4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-21 00:53:29 +08:00
2021-03-14 15:33:55 +08:00

386 lines
10 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-28 Ernest the first version
*/
#include "board.h"
#include "drv_mic.h"
#include "drv_wm8978.h"
#include "drv_sound.h"
#define DBG_TAG "drv.mic"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define CODEC_I2C_NAME ("i2c1")
#define RX_DMA_FIFO_SIZE (2048)
extern struct drv_sai _sai_a;
static struct drv_sai _sai_b = {0};
struct stm32_mic
{
struct rt_i2c_bus_device *i2c_bus;
struct rt_audio_device audio;
struct rt_audio_configure config;
rt_uint8_t *rx_fifo;
rt_bool_t startup;
};
static struct stm32_mic _stm32_audio_record = {0};
static rt_err_t SAIB_samplerate_set(rt_uint32_t freq)
{
__HAL_SAI_DISABLE(&_sai_b.hsai);
_sai_b.hsai.Init.AudioFrequency = freq;
HAL_SAI_Init(&_sai_b.hsai);
__HAL_SAI_ENABLE(&_sai_b.hsai);
return RT_EOK;
}
void SAIB_channels_set(rt_uint16_t channels)
{
if (channels == 2)
{
_sai_b.hsai.Init.MonoStereoMode = SAI_STEREOMODE;
}
else
{
_sai_b.hsai.Init.MonoStereoMode = SAI_MONOMODE;
}
__HAL_SAI_DISABLE(&_sai_b.hsai);
HAL_SAI_Init(&_sai_b.hsai);
__HAL_SAI_ENABLE(&_sai_b.hsai);
}
void SAIB_samplebits_set(rt_uint16_t samplebits)
{
switch (samplebits)
{
case 16:
_sai_b.hsai.Init.DataSize = SAI_DATASIZE_16;
break;
case 24:
_sai_b.hsai.Init.DataSize = SAI_DATASIZE_24;
break;
case 32:
_sai_b.hsai.Init.DataSize = SAI_DATASIZE_32;
break;
default:
_sai_b.hsai.Init.DataSize = SAI_DATASIZE_16;
break;
}
__HAL_SAI_DISABLE(&_sai_b.hsai);
HAL_SAI_Init(&_sai_b.hsai);
__HAL_SAI_ENABLE(&_sai_b.hsai);
}
void SAIB_config_set(struct rt_audio_configure config)
{
SAIB_channels_set(config.channels);
SAIB_samplerate_set(config.samplerate);
SAIB_samplebits_set(config.samplebits);
}
static void SAIB_config_init()
{
_sai_b.hsai.Instance = SAI1_Block_B;
_sai_b.hsai.Init.AudioMode = SAI_MODESLAVE_RX;
_sai_b.hsai.Init.Synchro = SAI_SYNCHRONOUS;
_sai_b.hsai.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLE;
_sai_b.hsai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE;
_sai_b.hsai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF;
_sai_b.hsai.Init.ClockSource = SAI_CLKSOURCE_PLLI2S;
_sai_b.hsai.Init.MonoStereoMode = SAI_STEREOMODE;
_sai_b.hsai.Init.Protocol = SAI_FREE_PROTOCOL;
_sai_b.hsai.Init.DataSize = SAI_DATASIZE_16;
_sai_b.hsai.Init.FirstBit = SAI_FIRSTBIT_MSB;
_sai_b.hsai.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE;
/* frame */
_sai_b.hsai.FrameInit.FrameLength = 64;
_sai_b.hsai.FrameInit.ActiveFrameLength = 32;
_sai_b.hsai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION;
_sai_b.hsai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
_sai_b.hsai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
/* slot */
_sai_b.hsai.SlotInit.FirstBitOffset = 0;
_sai_b.hsai.SlotInit.SlotSize = SAI_SLOTSIZE_32B;
_sai_b.hsai.SlotInit.SlotNumber = 2;
_sai_b.hsai.SlotInit.SlotActive = SAI_SLOTACTIVE_0 | SAI_SLOTACTIVE_1;
