rt-thread-official/bsp/imxrt/libraries/MIMXRT1170/MIMXRT1176/drivers/fsl_pwm.h

988 lines
40 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_PWM_H_
#define _FSL_PWM_H_
#include "fsl_common.h"
/*!
* @addtogroup pwm_driver
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @name Driver version */
/*@{*/
#define FSL_PWM_DRIVER_VERSION (MAKE_VERSION(2, 2, 1)) /*!< Version 2.2.1 */
/*@}*/
/*! Number of bits per submodule for software output control */
#define PWM_SUBMODULE_SWCONTROL_WIDTH 2
/*! @brief List of PWM submodules */
typedef enum _pwm_submodule
{
kPWM_Module_0 = 0U, /*!< Submodule 0 */
kPWM_Module_1, /*!< Submodule 1 */
kPWM_Module_2, /*!< Submodule 2 */
kPWM_Module_3 /*!< Submodule 3 */
} pwm_submodule_t;
/*! @brief List of PWM channels in each module */
typedef enum _pwm_channels
{
kPWM_PwmB = 0U,
kPWM_PwmA,
kPWM_PwmX
} pwm_channels_t;
/*! @brief List of PWM value registers */
typedef enum _pwm_value_register
{
kPWM_ValueRegister_0 = 0U, /*!< PWM Value0 register */
kPWM_ValueRegister_1, /*!< PWM Value1 register */
kPWM_ValueRegister_2, /*!< PWM Value2 register */
kPWM_ValueRegister_3, /*!< PWM Value3 register */
kPWM_ValueRegister_4, /*!< PWM Value4 register */
kPWM_ValueRegister_5 /*!< PWM Value5 register */
} pwm_value_register_t;
/*! @brief List of PWM value registers mask */
enum _pwm_value_register_mask
{
kPWM_ValueRegisterMask_0 = (1U << 0), /*!< PWM Value0 register mask */
kPWM_ValueRegisterMask_1 = (1U << 1), /*!< PWM Value1 register mask */
kPWM_ValueRegisterMask_2 = (1U << 2), /*!< PWM Value2 register mask */
kPWM_ValueRegisterMask_3 = (1U << 3), /*!< PWM Value3 register mask */
kPWM_ValueRegisterMask_4 = (1U << 4), /*!< PWM Value4 register mask */
kPWM_ValueRegisterMask_5 = (1U << 5) /*!< PWM Value5 register mask */
};
/*! @brief PWM clock source selection.*/
typedef enum _pwm_clock_source
{
kPWM_BusClock = 0U, /*!< The IPBus clock is used as the clock */
kPWM_ExternalClock, /*!< EXT_CLK is used as the clock */
kPWM_Submodule0Clock /*!< Clock of the submodule 0 (AUX_CLK) is used as the source clock */
} pwm_clock_source_t;
/*! @brief PWM prescaler factor selection for clock source*/
typedef enum _pwm_clock_prescale
{
kPWM_Prescale_Divide_1 = 0U, /*!< PWM clock frequency = fclk/1 */
kPWM_Prescale_Divide_2, /*!< PWM clock frequency = fclk/2 */
kPWM_Prescale_Divide_4, /*!< PWM clock frequency = fclk/4 */
kPWM_Prescale_Divide_8, /*!< PWM clock frequency = fclk/8 */
kPWM_Prescale_Divide_16, /*!< PWM clock frequency = fclk/16 */
kPWM_Prescale_Divide_32, /*!< PWM clock frequency = fclk/32 */
kPWM_Prescale_Divide_64, /*!< PWM clock frequency = fclk/64 */
kPWM_Prescale_Divide_128 /*!< PWM clock frequency = fclk/128 */
} pwm_clock_prescale_t;
/*! @brief Options that can trigger a PWM FORCE_OUT */
typedef enum _pwm_force_output_trigger
{
kPWM_Force_Local = 0U, /*!< The local force signal, CTRL2[FORCE], from the submodule is used to force updates */
kPWM_Force_Master, /*!< The master force signal from submodule 0 is used to force updates */
kPWM_Force_LocalReload, /*!< The local reload signal from this submodule is used to force updates without regard to
the state of LDOK */
kPWM_Force_MasterReload, /*!< The master reload signal from submodule 0 is used to force updates if LDOK is set */
kPWM_Force_LocalSync, /*!< The local sync signal from this submodule is used to force updates */
