rt-thread-official/components/drivers/sdio/mmc.c

793 lines
22 KiB
C

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2015-06-15 hichard first version
* 2024-05-25 HPMicro add HS400 support
*/
#include <drivers/mmcsd_core.h>
#include <drivers/mmc.h>
#define DBG_TAG "SDIO"
#ifdef RT_SDIO_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* RT_SDIO_DEBUG */
#include <rtdbg.h>
static const rt_uint32_t tran_unit[] =
{
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const rt_uint8_t tran_value[] =
{
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const rt_uint32_t tacc_uint[] =
{
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const rt_uint8_t tacc_value[] =
{
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
rt_inline rt_uint32_t GET_BITS(rt_uint32_t *resp,
rt_uint32_t start,
rt_uint32_t size)
{
const rt_int32_t __size = size;
const rt_uint32_t __mask = (__size < 32 ? 1 << __size : 0) - 1;
const rt_int32_t __off = 3 - ((start) / 32);
const rt_int32_t __shft = (start) & 31;
rt_uint32_t __res;
__res = resp[__off] >> __shft;
if (__size + __shft > 32)
__res |= resp[__off - 1] << ((32 - __shft) % 32);
return __res & __mask;
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static rt_int32_t mmcsd_parse_csd(struct rt_mmcsd_card *card)
{
rt_uint32_t a, b;
struct rt_mmcsd_csd *csd = &card->csd;
rt_uint32_t *resp = card->resp_csd;
/*
* We only understand CSD structure v1.1 and v1.2.
* v1.2 has extra information in bits 15, 11 and 10.
* We also support eMMC v4.4 & v4.41.
*/
csd->csd_structure = GET_BITS(resp, 126, 2);
if (csd->csd_structure == 0)
{
LOG_E("unrecognised CSD structure version %d!", csd->csd_structure);
return -RT_ERROR;
}
csd->taac = GET_BITS(resp, 112, 8);
csd->nsac = GET_BITS(resp, 104, 8);
csd->tran_speed = GET_BITS(resp, 96, 8);
csd->card_cmd_class = GET_BITS(resp, 84, 12);
csd->rd_blk_len = GET_BITS(resp, 80, 4);
csd->rd_blk_part = GET_BITS(resp, 79, 1);
csd->wr_blk_misalign = GET_BITS(resp, 78, 1);
csd->rd_blk_misalign = GET_BITS(resp, 77, 1);
csd->dsr_imp = GET_BITS(resp, 76, 1);
csd->c_size = GET_BITS(resp, 62, 12);
csd->c_size_mult = GET_BITS(resp, 47, 3);
csd->r2w_factor = GET_BITS(resp, 26, 3);
csd->wr_blk_len = GET_BITS(resp, 22, 4);
csd->wr_blk_partial = GET_BITS(resp, 21, 1);
csd->csd_crc = GET_BITS(resp, 1, 7);
card->card_blksize = 1 << csd->rd_blk_len;
card->tacc_clks = csd->nsac * 100;
card->tacc_ns = (tacc_uint[csd->taac & 0x07] * tacc_value[(csd->taac & 0x78) >> 3] + 9) / 10;
card->max_data_rate = tran_unit[csd->tran_speed & 0x07] * tran_value[(csd->tran_speed & 0x78) >> 3];
if (csd->wr_blk_len >= 9)
{
a = GET_BITS(resp, 42, 5);
b = GET_BITS(resp, 37, 5);
card->erase_size = (a + 1) * (b + 1);
card->erase_size <<= csd->wr_blk_len - 9;
}
return 0;
}
/*
* Read extended CSD.
*/
static int mmc_get_ext_csd(struct rt_mmcsd_card *card, rt_uint8_t **new_ext_csd)
{
void *ext_csd;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
*new_ext_csd = RT_NULL;
if (GET_BITS(card->resp_csd, 122, 4) < 4)
return 0;
/*
* As the ext_csd is so large and mostly unused, we don't store the
* raw block in mmc_card.
*/
ext_csd = rt_malloc(512);
if (!ext_csd)
{
LOG_E("alloc memory failed when get ext csd!");
return -RT_ENOMEM;
}
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.cmd_code = SEND_EXT_CSD;
cmd.arg = 0;
/* NOTE HACK: the RESP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = 512;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = ext_csd;
/*
* Some cards require longer data read timeout than indicated in CSD.
