mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-26 16:17:20 +08:00
1035 lines
35 KiB
C
1035 lines
35 KiB
C
/*!
|
|
\file gd32e230_rcu.c
|
|
\brief RCU driver
|
|
|
|
\version 2018-06-19, V1.0.0, firmware for GD32E230
|
|
*/
|
|
|
|
/*
|
|
Copyright (c) 2018, GigaDevice Semiconductor Inc.
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
3. Neither the name of the copyright holder nor the names of its contributors
|
|
may be used to endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "gd32e230_rcu.h"
|
|
|
|
/* define clock source */
|
|
#define SEL_IRC8M 0x00U
|
|
#define SEL_HXTAL 0x01U
|
|
#define SEL_PLL 0x02U
|
|
|
|
/* define startup timeout count */
|
|
#define OSC_STARTUP_TIMEOUT ((uint32_t)0x000FFFFFU)
|
|
#define LXTAL_STARTUP_TIMEOUT ((uint32_t)0x03FFFFFFU)
|
|
|
|
/*!
|
|
\brief deinitialize the RCU
|
|
\param[in] none
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_deinit(void)
|
|
{
|
|
/* enable IRC8M */
|
|
RCU_CTL0 |= RCU_CTL0_IRC8MEN;
|
|
while(0U == (RCU_CTL0 & RCU_CTL0_IRC8MSTB)){
|
|
}
|
|
/* reset RCU */
|
|
RCU_CFG0 &= ~(RCU_CFG0_SCS | RCU_CFG0_AHBPSC | RCU_CFG0_APB1PSC | RCU_CFG0_APB2PSC |\
|
|
RCU_CFG0_ADCPSC | RCU_CFG0_CKOUTSEL | RCU_CFG0_CKOUTDIV | RCU_CFG0_PLLDV);
|
|
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF | RCU_CFG0_PLLMF4 | RCU_CFG0_PLLDV);
|
|
RCU_CTL0 &= ~(RCU_CTL0_HXTALEN | RCU_CTL0_CKMEN | RCU_CTL0_PLLEN | RCU_CTL0_HXTALBPS);
|
|
RCU_CFG1 &= ~(RCU_CFG1_PREDV);
|
|
RCU_CFG2 &= ~(RCU_CFG2_USART0SEL | RCU_CFG2_ADCSEL);
|
|
RCU_CFG2 &= ~RCU_CFG2_IRC28MDIV;
|
|
RCU_CFG2 &= ~RCU_CFG2_ADCPSC2;
|
|
RCU_CTL1 &= ~RCU_CTL1_IRC28MEN;
|
|
RCU_INT = 0x00000000U;
|
|
}
|
|
|
|
/*!
|
|
\brief enable the peripherals clock
|
|
\param[in] periph: RCU peripherals, refer to rcu_periph_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_GPIOx (x=A,B,C,F): GPIO ports clock
|
|
\arg RCU_DMA: DMA clock
|
|
\arg RCU_CRC: CRC clock
|
|
\arg RCU_CFGCMP: CFGCMP clock
|
|
\arg RCU_ADC: ADC clock
|
|
\arg RCU_TIMERx (x=0,2,5,13,14,15,16): TIMER clock
|
|
\arg RCU_SPIx (x=0,1): SPI clock
|
|
\arg RCU_USARTx (x=0,1): USART clock
|
|
\arg RCU_WWDGT: WWDGT clock
|
|
\arg RCU_I2Cx (x=0,1): I2C clock
|
|
\arg RCU_PMU: PMU clock
|
|
\arg RCU_RTC: RTC clock
|
|
\arg RCU_DBGMCU: DBGMCU clock
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_periph_clock_enable(rcu_periph_enum periph)
|
|
{
|
|
RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph));
|
|
}
|
|
|
|
/*!
|
|
\brief disable the peripherals clock
|
|
\param[in] periph: RCU peripherals, refer to rcu_periph_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_GPIOx (x=A,B,C,F): GPIO ports clock
|
|
\arg RCU_DMA: DMA clock
|
|
\arg RCU_CRC: CRC clock
|
|
\arg RCU_CFGCMP: CFGCMP clock
|
|
\arg RCU_ADC: ADC clock
|
|
\arg RCU_TIMERx (x=0,2,5,13,14,15,16): TIMER clock
|
|
\arg RCU_SPIx (x=0,1): SPI clock
|
|
\arg RCU_USARTx (x=0,1): USART clock
|
|
\arg RCU_WWDGT: WWDGT clock
|
|
\arg RCU_I2Cx (x=0,1): I2C clock
|
|
\arg RCU_PMU: PMU clock
|
|
\arg RCU_RTC: RTC clock
|
|
\arg RCU_DBGMCU: DBGMCU clock
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_periph_clock_disable(rcu_periph_enum periph)
|
|
{
|
|
RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph));
|
|
}
|
|
|
|
/*!
|
|
\brief enable the peripherals clock when sleep mode
|
|
\param[in] periph: RCU peripherals, refer to rcu_periph_sleep_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_FMC_SLP: FMC clock
|
|
\arg RCU_SRAM_SLP: SRAM clock
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_periph_clock_sleep_enable(rcu_periph_sleep_enum periph)
|
|
{
|
|
RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph));
|
|
}
|
|
|
|
/*!
|
|
\brief disable the peripherals clock when sleep mode
|
|
\param[in] periph: RCU peripherals, refer to rcu_periph_sleep_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_FMC_SLP: FMC clock
|
|
\arg RCU_SRAM_SLP: SRAM clock
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_periph_clock_sleep_disable(rcu_periph_sleep_enum periph)
|
|
{
|
|
RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph));
|
|
}
|
|
/*!