kPWM_Force_MasterSync, /*!< The master sync signal from submodule0 is used to force updates */
kPWM_Force_External, /*!< The external force signal, EXT_FORCE, from outside the PWM module causes updates */
kPWM_Force_ExternalSync /*!< The external sync signal, EXT_SYNC, from outside the PWM module causes updates */
} pwm_force_output_trigger_t;
/*! @brief PWM counter initialization options */
typedef enum _pwm_init_source
{
kPWM_Initialize_LocalSync = 0U, /*!< Local sync causes initialization */
kPWM_Initialize_MasterReload, /*!< Master reload from submodule 0 causes initialization */
kPWM_Initialize_MasterSync, /*!< Master sync from submodule 0 causes initialization */
kPWM_Initialize_ExtSync /*!< EXT_SYNC causes initialization */
} pwm_init_source_t;
/*! @brief PWM load frequency selection */
typedef enum _pwm_load_frequency
{
kPWM_LoadEveryOportunity = 0U, /*!< Every PWM opportunity */
kPWM_LoadEvery2Oportunity, /*!< Every 2 PWM opportunities */
kPWM_LoadEvery3Oportunity, /*!< Every 3 PWM opportunities */
kPWM_LoadEvery4Oportunity, /*!< Every 4 PWM opportunities */
kPWM_LoadEvery5Oportunity, /*!< Every 5 PWM opportunities */
kPWM_LoadEvery6Oportunity, /*!< Every 6 PWM opportunities */
kPWM_LoadEvery7Oportunity, /*!< Every 7 PWM opportunities */
kPWM_LoadEvery8Oportunity, /*!< Every 8 PWM opportunities */
kPWM_LoadEvery9Oportunity, /*!< Every 9 PWM opportunities */
kPWM_LoadEvery10Oportunity, /*!< Every 10 PWM opportunities */
kPWM_LoadEvery11Oportunity, /*!< Every 11 PWM opportunities */
kPWM_LoadEvery12Oportunity, /*!< Every 12 PWM opportunities */
kPWM_LoadEvery13Oportunity, /*!< Every 13 PWM opportunities */
kPWM_LoadEvery14Oportunity, /*!< Every 14 PWM opportunities */
kPWM_LoadEvery15Oportunity, /*!< Every 15 PWM opportunities */
kPWM_LoadEvery16Oportunity /*!< Every 16 PWM opportunities */
} pwm_load_frequency_t;
/*! @brief List of PWM fault selections */
typedef enum _pwm_fault_input
{
kPWM_Fault_0 = 0U, /*!< Fault 0 input pin */
kPWM_Fault_1, /*!< Fault 1 input pin */
kPWM_Fault_2, /*!< Fault 2 input pin */
kPWM_Fault_3 /*!< Fault 3 input pin */
} pwm_fault_input_t;
/*! @brief List of PWM fault disable mapping selections */
typedef enum _pwm_fault_disable
{
kPWM_FaultDisable_0 = (1U << 0), /*!< Fault 0 disable mapping */
kPWM_FaultDisable_1 = (1U << 1), /*!< Fault 1 disable mapping */
kPWM_FaultDisable_2 = (1U << 2), /*!< Fault 2 disable mapping */
kPWM_FaultDisable_3 = (1U << 3) /*!< Fault 3 disable mapping */
} pwm_fault_disable_t;
/*! @brief List of PWM fault channels */
typedef enum _pwm_fault_channels
{
kPWM_faultchannel_0 = 0U,
kPWM_faultchannel_1
} pwm_fault_channels_t;
/*! @brief PWM capture edge select */
typedef enum _pwm_input_capture_edge
{
kPWM_Disable = 0U, /*!< Disabled */
kPWM_FallingEdge, /*!< Capture on falling edge only */
kPWM_RisingEdge, /*!< Capture on rising edge only */
kPWM_RiseAndFallEdge /*!< Capture on rising or falling edge */
} pwm_input_capture_edge_t;
/*! @brief PWM output options when a FORCE_OUT signal is asserted */
typedef enum _pwm_force_signal
{
kPWM_UsePwm = 0U, /*!< Generated PWM signal is used by the deadtime logic.*/
kPWM_InvertedPwm, /*!< Inverted PWM signal is used by the deadtime logic.*/
kPWM_SoftwareControl, /*!< Software controlled value is used by the deadtime logic. */
kPWM_UseExternal /*!< PWM_EXTA signal is used by the deadtime logic. */
} pwm_force_signal_t;
/*! @brief Options available for the PWM A & B pair operation */