* Address this by setting the read timeout to a "reasonably high"
* value. For the cards tested, 300ms has proven enough. If necessary,
* this value can be increased if other problematic cards require this.
*/
data.timeout_ns = 300000000;
data.timeout_clks = 0;
mmcsd_send_request(card->host, &req);
if (cmd.err)
return cmd.err;
if (data.err)
return data.err;
*new_ext_csd = ext_csd;
return 0;
}
/*
* Decode extended CSD.
*/
static int mmc_parse_ext_csd(struct rt_mmcsd_card *card, rt_uint8_t *ext_csd)
{
rt_uint64_t card_capacity = 0;
struct rt_mmcsd_host *host;
if (card == RT_NULL || ext_csd == RT_NULL)
{
LOG_E("emmc parse ext csd fail, invaild args");
return -1;
}
host = card->host;
uint8_t device_type = ext_csd[EXT_CSD_CARD_TYPE];
if ((host->flags & MMCSD_SUP_HS400) && (device_type & EXT_CSD_CARD_TYPE_HS400))
{
card->flags |= CARD_FLAG_HS400;
card->max_data_rate = 200000000;
}
else if ((host->flags & MMCSD_SUP_HS200) && (device_type & EXT_CSD_CARD_TYPE_HS200))
{
card->flags |= CARD_FLAG_HS200;
card->max_data_rate = 200000000;
}
else if ((host->flags & MMCSD_SUP_HIGHSPEED_DDR) && (device_type & EXT_CSD_CARD_TYPE_DDR_52))
{
card->flags |= CARD_FLAG_HIGHSPEED_DDR;
card->hs_max_data_rate = 52000000;
}
else
{
card->flags |= CARD_FLAG_HIGHSPEED;
card->hs_max_data_rate = 52000000;
}
if (ext_csd[EXT_CSD_STROBE_SUPPORT] != 0)
{
card->ext_csd.enhanced_data_strobe = 1;
}
card->ext_csd.cache_size =
ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
card_capacity = *((rt_uint32_t *)&ext_csd[EXT_CSD_SEC_CNT]);
card->card_sec_cnt = card_capacity;
card_capacity *= card->card_blksize;
card_capacity >>= 10; /* unit:KB */
card->card_capacity = card_capacity;
LOG_I("emmc card capacity %d KB, card sec count:%d.", card->card_capacity, card->card_sec_cnt);
return 0;
}
/**
* mmc_switch - modify EXT_CSD register
* @card: the MMC card associated with the data transfer
* @set: cmd set values
* @index: EXT_CSD register index
* @value: value to program into EXT_CSD register
*
* Modifies the EXT_CSD register for selected card.
*/
static int mmc_switch(struct rt_mmcsd_card *card, rt_uint8_t set,
rt_uint8_t index, rt_uint8_t value)
{
int err;
struct rt_mmcsd_host *host = card->host;
struct rt_mmcsd_cmd cmd = {0};
cmd.cmd_code = SWITCH;
cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) | (value << 8) | set;
cmd.flags = RESP_R1B | CMD_AC;
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
return 0;
}
static int mmc_compare_ext_csds(struct rt_mmcsd_card *card,
rt_uint8_t *ext_csd, rt_uint32_t bus_width)
{
rt_uint8_t *bw_ext_csd;
int err;
if (bus_width == MMCSD_BUS_WIDTH_1)
return 0;
err = mmc_get_ext_csd(card, &bw_ext_csd);
if (err || bw_ext_csd == RT_NULL)
{
err = -RT_ERROR;
goto out;
}
/* only compare read only fields */
err = !((ext_csd[EXT_CSD_PARTITION_SUPPORT] == bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
(ext_csd[EXT_CSD_ERASED_MEM_CONT] == bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
(ext_csd[EXT_CSD_REV] == bw_ext_csd[EXT_CSD_REV]) &&
(ext_csd[EXT_CSD_STRUCTURE] == bw_ext_csd[EXT_CSD_STRUCTURE]) &&
(ext_csd[EXT_CSD_CARD_TYPE] == bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
(ext_csd[EXT_CSD_S_A_TIMEOUT] == bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
(ext_csd[EXT_CSD_HC_WP_GRP_SIZE] == bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
(ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT] == bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
(ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] == bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