|
|
\brief reset the peripherals
|
|
\param[in] periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_GPIOxRST (x=A,B,C,F): reset GPIO ports
|
|
\arg RCU_CFGCMPRST: reset CFGCMP
|
|
\arg RCU_ADCRST: reset ADC
|
|
\arg RCU_TIMERxRST (x=0,2,5,13,14,15,16): reset TIMER
|
|
\arg RCU_SPIxRST (x=0,1): reset SPI
|
|
\arg RCU_USARTxRST (x=0,1): reset USART
|
|
\arg RCU_WWDGTRST: reset WWDGT
|
|
\arg RCU_I2CxRST (x=0,1): reset I2C
|
|
\arg RCU_PMURST: reset PMU
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_periph_reset_enable(rcu_periph_reset_enum periph_reset)
|
|
{
|
|
RCU_REG_VAL(periph_reset) |= BIT(RCU_BIT_POS(periph_reset));
|
|
}
|
|
|
|
/*!
|
|
\brief disable reset the peripheral
|
|
\param[in] periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_GPIOxRST (x=A,B,C,F): reset GPIO ports
|
|
\arg RCU_CFGCMPRST: reset CFGCMP
|
|
\arg RCU_ADCRST: reset ADC
|
|
\arg RCU_TIMERxRST (x=0,2,5,13,14,15,16): reset TIMER
|
|
\arg RCU_SPIxRST (x=0,1): reset SPI
|
|
\arg RCU_USARTxRST (x=0,1): reset USART
|
|
\arg RCU_WWDGTRST: reset WWDGT
|
|
\arg RCU_I2CxRST (x=0,1): reset I2C
|
|
\arg RCU_PMURST: reset PMU
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_periph_reset_disable(rcu_periph_reset_enum periph_reset)
|
|
{
|
|
RCU_REG_VAL(periph_reset) &= ~BIT(RCU_BIT_POS(periph_reset));
|
|
}
|
|
|
|
/*!
|
|
\brief reset the BKP
|
|
\param[in] none
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_bkp_reset_enable(void)
|
|
{
|
|
RCU_BDCTL |= RCU_BDCTL_BKPRST;
|
|
}
|
|
|
|
/*!
|
|
\brief disable the BKP reset
|
|
\param[in] none
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_bkp_reset_disable(void)
|
|
{
|
|
RCU_BDCTL &= ~RCU_BDCTL_BKPRST;
|
|
}
|
|
|
|
/*!
|
|
\brief configure the system clock source
|
|
\param[in] ck_sys: system clock source select
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_CKSYSSRC_IRC8M: select CK_IRC8M as the CK_SYS source
|
|
\arg RCU_CKSYSSRC_HXTAL: select CK_HXTAL as the CK_SYS source
|
|
\arg RCU_CKSYSSRC_PLL: select CK_PLL as the CK_SYS source
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_system_clock_source_config(uint32_t ck_sys)
|
|
{
|
|
uint32_t cksys_source = 0U;
|
|
cksys_source = RCU_CFG0;
|
|
/* reset the SCS bits and set according to ck_sys */
|
|
cksys_source &= ~RCU_CFG0_SCS;
|
|
RCU_CFG0 = (ck_sys | cksys_source);
|
|
}
|
|
|
|
/*!
|
|
\brief get the system clock source
|
|
\param[in] none
|
|
\param[out] none
|
|
\retval which clock is selected as CK_SYS source
|
|
\arg RCU_SCSS_IRC8M: select CK_IRC8M as the CK_SYS source
|
|
\arg RCU_SCSS_HXTAL: select CK_HXTAL as the CK_SYS source
|
|
\arg RCU_SCSS_PLL: select CK_PLL as the CK_SYS source
|
|
*/
|
|
uint32_t rcu_system_clock_source_get(void)
|
|
{
|
|
return (RCU_CFG0 & RCU_CFG0_SCSS);
|
|
}
|
|
|
|
/*!
|
|
\brief configure the AHB clock prescaler selection
|
|
\param[in] ck_ahb: AHB clock prescaler selection
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_AHB_CKSYS_DIVx, x=1, 2, 4, 8, 16, 64, 128, 256, 512
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_ahb_clock_config(uint32_t ck_ahb)
|
|
{
|
|
uint32_t ahbpsc = 0U;
|
|
ahbpsc = RCU_CFG0;
|
|
/* reset the AHBPSC bits and set according to ck_ahb */
|
|
ahbpsc &= ~RCU_CFG0_AHBPSC;
|
|
RCU_CFG0 = (ck_ahb | ahbpsc);
|
|
}
|
|
|
|
/*!
|
|
\brief configure the APB1 clock prescaler selection
|
|
\param[in] ck_apb1: APB1 clock prescaler selection
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_APB1_CKAHB_DIV1: select CK_AHB as CK_APB1
|
|
\arg RCU_APB1_CKAHB_DIV2: select CK_AHB/2 as CK_APB1
|
|
\arg RCU_APB1_CKAHB_DIV4: select CK_AHB/4 as CK_APB1
|
|
\arg RCU_APB1_CKAHB_DIV8: select CK_AHB/8 as CK_APB1
|
|
\arg RCU_APB1_CKAHB_DIV16: select CK_AHB/16 as CK_APB1
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_apb1_clock_config(uint32_t ck_apb1)
|
|
{
|
|
uint32_t apb1psc = 0U;
|
|
apb1psc = RCU_CFG0;
|
|
/* reset the APB1PSC and set according to ck_apb1 */
|
|
apb1psc &= ~RCU_CFG0_APB1PSC;
|
|
RCU_CFG0 = (ck_apb1 | apb1psc);
|
|
}
|
|
|
|
/*!