typedef enum _pwm_chnl_pair_operation
{
kPWM_Independent = 0U, /*!< PWM A & PWM B operate as 2 independent channels */
kPWM_ComplementaryPwmA, /*!< PWM A & PWM B are complementary channels, PWM A generates the signal */
kPWM_ComplementaryPwmB /*!< PWM A & PWM B are complementary channels, PWM B generates the signal */
} pwm_chnl_pair_operation_t;
/*! @brief Options available on how to load the buffered-registers with new values */
typedef enum _pwm_register_reload
{
kPWM_ReloadImmediate = 0U, /*!< Buffered-registers get loaded with new values as soon as LDOK bit is set */
kPWM_ReloadPwmHalfCycle, /*!< Registers loaded on a PWM half cycle */
kPWM_ReloadPwmFullCycle, /*!< Registers loaded on a PWM full cycle */
kPWM_ReloadPwmHalfAndFullCycle /*!< Registers loaded on a PWM half & full cycle */
} pwm_register_reload_t;
/*! @brief Options available on how to re-enable the PWM output when recovering from a fault */
typedef enum _pwm_fault_recovery_mode
{
kPWM_NoRecovery = 0U, /*!< PWM output will stay inactive */
kPWM_RecoverHalfCycle, /*!< PWM output re-enabled at the first half cycle */
kPWM_RecoverFullCycle, /*!< PWM output re-enabled at the first full cycle */
kPWM_RecoverHalfAndFullCycle /*!< PWM output re-enabled at the first half or full cycle */
} pwm_fault_recovery_mode_t;
/*! @brief List of PWM interrupt options */
typedef enum _pwm_interrupt_enable
{
kPWM_CompareVal0InterruptEnable = (1U << 0), /*!< PWM VAL0 compare interrupt */
kPWM_CompareVal1InterruptEnable = (1U << 1), /*!< PWM VAL1 compare interrupt */
kPWM_CompareVal2InterruptEnable = (1U << 2), /*!< PWM VAL2 compare interrupt */
kPWM_CompareVal3InterruptEnable = (1U << 3), /*!< PWM VAL3 compare interrupt */
kPWM_CompareVal4InterruptEnable = (1U << 4), /*!< PWM VAL4 compare interrupt */
kPWM_CompareVal5InterruptEnable = (1U << 5), /*!< PWM VAL5 compare interrupt */
kPWM_CaptureX0InterruptEnable = (1U << 6), /*!< PWM capture X0 interrupt */
kPWM_CaptureX1InterruptEnable = (1U << 7), /*!< PWM capture X1 interrupt */
kPWM_CaptureB0InterruptEnable = (1U << 8), /*!< PWM capture B0 interrupt */
kPWM_CaptureB1InterruptEnable = (1U << 9), /*!< PWM capture B1 interrupt */
kPWM_CaptureA0InterruptEnable = (1U << 10), /*!< PWM capture A0 interrupt */
kPWM_CaptureA1InterruptEnable = (1U << 11), /*!< PWM capture A1 interrupt */
kPWM_ReloadInterruptEnable = (1U << 12), /*!< PWM reload interrupt */
kPWM_ReloadErrorInterruptEnable = (1U << 13), /*!< PWM reload error interrupt */
kPWM_Fault0InterruptEnable = (1U << 16), /*!< PWM fault 0 interrupt */
kPWM_Fault1InterruptEnable = (1U << 17), /*!< PWM fault 1 interrupt */
kPWM_Fault2InterruptEnable = (1U << 18), /*!< PWM fault 2 interrupt */
kPWM_Fault3InterruptEnable = (1U << 19) /*!< PWM fault 3 interrupt */
} pwm_interrupt_enable_t;
/*! @brief List of PWM status flags */
typedef enum _pwm_status_flags
{
kPWM_CompareVal0Flag = (1U << 0), /*!< PWM VAL0 compare flag */
kPWM_CompareVal1Flag = (1U << 1), /*!< PWM VAL1 compare flag */
kPWM_CompareVal2Flag = (1U << 2), /*!< PWM VAL2 compare flag */
kPWM_CompareVal3Flag = (1U << 3), /*!< PWM VAL3 compare flag */
kPWM_CompareVal4Flag = (1U << 4), /*!< PWM VAL4 compare flag */
kPWM_CompareVal5Flag = (1U << 5), /*!< PWM VAL5 compare flag */
kPWM_CaptureX0Flag = (1U << 6), /*!< PWM capture X0 flag */
kPWM_CaptureX1Flag = (1U << 7), /*!< PWM capture X1 flag */
kPWM_CaptureB0Flag = (1U << 8), /*!< PWM capture B0 flag */