(ext_csd[EXT_CSD_SEC_TRIM_MULT] == bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
(ext_csd[EXT_CSD_SEC_ERASE_MULT] == bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
(ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT] == bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
(ext_csd[EXT_CSD_TRIM_MULT] == bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
(ext_csd[EXT_CSD_SEC_CNT + 0] == bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
(ext_csd[EXT_CSD_SEC_CNT + 1] == bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
(ext_csd[EXT_CSD_SEC_CNT + 2] == bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
(ext_csd[EXT_CSD_SEC_CNT + 3] == bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
(ext_csd[EXT_CSD_PWR_CL_52_195] == bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
(ext_csd[EXT_CSD_PWR_CL_26_195] == bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
(ext_csd[EXT_CSD_PWR_CL_52_360] == bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
(ext_csd[EXT_CSD_PWR_CL_26_360] == bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
(ext_csd[EXT_CSD_PWR_CL_200_195] == bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
(ext_csd[EXT_CSD_PWR_CL_200_360] == bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
(ext_csd[EXT_CSD_PWR_CL_DDR_52_195] == bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
(ext_csd[EXT_CSD_PWR_CL_DDR_52_360] == bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
(ext_csd[EXT_CSD_PWR_CL_DDR_200_360] == bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
if (err)
err = -RT_ERROR;
out:
rt_free(bw_ext_csd);
return err;
}
/*
* Select the bus width among 4-bit and 8-bit(SDR).
* If the bus width is changed successfully, return the selected width value.
* Zero is returned instead of error value if the wide width is not supported.
*/
static int mmc_select_bus_width(struct rt_mmcsd_card *card, rt_uint8_t *ext_csd)
{
rt_uint32_t ext_csd_bits[][2] =
{
{EXT_CSD_BUS_WIDTH_8, EXT_CSD_DDR_BUS_WIDTH_8},
{EXT_CSD_BUS_WIDTH_4, EXT_CSD_DDR_BUS_WIDTH_4},
{EXT_CSD_BUS_WIDTH_1, EXT_CSD_BUS_WIDTH_1},
};
rt_uint32_t bus_widths[] =
{
MMCSD_BUS_WIDTH_8,
MMCSD_BUS_WIDTH_4,
MMCSD_BUS_WIDTH_1
};
struct rt_mmcsd_host *host = card->host;
unsigned idx, bus_width = 0;
int err = 0, ddr = 0;
if (GET_BITS(card->resp_csd, 122, 4) < 4)
return 0;
if (card->flags & CARD_FLAG_HIGHSPEED_DDR)
{
ddr = 2;
}
/*
* Unlike SD, MMC cards don't have a configuration register to notify
* supported bus width. So bus test command should be run to identify
* the supported bus width or compare the EXT_CSD values of current
* bus width and EXT_CSD values of 1 bit mode read earlier.
*/
for (idx = 0; idx < sizeof(bus_widths) / sizeof(rt_uint32_t); idx++)
{
/*
* Determine BUS WIDTH mode according to the capability of host
*/
if (((ext_csd_bits[idx][0] == EXT_CSD_BUS_WIDTH_8) && ((host->flags & MMCSD_BUSWIDTH_8) == 0)) ||
((ext_csd_bits[idx][0] == EXT_CSD_BUS_WIDTH_4) && ((host->flags & MMCSD_BUSWIDTH_4) == 0)))
{
continue;
}
bus_width = bus_widths[idx];
if (bus_width == MMCSD_BUS_WIDTH_1)
{
ddr = 0;
}
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits[idx][0]);
if (err)
continue;
mmcsd_set_bus_width(host, bus_width);
err = mmc_compare_ext_csds(card, ext_csd, bus_width);
if (!err)
{
break;
}
else
{
switch (ext_csd_bits[idx][0])
{
case 0:
LOG_E("switch to bus width 1 bit failed!");
break;
case 1:
LOG_E("switch to bus width 4 bit failed!");
break;
case 2:
LOG_E("switch to bus width 8 bit failed!");
break;