HAL_SAI_Init(&_sai_b.hsai);
__HAL_SAI_ENABLE(&_sai_b.hsai);
}
static void SAIB_tx_dma(void)
{
__HAL_RCC_DMA2_CLK_ENABLE();
__HAL_LINKDMA(&_sai_b.hsai, hdmarx, _sai_b.hdma);
_sai_b.hdma.Instance = DMA2_Stream5;
_sai_b.hdma.Init.Channel = DMA_CHANNEL_0;
_sai_b.hdma.Init.Direction = DMA_PERIPH_TO_MEMORY;
_sai_b.hdma.Init.PeriphInc = DMA_PINC_DISABLE;
_sai_b.hdma.Init.MemInc = DMA_MINC_ENABLE;
_sai_b.hdma.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
_sai_b.hdma.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
_sai_b.hdma.Init.Mode = DMA_CIRCULAR;
_sai_b.hdma.Init.Priority = DMA_PRIORITY_MEDIUM;
_sai_b.hdma.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
_sai_b.hdma.Init.MemBurst = DMA_MBURST_SINGLE;
_sai_b.hdma.Init.PeriphBurst = DMA_PBURST_SINGLE;
HAL_DMA_DeInit(&_sai_b.hdma);
HAL_DMA_Init(&_sai_b.hdma);
__HAL_DMA_DISABLE(&_sai_b.hdma);
__HAL_DMA_CLEAR_FLAG(&_sai_b.hdma, DMA_FLAG_TCIF1_5);
__HAL_DMA_ENABLE_IT(&_sai_b.hdma, DMA_IT_TC);
HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 5, 1);
HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn);
}
static rt_err_t sai_record_init()
{
SAIA_config_init();
SAIB_config_init();
/* set record samplerate */
SAIA_config_set(_stm32_audio_record.config);
SAIB_config_set(_stm32_audio_record.config);
SAIA_tx_dma();
SAIB_tx_dma();
return RT_EOK;
}
void DMA2_Stream5_IRQHandler(void)
{
rt_interrupt_enter();
HAL_DMA_IRQHandler(_sai_b.hsai.hdmarx);
rt_interrupt_leave();
}
void HAL_SAI_RxCpltCallback(SAI_HandleTypeDef *hsai)
{
rt_audio_rx_done(&(_stm32_audio_record.audio), &_stm32_audio_record.rx_fifo[0], RX_DMA_FIFO_SIZE / 2);
}
void HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef *hsai)
{
rt_audio_rx_done(&(_stm32_audio_record.audio), &_stm32_audio_record.rx_fifo[RX_DMA_FIFO_SIZE / 2], RX_DMA_FIFO_SIZE / 2);
}
static rt_err_t stm32_mic_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
switch (caps->main_type)
{
/* Provide capabilities of INTPUT unit */
case AUDIO_TYPE_INPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
caps->udata.config.channels = _stm32_audio_record.config.channels;
caps->udata.config.samplebits = _stm32_audio_record.config.samplebits;
caps->udata.config.samplerate = _stm32_audio_record.config.samplerate;
break;
case AUDIO_DSP_SAMPLERATE:
caps->udata.config.samplerate = _stm32_audio_record.config.samplerate;
break;
case AUDIO_DSP_CHANNELS:
caps->udata.config.channels = _stm32_audio_record.config.channels;
break;
case AUDIO_DSP_SAMPLEBITS:
caps->udata.config.samplebits = _stm32_audio_record.config.samplebits;
break;
default:
result = -RT_ERROR;
break;
}
break;
}
default:
result = -RT_ERROR;
break;
}
return result;
}
static void start_record_mode(void)
{
rt_uint8_t temp[4] = {0};
HAL_SAI_DMAStop(&_sai_b.hsai);
HAL_SAI_Transmit(&_sai_a.hsai, temp, 4, 0);
HAL_SAI_Receive_DMA(&_sai_b.hsai, _stm32_audio_record.rx_fifo, RX_DMA_FIFO_SIZE / 2);
}