kPWM_CaptureB1Flag = (1U << 9), /*!< PWM capture B1 flag */
kPWM_CaptureA0Flag = (1U << 10), /*!< PWM capture A0 flag */
kPWM_CaptureA1Flag = (1U << 11), /*!< PWM capture A1 flag */
kPWM_ReloadFlag = (1U << 12), /*!< PWM reload flag */
kPWM_ReloadErrorFlag = (1U << 13), /*!< PWM reload error flag */
kPWM_RegUpdatedFlag = (1U << 14), /*!< PWM registers updated flag */
kPWM_Fault0Flag = (1U << 16), /*!< PWM fault 0 flag */
kPWM_Fault1Flag = (1U << 17), /*!< PWM fault 1 flag */
kPWM_Fault2Flag = (1U << 18), /*!< PWM fault 2 flag */
kPWM_Fault3Flag = (1U << 19) /*!< PWM fault 3 flag */
} pwm_status_flags_t;
/*! @brief List of PWM DMA options */
typedef enum _pwm_dma_enable
{
kPWM_CaptureX0DMAEnable = (1U << 0), /*!< PWM capture X0 DMA */
kPWM_CaptureX1DMAEnable = (1U << 1), /*!< PWM capture X1 DMA */
kPWM_CaptureB0DMAEnable = (1U << 2), /*!< PWM capture B0 DMA */
kPWM_CaptureB1DMAEnable = (1U << 3), /*!< PWM capture B1 DMA */
kPWM_CaptureA0DMAEnable = (1U << 4), /*!< PWM capture A0 DMA */
kPWM_CaptureA1DMAEnable = (1U << 5) /*!< PWM capture A1 DMA */
} pwm_dma_enable_t;
/*! @brief List of PWM capture DMA enable source select */
typedef enum _pwm_dma_source_select
{
kPWM_DMARequestDisable = 0U, /*!< Read DMA requests disabled */
kPWM_DMAWatermarksEnable, /*!< Exceeding a FIFO watermark sets the DMA read request */
kPWM_DMALocalSync, /*!< A local sync (VAL1 matches counter) sets the read DMA request */
kPWM_DMALocalReload /*!< A local reload (STS[RF] being set) sets the read DMA request */
} pwm_dma_source_select_t;
/*! @brief PWM FIFO Watermark AND Control */
typedef enum _pwm_watermark_control
{
kPWM_FIFOWatermarksOR = 0U, /*!< Selected FIFO watermarks are OR'ed together */
kPWM_FIFOWatermarksAND /*!< Selected FIFO watermarks are AND'ed together */
} pwm_watermark_control_t;
/*! @brief PWM operation mode */
typedef enum _pwm_mode
{
kPWM_SignedCenterAligned = 0U, /*!< Signed center-aligned */
kPWM_CenterAligned, /*!< Unsigned cente-aligned */
kPWM_SignedEdgeAligned, /*!< Signed edge-aligned */
kPWM_EdgeAligned /*!< Unsigned edge-aligned */
} pwm_mode_t;
/*! @brief PWM output pulse mode, high-true or low-true */
typedef enum _pwm_level_select
{
kPWM_HighTrue = 0U, /*!< High level represents "on" or "active" state */
kPWM_LowTrue /*!< Low level represents "on" or "active" state */
} pwm_level_select_t;
/*! @brief PWM output fault status */
typedef enum _pwm_fault_state
{
kPWM_PwmFaultState0 =
0U, /*!< Output is forced to logic 0 state prior to consideration of output polarity control. */
kPWM_PwmFaultState1, /*!< Output is forced to logic 1 state prior to consideration of output polarity control. */
kPWM_PwmFaultState2, /*!< Output is tristated. */
kPWM_PwmFaultState3 /*!< Output is tristated. */
} pwm_fault_state_t;
/*! @brief PWM reload source select */
typedef enum _pwm_reload_source_select
{
kPWM_LocalReload = 0U, /*!< The local reload signal is used to reload registers */
kPWM_MasterReload /*!< The master reload signal (from submodule 0) is used to reload */
} pwm_reload_source_select_t;
/*! @brief PWM fault clearing options */
typedef enum _pwm_fault_clear
{
kPWM_Automatic = 0U, /*!< Automatic fault clearing */
kPWM_ManualNormal, /*!< Manual fault clearing with no fault safety mode */
kPWM_ManualSafety /*!< Manual fault clearing with fault safety mode */
} pwm_fault_clear_t;
/*! @brief Options for submodule master control operation */