|
|
\brief configure the APB2 clock prescaler selection
|
|
\param[in] ck_apb2: APB2 clock prescaler selection
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_APB2_CKAHB_DIV1: select CK_AHB as CK_APB2
|
|
\arg RCU_APB2_CKAHB_DIV2: select CK_AHB/2 as CK_APB2
|
|
\arg RCU_APB2_CKAHB_DIV4: select CK_AHB/4 as CK_APB2
|
|
\arg RCU_APB2_CKAHB_DIV8: select CK_AHB/8 as CK_APB2
|
|
\arg RCU_APB2_CKAHB_DIV16: select CK_AHB/16 as CK_APB2
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_apb2_clock_config(uint32_t ck_apb2)
|
|
{
|
|
uint32_t apb2psc = 0U;
|
|
apb2psc = RCU_CFG0;
|
|
/* reset the APB2PSC and set according to ck_apb2 */
|
|
apb2psc &= ~RCU_CFG0_APB2PSC;
|
|
RCU_CFG0 = (ck_apb2 | apb2psc);
|
|
}
|
|
|
|
/*!
|
|
\brief configure the ADC clock prescaler selection
|
|
\param[in] ck_adc: ADC clock prescaler selection, refer to rcu_adc_clock_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_ADCCK_IRC28M_DIV2: select CK_IRC28M/2 as CK_ADC
|
|
\arg RCU_ADCCK_IRC28M: select CK_IRC28M as CK_ADC
|
|
\arg RCU_ADCCK_APB2_DIV2: select CK_APB2/2 as CK_ADC
|
|
\arg RCU_ADCCK_AHB_DIV3: select CK_AHB/3 as CK_ADC
|
|
\arg RCU_ADCCK_APB2_DIV4: select CK_APB2/4 as CK_ADC
|
|
\arg RCU_ADCCK_AHB_DIV5: select CK_AHB/5 as CK_ADC
|
|
\arg RCU_ADCCK_APB2_DIV6: select CK_APB2/6 as CK_ADC
|
|
\arg RCU_ADCCK_AHB_DIV7: select CK_AHB/7 as CK_ADC
|
|
\arg RCU_ADCCK_APB2_DIV8: select CK_APB2/8 as CK_ADC
|
|
\arg RCU_ADCCK_AHB_DIV9: select CK_AHB/9 as CK_ADC
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_adc_clock_config(rcu_adc_clock_enum ck_adc)
|
|
{
|
|
/* reset the ADCPSC, ADCSEL, IRC28MDIV bits */
|
|
RCU_CFG0 &= ~RCU_CFG0_ADCPSC;
|
|
RCU_CFG2 &= ~(RCU_CFG2_ADCSEL | RCU_CFG2_IRC28MDIV | RCU_CFG2_ADCPSC2);
|
|
|
|
/* set the ADC clock according to ck_adc */
|
|
switch(ck_adc){
|
|
case RCU_ADCCK_IRC28M_DIV2:
|
|
RCU_CFG2 &= ~RCU_CFG2_IRC28MDIV;
|
|
RCU_CFG2 &= ~RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_IRC28M:
|
|
RCU_CFG2 |= RCU_CFG2_IRC28MDIV;
|
|
RCU_CFG2 &= ~RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_APB2_DIV2:
|
|
RCU_CFG0 |= RCU_ADC_CKAPB2_DIV2;
|
|
RCU_CFG2 |= RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_AHB_DIV3:
|
|
RCU_CFG0 |= RCU_ADC_CKAPB2_DIV2;
|
|
RCU_CFG2 |= RCU_CFG2_ADCPSC2;
|
|
RCU_CFG2 |= RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_APB2_DIV4:
|
|
RCU_CFG0 |= RCU_ADC_CKAPB2_DIV4;
|
|
RCU_CFG2 |= RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_AHB_DIV5:
|
|
RCU_CFG0 |= RCU_ADC_CKAPB2_DIV4;
|
|
RCU_CFG2 |= RCU_CFG2_ADCPSC2;
|
|
RCU_CFG2 |= RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_APB2_DIV6:
|
|
RCU_CFG0 |= RCU_ADC_CKAPB2_DIV6;
|
|
RCU_CFG2 |= RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_AHB_DIV7:
|
|
RCU_CFG0 |= RCU_ADC_CKAPB2_DIV6;
|
|
RCU_CFG2 |= RCU_CFG2_ADCPSC2;
|
|
RCU_CFG2 |= RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_APB2_DIV8:
|
|
RCU_CFG0 |= RCU_ADC_CKAPB2_DIV8;
|
|
RCU_CFG2 |= RCU_CFG2_ADCSEL;
|
|
break;
|
|
case RCU_ADCCK_AHB_DIV9:
|
|
RCU_CFG0 |= RCU_ADC_CKAPB2_DIV8;
|
|
RCU_CFG2 |= RCU_CFG2_ADCPSC2;
|
|
RCU_CFG2 |= RCU_CFG2_ADCSEL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief configure the CK_OUT clock source and divider
|
|
\param[in] ckout_src: CK_OUT clock source selection
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_CKOUTSRC_NONE: no clock selected
|
|
\arg RCU_CKOUTSRC_IRC28M: IRC28M selected
|
|
\arg RCU_CKOUTSRC_IRC40K: IRC40K selected
|
|
\arg RCU_CKOUTSRC_LXTAL: LXTAL selected
|
|
\arg RCU_CKOUTSRC_CKSYS: CKSYS selected
|
|
\arg RCU_CKOUTSRC_IRC8M: IRC8M selected
|
|
\arg RCU_CKOUTSRC_HXTAL: HXTAL selected
|
|
\arg RCU_CKOUTSRC_CKPLL_DIV1: CK_PLL selected
|
|
\arg RCU_CKOUTSRC_CKPLL_DIV2: CK_PLL/2 selected
|
|
\param[in] ckout_div: CK_OUT divider
|
|
\arg RCU_CKOUT_DIVx(x=1,2,4,8,16,32,64,128): CK_OUT is divided by x
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_ckout_config(uint32_t ckout_src, uint32_t ckout_div)
|
|
{
|
|
uint32_t ckout = 0U;
|
|
ckout = RCU_CFG0;
|
|
/* reset the CKOUTSEL, CKOUTDIV and PLLDV bits and set according to ckout_src and ckout_div */
|
|
ckout &= ~(RCU_CFG0_CKOUTSEL | RCU_CFG0_CKOUTDIV | RCU_CFG0_PLLDV);
|
|
RCU_CFG0 = (ckout | ckout_src | ckout_div);
|
|
}
|
|
|
|
/*!