static rt_err_t stm32_mic_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
switch (caps->main_type)
{
case AUDIO_TYPE_INPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
_stm32_audio_record.config.samplerate = caps->udata.config.samplerate;
_stm32_audio_record.config.channels = caps->udata.config.channels;
_stm32_audio_record.config.samplebits = caps->udata.config.samplebits;
HAL_SAI_DMAStop(&_sai_b.hsai);
SAIA_config_set(caps->udata.config);
SAIB_config_set(caps->udata.config);
break;
}
case AUDIO_DSP_SAMPLERATE:
{
_stm32_audio_record.config.samplerate = caps->udata.config.samplerate;
SAIA_samplerate_set(caps->udata.config.samplerate);
break;
}
case AUDIO_DSP_CHANNELS:
{
_stm32_audio_record.config.channels = caps->udata.config.channels;
SAIA_channels_set(caps->udata.config.channels);
SAIB_channels_set(caps->udata.config.channels);
break;
}
case AUDIO_DSP_SAMPLEBITS:
{
_stm32_audio_record.config.samplebits = caps->udata.config.samplebits;
SAIA_samplebits_set(caps->udata.config.samplebits);
break;
}
default:
result = -RT_ERROR;
break;
}
/* After set config, MCLK will stop */
start_record_mode();
break;
}
default:
break;
}
return result;
}
static rt_err_t stm32_mic_init(struct rt_audio_device *audio)
{
rt_err_t result = RT_EOK;
/* initialize wm8978 */
_stm32_audio_record.i2c_bus = (struct rt_i2c_bus_device *)rt_device_find(CODEC_I2C_NAME);
if (_stm32_audio_record.i2c_bus != RT_NULL)
{
LOG_D("Find device i2c1 success");
}
else
{
LOG_E("Find device i2c1 error");
return -RT_ERROR;
}
result = wm8978_init(_stm32_audio_record.i2c_bus);
if (result != RT_EOK)
{
LOG_E("initialize wm8978 failed");
return result;
}
sai_record_init();
return RT_EOK;
}
static rt_err_t stm32_mic_start(struct rt_audio_device *audio, int stream)
{
rt_err_t result = RT_EOK;
if (stream == AUDIO_STREAM_RECORD)
{
/* set mic start */
wm8978_record_start(_stm32_audio_record.i2c_bus);
/* start transfer data */
start_record_mode();
}
return result;
}
static rt_err_t stm32_mic_stop(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_RECORD)
{
HAL_SAI_DMAStop(&_sai_b.hsai);
HAL_SAI_DMAStop(&_sai_a.hsai);
wm8978_mic_enabled(_stm32_audio_record.i2c_bus, 0);
}
return RT_EOK;
}
static struct rt_audio_ops _mic_audio_ops =
{
.getcaps = stm32_mic_getcaps,
.configure = stm32_mic_configure,
.init = stm32_mic_init,
.start = stm32_mic_start,
.stop = stm32_mic_stop,
.transmit = RT_NULL,
.buffer_info = RT_NULL,
};
int rt_hw_mic_init(void)
{
struct rt_audio_device *audio = &_stm32_audio_record.audio;
/* mic default */
_stm32_audio_record.rx_fifo = rt_calloc(1, RX_DMA_FIFO_SIZE);
if (_stm32_audio_record.rx_fifo == RT_NULL)
{
return -RT_ENOMEM;
}
_stm32_audio_record.config.channels = 1;
_stm32_audio_record.config.samplerate = 16000;
_stm32_audio_record.config.samplebits = 16;
/* register mic device */
audio->ops = &_mic_audio_ops;
rt_audio_register(audio, "mic0", RT_DEVICE_FLAG_RDONLY, &_stm32_audio_record);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_mic_init);