default:
break;
}
}
}
if (!err && ddr)
{
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits[idx][1]);
}
if (!err)
{
if (card->flags & (CARD_FLAG_HIGHSPEED | CARD_FLAG_HIGHSPEED_DDR))
{
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING,
1);
}
}
return err;
}
rt_err_t mmc_send_op_cond(struct rt_mmcsd_host *host,
rt_uint32_t ocr, rt_uint32_t *rocr)
{
struct rt_mmcsd_cmd cmd;
rt_uint32_t i;
rt_err_t err = RT_EOK;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SEND_OP_COND;
cmd.arg = controller_is_spi(host) ? 0 : ocr;
cmd.flags = RESP_SPI_R1 | RESP_R3 | CMD_BCR;
for (i = 100; i; i--)
{
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
break;
/* if we're just probing, do a single pass */
if (ocr == 0)
break;
/* otherwise wait until reset completes */
if (controller_is_spi(host))
{
if (!(cmd.resp[0] & R1_SPI_IDLE))
break;
}
else
{
if (cmd.resp[0] & CARD_BUSY)
break;
}
err = -RT_ETIMEOUT;
rt_thread_mdelay(10); //delay 10ms
}
if (rocr && !controller_is_spi(host))
*rocr = cmd.resp[0];
return err;
}
static rt_err_t mmc_set_card_addr(struct rt_mmcsd_host *host, rt_uint32_t rca)
{
rt_err_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SET_RELATIVE_ADDR;
cmd.arg = rca << 16;
cmd.flags = RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
return 0;
}
static int mmc_select_hs200(struct rt_mmcsd_card *card)
{
int ret;
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS200);
if (ret)
return ret;
mmcsd_set_timing(card->host, MMCSD_TIMING_MMC_HS200);
mmcsd_set_clock(card->host, card->max_data_rate);
ret = mmcsd_excute_tuning(card);
return ret;
}
static int mmc_switch_to_hs400(struct rt_mmcsd_card *card)
{
struct rt_mmcsd_host *host = card->host;
int err;
rt_uint8_t ext_csd_bus_width;
rt_uint32_t hs_timing;
/* Switch to HS_TIMING to 0x01 (High Speed) */
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS);
if (err != RT_EOK)
{
return err;
}
mmcsd_set_timing(card->host, MMCSD_TIMING_MMC_HS);
/* Host changes frequency to <= 52MHz */
mmcsd_set_clock(card->host, 52000000);
rt_bool_t support_enhanced_ds = ((card->ext_csd.enhanced_data_strobe != 0) &&
((host->flags & MMCSD_SUP_ENH_DS) != 0));
/* Set the bus width to:
* 0x86 if enhanced data strobe is supported, or
* 0x06 if enhanced data strobe is not supported
*/
ext_csd_bus_width = support_enhanced_ds ?
EXT_CSD_DDR_BUS_WIDTH_8_EH_DS :
EXT_CSD_DDR_BUS_WIDTH_8;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bus_width);
if (err != RT_EOK)
{
return err;
}
/* Set HS_TIMING to 0x03 (HS400) */
err = mmc_switch(card,
EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING,
EXT_CSD_TIMING_HS400);
if (err != RT_EOK)
{
return err;
}
/* Change the Host timing accordingly */
hs_timing = support_enhanced_ds ?
MMCSD_TIMING_MMC_HS400_ENH_DS :
MMCSD_TIMING_MMC_HS400;
mmcsd_set_timing(host, hs_timing);
/* Host may changes frequency to <= 200MHz */
mmcsd_set_clock(card->host, card->max_data_rate);
return RT_EOK;
}
static int mmc_select_hs400(struct rt_mmcsd_card *card)
{
int ret;
struct rt_mmcsd_host *host = card->host;
/* if the card or host doesn't support enhanced data strobe, switch to HS200 and perform tuning process first */
if ((card->ext_csd.enhanced_data_strobe == 0) || ((host->flags & MMCSD_SUP_ENH_DS) == 0))
{
ret = mmc_select_hs200(card);
if (ret != RT_EOK)
{
return ret;
}
}
return mmc_switch_to_hs400(card);
}
static int mmc_select_timing(struct rt_mmcsd_card *card)
{
int ret = 0;
if (card->flags & CARD_FLAG_HS400)
{
LOG_I("emmc: switch to HS400 mode\n");
ret = mmc_select_hs400(card);
}