|
|
\brief configure the PLL clock source selection and PLL multiply factor
|
|
\param[in] pll_src: PLL clock source selection
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_PLLSRC_IRC8M_DIV2: select CK_IRC8M/2 as PLL source clock
|
|
\arg RCU_PLLSRC_HXTAL: select HXTAL as PLL source clock
|
|
\param[in] pll_mul: PLL multiply factor
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_PLL_MULx(x=2..32): PLL source clock * x
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_pll_config(uint32_t pll_src, uint32_t pll_mul)
|
|
{
|
|
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PLLMF);
|
|
RCU_CFG0 |= (pll_src | pll_mul);
|
|
}
|
|
|
|
/*!
|
|
\brief configure the USART clock source selection
|
|
\param[in] ck_usart: USART clock source selection
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_USART0SRC_CKAPB2: CK_USART0 select CK_APB2
|
|
\arg RCU_USART0SRC_CKSYS: CK_USART0 select CK_SYS
|
|
\arg RCU_USART0SRC_LXTAL: CK_USART0 select CK_LXTAL
|
|
\arg RCU_USART0SRC_IRC8M: CK_USART0 select CK_IRC8M
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_usart_clock_config(uint32_t ck_usart)
|
|
{
|
|
/* reset the USART0SEL bits and set according to ck_usart */
|
|
RCU_CFG2 &= ~RCU_CFG2_USART0SEL;
|
|
RCU_CFG2 |= ck_usart;
|
|
}
|
|
|
|
/*!
|
|
\brief configure the RTC clock source selection
|
|
\param[in] rtc_clock_source: RTC clock source selection
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_RTCSRC_NONE: no clock selected
|
|
\arg RCU_RTCSRC_LXTAL: CK_LXTAL selected as RTC source clock
|
|
\arg RCU_RTCSRC_IRC40K: CK_IRC40K selected as RTC source clock
|
|
\arg RCU_RTCSRC_HXTAL_DIV32: CK_HXTAL/32 selected as RTC source clock
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_rtc_clock_config(uint32_t rtc_clock_source)
|
|
{
|
|
/* reset the RTCSRC bits and set according to rtc_clock_source */
|
|
RCU_BDCTL &= ~RCU_BDCTL_RTCSRC;
|
|
RCU_BDCTL |= rtc_clock_source;
|
|
}
|
|
|
|
/*!
|
|
\brief configure the HXTAL divider used as input of PLL
|
|
\param[in] hxtal_prediv: HXTAL divider used as input of PLL
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_PLL_PREDVx(x=1..16): HXTAL divided x used as input of PLL
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_hxtal_prediv_config(uint32_t hxtal_prediv)
|
|
{
|
|
uint32_t prediv = 0U;
|
|
prediv = RCU_CFG1;
|
|
/* reset the PREDV bits and set according to hxtal_prediv */
|
|
prediv &= ~RCU_CFG1_PREDV;
|
|
RCU_CFG1 = (prediv | hxtal_prediv);
|
|
}
|
|
|
|
/*!
|
|
\brief configure the LXTAL drive capability
|
|
\param[in] lxtal_dricap: drive capability of LXTAL
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_LXTAL_LOWDRI: lower driving capability
|
|
\arg RCU_LXTAL_MED_LOWDRI: medium low driving capability
|
|
\arg RCU_LXTAL_MED_HIGHDRI: medium high driving capability
|
|
\arg RCU_LXTAL_HIGHDRI: higher driving capability
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_lxtal_drive_capability_config(uint32_t lxtal_dricap)
|
|
{
|
|
/* reset the LXTALDRI bits and set according to lxtal_dricap */
|
|
RCU_BDCTL &= ~RCU_BDCTL_LXTALDRI;
|
|
RCU_BDCTL |= lxtal_dricap;
|
|
}
|
|
|
|
/*!
