ctx[3];
/* alloc mem */
for (i = 0; i < sizeof(ctx) / sizeof(ctx[0]); i++)
{
ctx[i].magic = magic++;
ctx[i].size = max_block(heap) / (sizeof(ctx) / sizeof(ctx[0]) - i);
ctx[i].ptr = rt_smem_alloc(&heap->parent, ctx[i].size);
uassert_not_null(ctx[i].ptr);
rt_memset(ctx[i].ptr, ctx[i].magic, ctx[i].size);
}
/* All memory has been applied. The remaining memory should be 0 */
uassert_int_equal(max_block(heap), 0);
/* Verify that the memory data is correct */
for (i = 0; i < sizeof(ctx) / sizeof(ctx[0]); i++)
{
uassert_int_equal(_mem_cmp(ctx[i].ptr, ctx[i].magic, ctx[i].size), 0);
}
/* Sequential memory release */
for (i = 0; i < sizeof(ctx) / sizeof(ctx[0]); i++)
{
uassert_int_equal(_mem_cmp(ctx[i].ptr, ctx[i].magic, ctx[i].size), 0);
rt_smem_free(ctx[i].ptr);
max_free += ctx[i].size;
uassert_true(max_block(heap) >= max_free);
}
/* Check whether the memory is fully merged */
uassert_int_equal(max_block(heap), total_size);
}
/*
* Apply for memory release at an interval to
* test whether memory block merging is effective
*/
{
rt_size_t i, max_free = 0;
struct mem_test_context ctx[3];
/* alloc mem */
for (i = 0; i < sizeof(ctx) / sizeof(ctx[0]); i++)
{
ctx[i].magic = magic++;
ctx[i].size = max_block(heap) / (sizeof(ctx) / sizeof(ctx[0]) - i);
ctx[i].ptr = rt_smem_alloc(&heap->parent, ctx[i].size);
uassert_not_null(ctx[i].ptr);
rt_memset(ctx[i].ptr, ctx[i].magic, ctx[i].size);
}
/* All memory has been applied. The remaining memory should be 0 */
uassert_int_equal(max_block(heap), 0);
/* Verify that the memory data is correct */
for (i = 0; i < sizeof(ctx) / sizeof(ctx[0]); i++)
{
uassert_int_equal(_mem_cmp(ctx[i].ptr, ctx[i].magic, ctx[i].size), 0);
}
/* Release even address */
for (i = 0; i < sizeof(ctx) / sizeof(ctx[0]); i++)
{
if (i % 2 == 0)
{
uassert_int_equal(_mem_cmp(ctx[i].ptr, ctx[i].magic, ctx[i].size), 0);
rt_smem_free(ctx[i].ptr);
uassert_true(max_block(heap) >= ctx[0].size);
}
}
/* Release odd addresses and merge memory blocks */
for (i = 0; i < sizeof(ctx) / sizeof(ctx[0]); i++)
{
if (i % 2 != 0)
{
uassert_int_equal(_mem_cmp(ctx[i].ptr, ctx[i].magic, ctx[i].size), 0);
rt_smem_free(ctx[i].ptr);
max_free += ctx[i - 1].size + ctx[i + 1].size;
uassert_true(max_block(heap) >= max_free);
}
}
/* Check whether the memory is fully merged */
uassert_int_equal(max_block(heap), total_size);
}
/* mem realloc test,Small - > Large */
{
/* Request a piece of memory for subsequent reallocation operations */
struct mem_test_context ctx[3];
ctx[0].magic = magic++;
ctx[0].size = max_block(heap) / 3;
ctx[0].ptr = rt_smem_alloc(&heap->parent, ctx[0].size);
uassert_not_null(ctx[0].ptr);
rt_memset(ctx[0].ptr, ctx[0].magic, ctx[0].size);
/* Apply for a small piece of memory and split the continuous memory */
ctx[1].magic = magic++;
ctx[1].size = RT_ALIGN_SIZE;
ctx[1].ptr = rt_smem_alloc(&heap->parent, ctx[1].size);
uassert_not_null(ctx[1].ptr);
rt_memset(ctx[1].ptr, ctx[1].magic, ctx[1].size);
/* Check whether the maximum memory block is larger than the first piece of memory */
