4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 16:43:32 +08:00
2021-03-08 22:40:39 +08:00

321 lines
8.5 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-05 zylx first version
* 2018-12-12 greedyhao Porting for stm32f7xx
* 2019-02-01 yuneizhilin fix the stm32_adc_init function initialization issue
* 2020-06-17 thread-liu Porting for stm32mp1xx
* 2020-10-14 Dozingfiretruck Porting for stm32wbxx
*/
#include <board.h>
#if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3)
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.adc"
#include <drv_log.h>
static ADC_HandleTypeDef adc_config[] =
{
#ifdef BSP_USING_ADC1
ADC1_CONFIG,
#endif
#ifdef BSP_USING_ADC2
ADC2_CONFIG,
#endif
#ifdef BSP_USING_ADC3
ADC3_CONFIG,
#endif
};
struct stm32_adc
{
ADC_HandleTypeDef ADC_Handler;
struct rt_adc_device stm32_adc_device;
};
static struct stm32_adc stm32_adc_obj[sizeof(adc_config) / sizeof(adc_config[0])];
static rt_err_t stm32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
ADC_HandleTypeDef *stm32_adc_handler;
RT_ASSERT(device != RT_NULL);
stm32_adc_handler = device->parent.user_data;
if (enabled)
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined (SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7) || defined (SOC_SERIES_STM32WB)
ADC_Enable(stm32_adc_handler);
#else
__HAL_ADC_ENABLE(stm32_adc_handler);
#endif
}
else
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined (SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7) || defined (SOC_SERIES_STM32WB)
ADC_Disable(stm32_adc_handler);
#else
__HAL_ADC_DISABLE(stm32_adc_handler);
#endif
}
return RT_EOK;
}
static rt_uint32_t stm32_adc_get_channel(rt_uint32_t channel)
{
rt_uint32_t stm32_channel = 0;
switch (channel)
{
case 0:
stm32_channel = ADC_CHANNEL_0;
break;
case 1:
stm32_channel = ADC_CHANNEL_1;
break;
case 2:
stm32_channel = ADC_CHANNEL_2;
break;
case 3:
stm32_channel = ADC_CHANNEL_3;
break;
case 4:
stm32_channel = ADC_CHANNEL_4;
break;
case 5:
stm32_channel = ADC_CHANNEL_5;
break;
case 6:
stm32_channel = ADC_CHANNEL_6;
break;
case 7:
stm32_channel = ADC_CHANNEL_7;
break;
case 8:
stm32_channel = ADC_CHANNEL_8;
break;
case 9:
stm32_channel = ADC_CHANNEL_9;
break;
case 10:
stm32_channel = ADC_CHANNEL_10;
break;
case 11:
stm32_channel = ADC_CHANNEL_11;
break;
case 12:
stm32_channel = ADC_CHANNEL_12;
break;
case 13:
stm32_channel = ADC_CHANNEL_13;
break;
case 14:
stm32_channel = ADC_CHANNEL_14;
break;
case 15:
stm32_channel = ADC_CHANNEL_15;
break;
#ifdef ADC_CHANNEL_16
case 16:
stm32_channel = ADC_CHANNEL_16;
break;
#endif
case 17:
stm32_channel = ADC_CHANNEL_17;
break;
#ifdef ADC_CHANNEL_18
case 18:
stm32_channel = ADC_CHANNEL_18;
break;
#endif
#ifdef ADC_CHANNEL_19
case 19:
stm32_channel = ADC_CHANNEL_19;
break;
#endif
}
return stm32_channel;
}
static rt_err_t stm32_get_adc_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
ADC_ChannelConfTypeDef ADC_ChanConf;
ADC_HandleTypeDef *stm32_adc_handler;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(value != RT_NULL);
stm32_adc_handler = device->parent.user_data;
rt_memset(&ADC_ChanConf, 0, sizeof(ADC_ChanConf));
#ifndef ADC_CHANNEL_16
if (channel == 16)
{
LOG_E("ADC channel must not be 16.");
return -RT_ERROR;
}
#endif
/* ADC channel number is up to 17 */
#if !defined(ADC_CHANNEL_18)
if (channel <= 17)
/* ADC channel number is up to 19 */
#elif defined(ADC_CHANNEL_19)
if (channel <= 19)
/* ADC channel number is up to 18 */
#else
if (channel <= 18)
#endif
{
/* set stm32 ADC channel */
ADC_ChanConf.Channel = stm32_adc_get_channel(channel);
}
else
{
#if !defined(ADC_CHANNEL_18)
LOG_E("ADC channel must be between 0 and 17.");