|
|
\brief get the clock stabilization and periphral reset flags
|
|
\param[in] flag: the clock stabilization and periphral reset flags, refer to rcu_flag_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_FLAG_IRC40KSTB: IRC40K stabilization flag
|
|
\arg RCU_FLAG_LXTALSTB: LXTAL stabilization flag
|
|
\arg RCU_FLAG_IRC8MSTB: IRC8M stabilization flag
|
|
\arg RCU_FLAG_HXTALSTB: HXTAL stabilization flag
|
|
\arg RCU_FLAG_PLLSTB: PLL stabilization flag
|
|
\arg RCU_FLAG_IRC28MSTB: IRC28M stabilization flag
|
|
\arg RCU_FLAG_V12RST: V12 domain power reset flag
|
|
\arg RCU_FLAG_OBLRST: option byte loader reset flag
|
|
\arg RCU_FLAG_EPRST: external pin reset flag
|
|
\arg RCU_FLAG_PORRST: power reset flag
|
|
\arg RCU_FLAG_SWRST: software reset flag
|
|
\arg RCU_FLAG_FWDGTRST: free watchdog timer reset flag
|
|
\arg RCU_FLAG_WWDGTRST: window watchdog timer reset flag
|
|
\arg RCU_FLAG_LPRST: low-power reset flag
|
|
\param[out] none
|
|
\retval FlagStatus: SET or RESET
|
|
*/
|
|
FlagStatus rcu_flag_get(rcu_flag_enum flag)
|
|
{
|
|
if(RESET != (RCU_REG_VAL(flag) & BIT(RCU_BIT_POS(flag)))){
|
|
return SET;
|
|
}else{
|
|
return RESET;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief clear the reset flag
|
|
\param[in] none
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_all_reset_flag_clear(void)
|
|
{
|
|
RCU_RSTSCK |= RCU_RSTSCK_RSTFC;
|
|
}
|
|
|
|
/*!
|
|
\brief get the clock stabilization interrupt and ckm flags
|
|
\param[in] int_flag: interrupt and ckm flags, refer to rcu_int_flag_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_INT_FLAG_IRC40KSTB: IRC40K stabilization interrupt flag
|
|
\arg RCU_INT_FLAG_LXTALSTB: LXTAL stabilization interrupt flag
|
|
\arg RCU_INT_FLAG_IRC8MSTB: IRC8M stabilization interrupt flag
|
|
\arg RCU_INT_FLAG_HXTALSTB: HXTAL stabilization interrupt flag
|
|
\arg RCU_INT_FLAG_PLLSTB: PLL stabilization interrupt flag
|
|
\arg RCU_INT_FLAG_IRC28MSTB: IRC28M stabilization interrupt flag
|
|
\arg RCU_INT_FLAG_CKM: HXTAL clock stuck interrupt flag
|
|
\param[out] none
|
|
\retval FlagStatus: SET or RESET
|
|
*/
|
|
FlagStatus rcu_interrupt_flag_get(rcu_int_flag_enum int_flag)
|
|
{
|
|
if(RESET != (RCU_REG_VAL(int_flag) & BIT(RCU_BIT_POS(int_flag)))){
|
|
return SET;
|
|
}else{
|
|
return RESET;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief clear the interrupt flags
|
|
\param[in] int_flag_clear: clock stabilization and stuck interrupt flags clear, refer to rcu_int_flag_clear_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_INT_FLAG_IRC40KSTB_CLR: IRC40K stabilization interrupt flag clear
|
|
\arg RCU_INT_FLAG_LXTALSTB_CLR: LXTAL stabilization interrupt flag clear
|
|
\arg RCU_INT_FLAG_IRC8MSTB_CLR: IRC8M stabilization interrupt flag clear
|
|
\arg RCU_INT_FLAG_HXTALSTB_CLR: HXTAL stabilization interrupt flag clear
|
|
\arg RCU_INT_FLAG_PLLSTB_CLR: PLL stabilization interrupt flag clear
|
|
\arg RCU_INT_FLAG_IRC28MSTB_CLR: IRC28M stabilization interrupt flag clear
|
|
\arg RCU_INT_FLAG_CKM_CLR: clock stuck interrupt flag clear
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_interrupt_flag_clear(rcu_int_flag_clear_enum int_flag_clear)
|
|
{
|
|
RCU_REG_VAL(int_flag_clear) |= BIT(RCU_BIT_POS(int_flag_clear));
|
|
}
|
|
|
|
/*!
|
|
\brief enable the stabilization interrupt
|
|
\param[in] stab_int: clock stabilization interrupt, refer to rcu_int_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_INT_IRC40KSTB: IRC40K stabilization interrupt enable
|
|
\arg RCU_INT_LXTALSTB: LXTAL stabilization interrupt enable
|
|
\arg RCU_INT_IRC8MSTB: IRC8M stabilization interrupt enable
|
|
\arg RCU_INT_HXTALSTB: HXTAL stabilization interrupt enable
|
|
\arg RCU_INT_PLLSTB: PLL stabilization interrupt enable
|
|
\arg RCU_INT_IRC28MSTB: IRC28M stabilization interrupt enable
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_interrupt_enable(rcu_int_enum stab_int)
|
|
{
|
|
RCU_REG_VAL(stab_int) |= BIT(RCU_BIT_POS(stab_int));
|
|
}
|
|
|
|
|
|
/*!
|
|
\brief disable the stabilization interrupt
|
|
\param[in] stab_int: clock stabilization interrupt, refer to rcu_int_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_INT_IRC40KSTB: IRC40K stabilization interrupt disable
|
|
\arg RCU_INT_LXTALSTB: LXTAL stabilization interrupt disable
|
|
\arg RCU_INT_IRC8MSTB: IRC8M stabilization interrupt disable
|
|
\arg RCU_INT_HXTALSTB: HXTAL stabilization interrupt disable
|
|
\arg RCU_INT_PLLSTB: PLL stabilization interrupt disable
|
|
\arg RCU_INT_IRC28MSTB: IRC28M stabilization interrupt disable
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_interrupt_disable(rcu_int_enum stab_int)
|
|
{
|
|
RCU_REG_VAL(stab_int) &= ~BIT(RCU_BIT_POS(stab_int));
|
|
}
|
|
|
|
/*!