uassert_true(max_block(heap) > ctx[0].size);
/* Reallocate the first piece of memory */
ctx[2].magic = magic++;
ctx[2].size = max_block(heap);
ctx[2].ptr = rt_smem_realloc(&heap->parent, ctx[0].ptr, ctx[2].size);
uassert_not_null(ctx[2].ptr);
uassert_int_not_equal(ctx[0].ptr, ctx[2].ptr);
uassert_int_equal(_mem_cmp(ctx[2].ptr, ctx[0].magic, ctx[0].size), 0);
rt_memset(ctx[2].ptr, ctx[2].magic, ctx[2].size);
/* Free the second piece of memory */
uassert_int_equal(_mem_cmp(ctx[1].ptr, ctx[1].magic, ctx[1].size), 0);
rt_smem_free(ctx[1].ptr);
/* Free reallocated memory */
uassert_int_equal(_mem_cmp(ctx[2].ptr, ctx[2].magic, ctx[2].size), 0);
rt_smem_free(ctx[2].ptr);
/* Check memory integrity */
uassert_int_equal(max_block(heap), total_size);
}
/* mem realloc test,Large - > Small */
{
rt_size_t max_free;
struct mem_test_context ctx;
/* alloc a piece of memory */
ctx.magic = magic++;
ctx.size = max_block(heap) / 2;
ctx.ptr = rt_smem_alloc(&heap->parent, ctx.size);
uassert_not_null(ctx.ptr);
rt_memset(ctx.ptr, ctx.magic, ctx.size);
uassert_int_equal(_mem_cmp(ctx.ptr, ctx.magic, ctx.size), 0);
/* Get remaining memory */
max_free = max_block(heap);
/* Change memory size */
ctx.size = ctx.size / 2;
uassert_int_equal((rt_ubase_t)rt_smem_realloc(&heap->parent, ctx.ptr, ctx.size), (rt_ubase_t)ctx.ptr);
/* Get remaining size */
uassert_true(max_block(heap) > max_free);
/* Free memory */
uassert_int_equal(_mem_cmp(ctx.ptr, ctx.magic, ctx.size), 0);
rt_smem_free(ctx.ptr);
/* Check memory integrity */
uassert_int_equal(max_block(heap), total_size);
}
/* mem realloc test,equal */
{
rt_size_t max_free;
struct mem_test_context ctx;
/* alloc a piece of memory */
ctx.magic = magic++;
ctx.size = max_block(heap) / 2;
ctx.ptr = rt_smem_alloc(&heap->parent, ctx.size);
uassert_not_null(ctx.ptr);
rt_memset(ctx.ptr, ctx.magic, ctx.size);
uassert_int_equal(_mem_cmp(ctx.ptr, ctx.magic, ctx.size), 0);
/* Get remaining memory */
max_free = max_block(heap);
/* Do not change memory size */
uassert_int_equal((rt_ubase_t)rt_smem_realloc(&heap->parent, ctx.ptr, ctx.size), (rt_ubase_t)ctx.ptr);
/* Get remaining size */
uassert_true(max_block(heap) == max_free);
/* Free memory */
uassert_int_equal(_mem_cmp(ctx.ptr, ctx.magic, ctx.size), 0);
rt_smem_free(ctx.ptr);
/* Check memory integrity */
uassert_int_equal(max_block(heap), total_size);
}
/* small heap deinit */
rt_smem_detach(&heap->parent);
/* release test resources */
rt_free(buf);
}
struct mem_alloc_context
{
rt_list_t node;
rt_size_t size;
rt_uint8_t magic;
};
struct mem_alloc_head
{
rt_list_t list;
rt_size_t count;
rt_tick_t start;
rt_tick_t end;
rt_tick_t interval;
};
#define MEM_RANG_ALLOC_BLK_MIN 2
#define MEM_RANG_ALLOC_BLK_MAX 5
#define MEM_RANG_ALLOC_TEST_TIME 5
static void mem_alloc_test(void)
{
struct mem_alloc_head head;
rt_uint8_t *buf;
struct rt_small_mem *heap;
rt_size_t total_size, size;
struct mem_alloc_context *ctx;
/* init */
rt_list_init(&head.list);
head.count = 0;
head.start = rt_tick_get();