else if (card->flags & CARD_FLAG_HS200)
{
LOG_I("emmc: switch to HS200 mode\n");
ret = mmc_select_hs200(card);
}
else if (card->flags & CARD_FLAG_HIGHSPEED_DDR)
{
LOG_I("emmc: switch to HIGH Speed DDR mode\n");
mmcsd_set_timing(card->host, MMCSD_TIMING_MMC_DDR52);
mmcsd_set_clock(card->host, card->hs_max_data_rate);
}
else
{
LOG_I("emmc: switch to HIGH Speed mode\n");
mmcsd_set_timing(card->host, MMCSD_TIMING_MMC_HS);
mmcsd_set_clock(card->host, card->hs_max_data_rate);
}
return ret;
}
static rt_int32_t mmcsd_mmc_init_card(struct rt_mmcsd_host *host,
rt_uint32_t ocr)
{
rt_int32_t err;
rt_uint32_t resp[4];
rt_uint32_t rocr = 0;
rt_uint8_t *ext_csd = RT_NULL;
struct rt_mmcsd_card *card = RT_NULL;
mmcsd_go_idle(host);
/* The extra bit indicates that we support high capacity */
err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
if (err)
goto err;
if (controller_is_spi(host))
{
err = mmcsd_spi_use_crc(host, 1);
if (err)
goto err1;
}
if (controller_is_spi(host))
err = mmcsd_get_cid(host, resp);
else
err = mmcsd_all_get_cid(host, resp);
if (err)
goto err;
card = rt_malloc(sizeof(struct rt_mmcsd_card));
if (!card)
{
LOG_E("malloc card failed!");
err = -RT_ENOMEM;
goto err;
}
rt_memset(card, 0, sizeof(struct rt_mmcsd_card));
card->card_type = CARD_TYPE_MMC;
card->host = host;
card->rca = 1;
rt_memcpy(card->resp_cid, resp, sizeof(card->resp_cid));
/*
* For native busses: get card RCA and quit open drain mode.
*/
if (!controller_is_spi(host))
{
err = mmc_set_card_addr(host, card->rca);
if (err)
goto err1;
mmcsd_set_bus_mode(host, MMCSD_BUSMODE_PUSHPULL);
}
err = mmcsd_get_csd(card, card->resp_csd);
if (err)
goto err1;
err = mmcsd_parse_csd(card);
if (err)
goto err1;
if (!controller_is_spi(host))
{
err = mmcsd_select_card(card);
if (err)
goto err1;
}
/*
* Fetch and process extended CSD.
*/
err = mmc_get_ext_csd(card, &ext_csd);
if (err)
goto err1;
err = mmc_parse_ext_csd(card, ext_csd);
if (err)
goto err1;
/* If doing byte addressing, check if required to do sector
* addressing. Handle the case of <2GB cards needing sector
* addressing. See section 8.1 JEDEC Standard JED84-A441;
* ocr register has bit 30 set for sector addressing.
*/
if (!(card->flags & CARD_FLAG_SDHC) && (rocr & (1 << 30)))
card->flags |= CARD_FLAG_SDHC;
/*switch bus width and bus mode*/
err = mmc_select_bus_width(card, ext_csd);
if (err)
{
LOG_E("mmc select buswidth fail");
goto err0;
}
err = mmc_select_timing(card);
if (err)
{
LOG_E("mmc select timing fail");
goto err0;
}
if (card->ext_csd.cache_size > 0)
{
mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_CACHE_CTRL, 1);
}
host->card = card;
rt_free(ext_csd);
return 0;
err0:
rt_free(ext_csd);
err1:
rt_free(card);
err:
return err;
}
/*
* Starting point for mmc card init.
*/
rt_int32_t init_mmc(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
rt_int32_t err;
rt_uint32_t current_ocr;
/*
* We need to get OCR a different way for SPI.
*/
if (controller_is_spi(host))
{
err = mmcsd_spi_read_ocr(host, 0, &ocr);
if (err)
goto err;
}
current_ocr = mmcsd_select_voltage(host, ocr);
/*
* Can we support the voltage(s) of the card(s)?
*/
if (!current_ocr)
{
err = -RT_ERROR;
goto err;
}
/*
* Detect and init the card.
*/
err = mmcsd_mmc_init_card(host, current_ocr);
if (err)
goto err;
mmcsd_host_unlock(host);
err = rt_mmcsd_blk_probe(host->card);
if (err)
goto remove_card;
mmcsd_host_lock(host);
return 0;
remove_card:
mmcsd_host_lock(host);
rt_mmcsd_blk_remove(host->card);
rt_free(host->card);
host->card = RT_NULL;
err:
LOG_E("init MMC card failed!");
return err;
}