|
|
\brief wait until oscillator stabilization flags is SET
|
|
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_HXTAL: HXTAL
|
|
\arg RCU_LXTAL: LXTAL
|
|
\arg RCU_IRC8M: IRC8M
|
|
\arg RCU_IRC28M: IRC28M
|
|
\arg RCU_IRC40K: IRC40K
|
|
\arg RCU_PLL_CK: PLL
|
|
\param[out] none
|
|
\retval ErrStatus: SUCCESS or ERROR
|
|
*/
|
|
ErrStatus rcu_osci_stab_wait(rcu_osci_type_enum osci)
|
|
{
|
|
uint32_t stb_cnt = 0U;
|
|
ErrStatus reval = ERROR;
|
|
FlagStatus osci_stat = RESET;
|
|
switch(osci){
|
|
case RCU_HXTAL:
|
|
/* wait until HXTAL is stabilization and osci_stat is not more than timeout */
|
|
while((RESET == osci_stat) && (HXTAL_STARTUP_TIMEOUT != stb_cnt)){
|
|
osci_stat = rcu_flag_get(RCU_FLAG_HXTALSTB);
|
|
stb_cnt++;
|
|
}
|
|
/* check whether flag is set or not */
|
|
if(RESET != rcu_flag_get(RCU_FLAG_HXTALSTB)){
|
|
reval = SUCCESS;
|
|
}
|
|
break;
|
|
|
|
/* wait LXTAL stable */
|
|
case RCU_LXTAL:
|
|
while((RESET == osci_stat) && (LXTAL_STARTUP_TIMEOUT != stb_cnt)){
|
|
osci_stat = rcu_flag_get(RCU_FLAG_LXTALSTB);
|
|
stb_cnt++;
|
|
}
|
|
/* check whether flag is set or not */
|
|
if(RESET != rcu_flag_get(RCU_FLAG_LXTALSTB)){
|
|
reval = SUCCESS;
|
|
}
|
|
break;
|
|
|
|
/* wait IRC8M stable */
|
|
case RCU_IRC8M:
|
|
while((RESET == osci_stat) && (IRC8M_STARTUP_TIMEOUT != stb_cnt)){
|
|
osci_stat = rcu_flag_get(RCU_FLAG_IRC8MSTB);
|
|
stb_cnt++;
|
|
}
|
|
/* check whether flag is set or not */
|
|
if(RESET != rcu_flag_get(RCU_FLAG_IRC8MSTB)){
|
|
reval = SUCCESS;
|
|
}
|
|
break;
|
|
|
|
/* wait IRC28M stable */
|
|
case RCU_IRC28M:
|
|
while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
|
|
osci_stat = rcu_flag_get(RCU_FLAG_IRC28MSTB);
|
|
stb_cnt++;
|
|
}
|
|
/* check whether flag is set or not */
|
|
if(RESET != rcu_flag_get(RCU_FLAG_IRC28MSTB)){
|
|
reval = SUCCESS;
|
|
}
|
|
break;
|
|
|
|
/* wait IRC40K stable */
|
|
case RCU_IRC40K:
|
|
while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
|
|
osci_stat = rcu_flag_get(RCU_FLAG_IRC40KSTB);
|
|
stb_cnt++;
|
|
}
|
|
/* check whether flag is set or not */
|
|
if(RESET != rcu_flag_get(RCU_FLAG_IRC40KSTB)){
|
|
reval = SUCCESS;
|
|
}
|
|
break;
|
|
|
|
/* wait PLL stable */
|
|
case RCU_PLL_CK:
|
|
while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){
|
|
osci_stat = rcu_flag_get(RCU_FLAG_PLLSTB);
|
|
stb_cnt++;
|
|
}
|
|
/* check whether flag is set or not */
|
|
if(RESET != rcu_flag_get(RCU_FLAG_PLLSTB)){
|
|
reval = SUCCESS;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
/* return value */
|
|
return reval;
|
|
}
|
|
|
|
/*!
|
|
\brief turn on the oscillator
|
|
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_HXTAL: HXTAL
|
|
\arg RCU_LXTAL: LXTAL
|
|
\arg RCU_IRC8M: IRC8M
|
|
\arg RCU_IRC28M: IRC28M
|
|
\arg RCU_IRC40K: IRC40K
|
|
\arg RCU_PLL_CK: PLL
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_osci_on(rcu_osci_type_enum osci)
|
|
{
|
|
RCU_REG_VAL(osci) |= BIT(RCU_BIT_POS(osci));
|
|
}
|
|
|
|
/*!
|
|
\brief turn off the oscillator
|
|
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_HXTAL: HXTAL
|
|
\arg RCU_LXTAL: LXTAL
|
|
\arg RCU_IRC8M: IRC8M
|
|
\arg RCU_IRC28M: IRC28M
|
|
\arg RCU_IRC40K: IRC40K
|
|
\arg RCU_PLL_CK: PLL
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_osci_off(rcu_osci_type_enum osci)
|
|
{
|
|
RCU_REG_VAL(osci) &= ~BIT(RCU_BIT_POS(osci));
|
|
}
|
|
|
|
/*!