head.end = rt_tick_get() + rt_tick_from_millisecond(MEM_RANG_ALLOC_TEST_TIME * 1000);
head.interval = (head.end - head.start) / 20;
buf = rt_malloc(TEST_MEM_SIZE);
uassert_not_null(buf);
uassert_int_equal(RT_ALIGN((rt_ubase_t)buf, RT_ALIGN_SIZE), (rt_ubase_t)buf);
rt_memset(buf, 0xAA, TEST_MEM_SIZE);
heap = (struct rt_small_mem *)rt_smem_init("mem_tc", buf, TEST_MEM_SIZE);
total_size = max_block(heap);
uassert_int_not_equal(total_size, 0);
/* test run */
while (head.end - head.start < RT_TICK_MAX / 2)
{
if (rt_tick_get() - head.start >= head.interval)
{
head.start = rt_tick_get();
rt_kprintf("#");
}
/* %60 probability to perform alloc operation */
if (rand() % 10 >= 4)
{
size = rand() % MEM_RANG_ALLOC_BLK_MAX + MEM_RANG_ALLOC_BLK_MIN;
size *= sizeof(struct mem_alloc_context);
ctx = rt_smem_alloc(&heap->parent, size);
if (ctx == RT_NULL)
{
if (head.count == 0)
{
break;
}
size = head.count / 2;
while (size != head.count)
{
ctx = rt_list_first_entry(&head.list, struct mem_alloc_context, node);
rt_list_remove(&ctx->node);
if (ctx->size > sizeof(*ctx))
{
if (_mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx)) != 0)
{
uassert_true(0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_smem_free(ctx);
head.count --;
}
continue;
}
if (RT_ALIGN((rt_ubase_t)ctx, RT_ALIGN_SIZE) != (rt_ubase_t)ctx)
{
uassert_int_equal(RT_ALIGN((rt_ubase_t)ctx, RT_ALIGN_SIZE), (rt_ubase_t)ctx);
}
rt_memset(ctx, 0, size);
rt_list_init(&ctx->node);
ctx->size = size;
ctx->magic = rand() & 0xff;
if (ctx->size > sizeof(*ctx))
{
rt_memset(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
}
rt_list_insert_after(&head.list, &ctx->node);
head.count += 1;
}
else
{
if (!rt_list_isempty(&head.list))
{
ctx = rt_list_first_entry(&head.list, struct mem_alloc_context, node);
rt_list_remove(&ctx->node);
if (ctx->size > sizeof(*ctx))
{
if (_mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx)) != 0)
{
uassert_true(0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_smem_free(ctx);
head.count --;
}
}
}
while (!rt_list_isempty(&head.list))
{
ctx = rt_list_first_entry(&head.list, struct mem_alloc_context, node);
rt_list_remove(&ctx->node);
if (ctx->size > sizeof(*ctx))
{
if (_mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx)) != 0)
{
uassert_true(0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_smem_free(ctx);
head.count --;
}
uassert_int_equal(head.count, 0);
uassert_int_equal(max_block(heap), total_size);
/* small heap deinit */
rt_smem_detach(&heap->parent);
/* release test resources */
rt_free(buf);
}
#define MEM_RANG_REALLOC_BLK_MIN 0
#define MEM_RANG_REALLOC_BLK_MAX 5
#define MEM_RANG_REALLOC_TEST_TIME 5
struct mem_realloc_context
{
rt_size_t size;
rt_uint8_t magic;
};
struct mem_realloc_head
{
struct mem_realloc_context **ctx_tab;
rt_size_t count;
rt_tick_t start;
rt_tick_t end;
rt_tick_t interval;
};
static void mem_realloc_test(void)
{
struct mem_realloc_head head;
rt_uint8_t *buf;
struct rt_small_mem *heap;
rt_size_t total_size, size, idx;
struct mem_realloc_context *ctx;
int res;