#elif defined(ADC_CHANNEL_19)
LOG_E("ADC channel must be between 0 and 19.");
#else
LOG_E("ADC channel must be between 0 and 18.");
#endif
return -RT_ERROR;
}
#if defined(SOC_SERIES_STM32MP1) || defined (SOC_SERIES_STM32H7) || defined (SOC_SERIES_STM32WB)
ADC_ChanConf.Rank = ADC_REGULAR_RANK_1;
#else
ADC_ChanConf.Rank = 1;
#endif
#if defined(SOC_SERIES_STM32F0)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
#elif defined(SOC_SERIES_STM32F1)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_55CYCLES_5;
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_112CYCLES;
#elif defined(SOC_SERIES_STM32L4)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_247CYCLES_5;
#elif defined(SOC_SERIES_STM32MP1)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_810CYCLES_5;
#elif defined(SOC_SERIES_STM32H7)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_64CYCLES_5;
#elif defined (SOC_SERIES_STM32WB)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
#endif
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined (SOC_SERIES_STM32WB)
ADC_ChanConf.Offset = 0;
#endif
#if defined(SOC_SERIES_STM32L4)
ADC_ChanConf.OffsetNumber = ADC_OFFSET_NONE;
ADC_ChanConf.SingleDiff = LL_ADC_SINGLE_ENDED;
#elif defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7) || defined (SOC_SERIES_STM32WB)
ADC_ChanConf.OffsetNumber = ADC_OFFSET_NONE; /* ADC channel affected to offset number */
ADC_ChanConf.Offset = 0;
ADC_ChanConf.SingleDiff = ADC_SINGLE_ENDED; /* ADC channel differential mode */
#endif
HAL_ADC_ConfigChannel(stm32_adc_handler, &ADC_ChanConf);
/* perform an automatic ADC calibration to improve the conversion accuracy */
#if defined(SOC_SERIES_STM32L4) || defined (SOC_SERIES_STM32WB)
if (HAL_ADCEx_Calibration_Start(stm32_adc_handler, ADC_ChanConf.SingleDiff) != HAL_OK)
{
LOG_E("ADC calibration error!\n");
return -RT_ERROR;
}
#elif defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
/* Run the ADC linear calibration in single-ended mode */
if (HAL_ADCEx_Calibration_Start(stm32_adc_handler, ADC_CALIB_OFFSET_LINEARITY, ADC_ChanConf.SingleDiff) != HAL_OK)
{
LOG_E("ADC open linear calibration error!\n");
/* Calibration Error */
return -RT_ERROR;
}
#endif
/* start ADC */
HAL_ADC_Start(stm32_adc_handler);
/* Wait for the ADC to convert */
HAL_ADC_PollForConversion(stm32_adc_handler, 100);
/* get ADC value */
*value = (rt_uint32_t)HAL_ADC_GetValue(stm32_adc_handler);
return RT_EOK;
}
static const struct rt_adc_ops stm_adc_ops =
{
.enabled = stm32_adc_enabled,
.convert = stm32_get_adc_value,
};
static int stm32_adc_init(void)
{
int result = RT_EOK;
/* save adc name */
char name_buf[5] = {'a', 'd', 'c', '0', 0};
int i = 0;
for (i = 0; i < sizeof(adc_config) / sizeof(adc_config[0]); i++)
{
/* ADC init */
name_buf[3] = '0';
stm32_adc_obj[i].ADC_Handler = adc_config[i];
#if defined(ADC1)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC1)
{
name_buf[3] = '1';
}
#endif
#if defined(ADC2)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC2)
{
name_buf[3] = '2';
}
#endif
#if defined(ADC3)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC3)
{
name_buf[3] = '3';
}
#endif
if (HAL_ADC_Init(&stm32_adc_obj[i].ADC_Handler) != HAL_OK)
{
LOG_E("%s init failed", name_buf);
result = -RT_ERROR;
}
else
{
/* register ADC device */
if (rt_hw_adc_register(&stm32_adc_obj[i].stm32_adc_device, name_buf, &stm_adc_ops, &stm32_adc_obj[i].ADC_Handler) == RT_EOK)
{
LOG_D("%s init success", name_buf);
}
else
{
LOG_E("%s register failed", name_buf);
result = -RT_ERROR;
}
}
}
return result;
}
INIT_BOARD_EXPORT(stm32_adc_init);
#endif /* BSP_USING_ADC */