|
|
\brief enable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it
|
|
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_HXTAL: HXTAL
|
|
\arg RCU_LXTAL: LXTAL
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_osci_bypass_mode_enable(rcu_osci_type_enum osci)
|
|
{
|
|
uint32_t reg;
|
|
switch(osci){
|
|
case RCU_HXTAL:
|
|
/* HXTALEN must be reset before enable the oscillator bypass mode */
|
|
reg = RCU_CTL0;
|
|
RCU_CTL0 &= ~RCU_CTL0_HXTALEN;
|
|
RCU_CTL0 = (reg | RCU_CTL0_HXTALBPS);
|
|
break;
|
|
case RCU_LXTAL:
|
|
/* LXTALEN must be reset before enable the oscillator bypass mode */
|
|
reg = RCU_BDCTL;
|
|
RCU_BDCTL &= ~RCU_BDCTL_LXTALEN;
|
|
RCU_BDCTL = (reg | RCU_BDCTL_LXTALBPS);
|
|
break;
|
|
case RCU_IRC8M:
|
|
case RCU_IRC28M:
|
|
case RCU_IRC40K:
|
|
case RCU_PLL_CK:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief disable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it
|
|
\param[in] osci: oscillator types, refer to rcu_osci_type_enum
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_HXTAL: HXTAL
|
|
\arg RCU_LXTAL: LXTAL
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_osci_bypass_mode_disable(rcu_osci_type_enum osci)
|
|
{
|
|
uint32_t reg;
|
|
switch(osci){
|
|
case RCU_HXTAL:
|
|
/* HXTALEN must be reset before disable the oscillator bypass mode */
|
|
reg = RCU_CTL0;
|
|
RCU_CTL0 &= ~RCU_CTL0_HXTALEN;
|
|
RCU_CTL0 = (reg & (~RCU_CTL0_HXTALBPS));
|
|
break;
|
|
case RCU_LXTAL:
|
|
/* LXTALEN must be reset before disable the oscillator bypass mode */
|
|
reg = RCU_BDCTL;
|
|
RCU_BDCTL &= ~RCU_BDCTL_LXTALEN;
|
|
RCU_BDCTL = (reg & (~RCU_BDCTL_LXTALBPS));
|
|
break;
|
|
case RCU_IRC8M:
|
|
case RCU_IRC28M:
|
|
case RCU_IRC40K:
|
|
case RCU_PLL_CK:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief enable the HXTAL clock monitor
|
|
\param[in] none
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_hxtal_clock_monitor_enable(void)
|
|
{
|
|
RCU_CTL0 |= RCU_CTL0_CKMEN;
|
|
}
|
|
|
|
/*!
|
|
\brief disable the HXTAL clock monitor
|
|
\param[in] none
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_hxtal_clock_monitor_disable(void)
|
|
{
|
|
RCU_CTL0 &= ~RCU_CTL0_CKMEN;
|
|
}
|
|
|
|
/*!
|
|
\brief set the IRC8M adjust value
|
|
\param[in] irc8m_adjval: IRC8M adjust value, must be between 0 and 0x1F
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_irc8m_adjust_value_set(uint8_t irc8m_adjval)
|
|
{
|
|
uint32_t adjust = 0U;
|
|
adjust = RCU_CTL0;
|
|
/* reset the IRC8MADJ bits and set according to irc8m_adjval */
|
|
adjust &= ~RCU_CTL0_IRC8MADJ;
|
|
RCU_CTL0 = (adjust | (((uint32_t)irc8m_adjval)<<3));
|
|
}
|
|
|
|
/*!
|
|
\brief set the IRC28M adjust value
|
|
\param[in] irc28m_adjval: IRC28M adjust value, must be between 0 and 0x1F
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_irc28m_adjust_value_set(uint8_t irc28m_adjval)
|
|
{
|
|
uint32_t adjust = 0U;
|
|
adjust = RCU_CTL1;
|
|
/* reset the IRC28MADJ bits and set according to irc28m_adjval */
|
|
adjust &= ~RCU_CTL1_IRC28MADJ;
|
|
RCU_CTL1 = (adjust | (((uint32_t)irc28m_adjval)<<3));
|
|
}
|
|
|
|
/*!
|
|
\brief unlock the voltage key
|
|
\param[in] none
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_voltage_key_unlock(void)
|
|
{
|
|
/* reset the KEY bits and set 0x1A2B3C4D */
|
|
RCU_VKEY &= ~RCU_VKEY_KEY;
|
|
RCU_VKEY |= RCU_VKEY_UNLOCK;
|
|
}
|
|
|
|
/*!
|
|
\brief set voltage in deep sleep mode
|
|
\param[in] dsvol: deep sleep mode voltage
|
|
only one parameter can be selected which is shown as below:
|
|
\arg RCU_DEEPSLEEP_V_1_0: the core voltage is 1.0V
|
|
\arg RCU_DEEPSLEEP_V_0_9: the core voltage is 0.9V
|
|
\arg RCU_DEEPSLEEP_V_0_8: the core voltage is 0.8V
|
|
\arg RCU_DEEPSLEEP_V_1_2: the core voltage is 1.2V
|
|
\param[out] none
|
|
\retval none
|
|
*/
|
|
void rcu_deepsleep_voltage_set(uint32_t dsvol)
|
|
{
|
|
/* reset the DSLPVS bits and set according to dsvol */
|
|
RCU_DSV &= ~RCU_DSV_DSLPVS;
|
|
RCU_DSV |= dsvol;
|
|
}
|
|
|
|
/*!