size = RT_ALIGN(sizeof(struct mem_realloc_context), RT_ALIGN_SIZE) + RT_ALIGN_SIZE;
size = TEST_MEM_SIZE / size;
/* init */
head.ctx_tab = RT_NULL;
head.count = size;
head.start = rt_tick_get();
head.end = rt_tick_get() + rt_tick_from_millisecond(MEM_RANG_ALLOC_TEST_TIME * 1000);
head.interval = (head.end - head.start) / 20;
buf = rt_malloc(TEST_MEM_SIZE);
uassert_not_null(buf);
uassert_int_equal(RT_ALIGN((rt_ubase_t)buf, RT_ALIGN_SIZE), (rt_ubase_t)buf);
rt_memset(buf, 0xAA, TEST_MEM_SIZE);
heap = (struct rt_small_mem *)rt_smem_init("mem_tc", buf, TEST_MEM_SIZE);
total_size = max_block(heap);
uassert_int_not_equal(total_size, 0);
/* init ctx tab */
size = head.count * sizeof(struct mem_realloc_context *);
head.ctx_tab = rt_smem_alloc(&heap->parent, size);
uassert_not_null(head.ctx_tab);
rt_memset(head.ctx_tab, 0, size);
/* test run */
while (head.end - head.start < RT_TICK_MAX / 2)
{
if (rt_tick_get() - head.start >= head.interval)
{
head.start = rt_tick_get();
rt_kprintf("#");
}
size = rand() % MEM_RANG_ALLOC_BLK_MAX + MEM_RANG_ALLOC_BLK_MIN;
size *= sizeof(struct mem_realloc_context);
idx = rand() % head.count;
ctx = rt_smem_realloc(&heap->parent, head.ctx_tab[idx], size);
if (ctx == RT_NULL)
{
if (size == 0)
{
if (head.ctx_tab[idx])
{
head.ctx_tab[idx] = RT_NULL;
}
}
else
{
for (idx = 0; idx < head.count; idx++)
{
ctx = head.ctx_tab[idx];
if (rand() % 2 && ctx)
{
if (ctx->size > sizeof(*ctx))
{
res = _mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
if (res != 0)
{
uassert_int_equal(res, 0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_smem_realloc(&heap->parent, ctx, 0);
head.ctx_tab[idx] = RT_NULL;
}
}
}
continue;
}
/* check mem */
if (head.ctx_tab[idx] != RT_NULL)
{
res = 0;
if (ctx->size < size)
{
if (ctx->size > sizeof(*ctx))
{
res = _mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
}
}
else
{
if (size > sizeof(*ctx))
{
res = _mem_cmp(&ctx[1], ctx->magic, size - sizeof(*ctx));
}
}
if (res != 0)
{
uassert_int_equal(res, 0);
}
}
/* init mem */
ctx->magic = rand() & 0xff;
ctx->size = size;
if (ctx->size > sizeof(*ctx))
{
rt_memset(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
}
head.ctx_tab[idx] = ctx;
}
/* free all mem */
for (idx = 0; idx < head.count; idx++)
{
ctx = head.ctx_tab[idx];
if (ctx == RT_NULL)
{
continue;
}
if (ctx->size > sizeof(*ctx))
{
res = _mem_cmp(&ctx[1], ctx->magic, ctx->size - sizeof(*ctx));
if (res != 0)
{
uassert_int_equal(res, 0);
}
}
rt_memset(ctx, 0xAA, ctx->size);
rt_smem_realloc(&heap->parent, ctx, 0);
head.ctx_tab[idx] = RT_NULL;
}
uassert_int_not_equal(max_block(heap), total_size);
/* small heap deinit */
rt_smem_detach(&heap->parent);
/* release test resources */
rt_free(buf);
}
static rt_err_t utest_tc_init(void)
{
return RT_EOK;
}
static rt_err_t utest_tc_cleanup(void)
{
return RT_EOK;
}
static void testcase(void)
{
UTEST_UNIT_RUN(mem_functional_test);
UTEST_UNIT_RUN(mem_alloc_test);
UTEST_UNIT_RUN(mem_realloc_test);
}
UTEST_TC_EXPORT(testcase, "testcases.kernel.mem_tc", utest_tc_init, utest_tc_cleanup, 20);