|
|
\brief get the system clock, bus and peripheral clock frequency
|
|
\param[in] clock: the clock frequency which to get
|
|
only one parameter can be selected which is shown as below:
|
|
\arg CK_SYS: system clock frequency
|
|
\arg CK_AHB: AHB clock frequency
|
|
\arg CK_APB1: APB1 clock frequency
|
|
\arg CK_APB2: APB2 clock frequency
|
|
\arg CK_ADC: ADC clock frequency
|
|
\arg CK_USART: USART0 clock frequency
|
|
\param[out] none
|
|
\retval clock frequency of system, AHB, APB1, APB2, ADC or USRAT0
|
|
*/
|
|
uint32_t rcu_clock_freq_get(rcu_clock_freq_enum clock)
|
|
{
|
|
uint32_t sws = 0U, adcps = 0U, adcps2 = 0U, ck_freq = 0U;
|
|
uint32_t cksys_freq = 0U, ahb_freq = 0U, apb1_freq = 0U, apb2_freq = 0U;
|
|
uint32_t adc_freq = 0U, usart_freq = 0U;
|
|
uint32_t pllmf = 0U, pllmf4 = 0U, pllsel = 0U, prediv = 0U, idx = 0U, clk_exp = 0U;
|
|
/* exponent of AHB, APB1 and APB2 clock divider */
|
|
const uint8_t ahb_exp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
|
|
const uint8_t apb1_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4};
|
|
const uint8_t apb2_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4};
|
|
|
|
sws = GET_BITS(RCU_CFG0, 2, 3);
|
|
switch(sws){
|
|
/* IRC8M is selected as CK_SYS */
|
|
case SEL_IRC8M:
|
|
cksys_freq = IRC8M_VALUE;
|
|
break;
|
|
/* HXTAL is selected as CK_SYS */
|
|
case SEL_HXTAL:
|
|
cksys_freq = HXTAL_VALUE;
|
|
break;
|
|
/* PLL is selected as CK_SYS */
|
|
case SEL_PLL:
|
|
/* get the value of PLLMF[3:0] */
|
|
pllmf = GET_BITS(RCU_CFG0, 18, 21);
|
|
pllmf4 = GET_BITS(RCU_CFG0, 27, 27);
|
|
/* high 16 bits */
|
|
if(1U == pllmf4){
|
|
pllmf += 17U;
|
|
}else if(15U == pllmf){
|
|
pllmf = 16U;
|
|
}else{
|
|
pllmf += 2U;
|
|
}
|
|
|
|
/* PLL clock source selection, HXTAL or IRC8M/2 */
|
|
pllsel = GET_BITS(RCU_CFG0, 16, 16);
|
|
if(0U != pllsel){
|
|
prediv = (GET_BITS(RCU_CFG1, 0, 3) + 1U);
|
|
cksys_freq = (HXTAL_VALUE / prediv) * pllmf;
|
|
}else{
|
|
cksys_freq = (IRC8M_VALUE >> 1) * pllmf;
|
|
}
|
|
break;
|
|
/* IRC8M is selected as CK_SYS */
|
|
default:
|
|
cksys_freq = IRC8M_VALUE;
|
|
break;
|
|
}
|
|
/* calculate AHB clock frequency */
|
|
idx = GET_BITS(RCU_CFG0, 4, 7);
|
|
clk_exp = ahb_exp[idx];
|
|
ahb_freq = cksys_freq >> clk_exp;
|
|
|
|
/* calculate APB1 clock frequency */
|
|
idx = GET_BITS(RCU_CFG0, 8, 10);
|
|
clk_exp = apb1_exp[idx];
|
|
apb1_freq = ahb_freq >> clk_exp;
|
|
|
|
/* calculate APB2 clock frequency */
|
|
idx = GET_BITS(RCU_CFG0, 11, 13);
|
|
clk_exp = apb2_exp[idx];
|
|
apb2_freq = ahb_freq >> clk_exp;
|
|
|
|
/* return the clocks frequency */
|
|
switch(clock){
|
|
case CK_SYS:
|
|
ck_freq = cksys_freq;
|
|
break;
|
|
case CK_AHB:
|
|
ck_freq = ahb_freq;
|
|
break;
|
|
case CK_APB1:
|
|
ck_freq = apb1_freq;
|
|
break;
|
|
case CK_APB2:
|
|
ck_freq = apb2_freq;
|
|
break;
|
|
case CK_ADC:
|
|
/* calculate ADC clock frequency */
|
|
if(RCU_ADCSRC_AHB_APB2DIV != (RCU_CFG2 & RCU_CFG2_ADCSEL)){
|
|
if(RCU_ADC_IRC28M_DIV1 != (RCU_CFG2 & RCU_CFG2_IRC28MDIV)){
|
|
adc_freq = IRC28M_VALUE >> 1;
|
|
}else{
|
|
adc_freq = IRC28M_VALUE;
|
|
}
|
|
}else{
|
|
/* ADC clock select CK_APB2 divided by 2/4/6/8 or CK_AHB divided by 3/5/7/9 */
|
|
adcps = GET_BITS(RCU_CFG0, 14, 15);
|
|
adcps2 = GET_BITS(RCU_CFG2, 31, 31);
|
|
if(0U != adcps2){
|
|
/* ADC clock select CK_AHB divided by 3/5/7/9 */
|
|
adc_freq = ahb_freq / (adcps + 1U);
|
|
}else{
|
|
/* ADC clock select CK_APB2 divided by 2/4/6/8 */
|
|
adc_freq = apb2_freq / adcps;
|
|
}
|
|
}
|
|
ck_freq = adc_freq;
|
|
break;
|
|
case CK_USART:
|
|
/* calculate USART0 clock frequency */
|
|
if(RCU_USART0SRC_CKAPB2 == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
|
|
usart_freq = apb2_freq;
|
|
}else if(RCU_USART0SRC_CKSYS == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
|
|
usart_freq = cksys_freq;
|
|
}else if(RCU_USART0SRC_LXTAL == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
|
|
usart_freq = LXTAL_VALUE;
|
|
}else if(RCU_USART0SRC_IRC8M == (RCU_CFG2 & RCU_CFG2_USART0SEL)){
|
|
usart_freq = IRC8M_VALUE;
|
|
}else{
|
|
}
|
|
ck_freq = usart_freq;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ck_freq;
|
|
}
|