typedef enum _pwm_module_control
{
kPWM_Control_Module_0 = (1U << 0), /*!< Control submodule 0's start/stop,buffer reload operation */
kPWM_Control_Module_1 = (1U << 1), /*!< Control submodule 1's start/stop,buffer reload operation */
kPWM_Control_Module_2 = (1U << 2), /*!< Control submodule 2's start/stop,buffer reload operation */
kPWM_Control_Module_3 = (1U << 3) /*!< Control submodule 3's start/stop,buffer reload operation */
} pwm_module_control_t;
/*! @brief Structure for the user to define the PWM signal characteristics */
typedef struct _pwm_signal_param
{
pwm_channels_t pwmChannel; /*!< PWM channel being configured; PWM A or PWM B */
uint8_t dutyCyclePercent; /*!< PWM pulse width, value should be between 0 to 100
0=inactive signal(0% duty cycle)...
100=always active signal (100% duty cycle)*/
pwm_level_select_t level; /*!< PWM output active level select */
uint16_t deadtimeValue; /*!< The deadtime value; only used if channel pair is operating in complementary mode */
pwm_fault_state_t faultState; /*!< PWM output fault status */
} pwm_signal_param_t;
/*!
* @brief PWM config structure
*
* This structure holds the configuration settings for the PWM peripheral. To initialize this
* structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a
* pointer to your config structure instance.
*
* The config struct can be made const so it resides in flash
*/
typedef struct _pwm_config
{
bool enableDebugMode; /*!< true: PWM continues to run in debug mode;
false: PWM is paused in debug mode */
bool enableWait; /*!< true: PWM continues to run in WAIT mode;
false: PWM is paused in WAIT mode */
pwm_init_source_t initializationControl; /*!< Option to initialize the counter */
pwm_clock_source_t clockSource; /*!< Clock source for the counter */
pwm_clock_prescale_t prescale; /*!< Pre-scaler to divide down the clock */
pwm_chnl_pair_operation_t pairOperation; /*!< Channel pair in indepedent or complementary mode */
pwm_register_reload_t reloadLogic; /*!< PWM Reload logic setup */
pwm_reload_source_select_t reloadSelect; /*!< Reload source select */
pwm_load_frequency_t reloadFrequency; /*!< Specifies when to reload, used when user's choice
is not immediate reload */
pwm_force_output_trigger_t forceTrigger; /*!< Specify which signal will trigger a FORCE_OUT */
} pwm_config_t;
/*! @brief Structure for the user to configure the fault input filter. */
typedef struct _pwm_fault_input_filter_param
{
uint8_t faultFilterCount; /*!< Fault filter count */
uint8_t faultFilterPeriod; /*!< Fault filter period;value of 0 will bypass the filter */
bool faultGlitchStretch; /*!< Fault Glitch Stretch Enable: A logic 1 means that input
fault signals will be stretched to at least 2 IPBus clock cycles */
} pwm_fault_input_filter_param_t;
/*! @brief Structure is used to hold the parameters to configure a PWM fault */
typedef struct _pwm_fault_param
{
pwm_fault_clear_t faultClearingMode; /*!< Fault clearing mode to use */
bool faultLevel; /*!< true: Logic 1 indicates fault;
false: Logic 0 indicates fault */
bool enableCombinationalPath; /*!< true: Combinational Path from fault input is enabled;
false: No combination path is available */
pwm_fault_recovery_mode_t recoverMode; /*!< Specify when to re-enable the PWM output */
} pwm_fault_param_t;
/*!
* @brief Structure is used to hold parameters to configure the capture capability of a signal pin
*/
typedef struct _pwm_input_capture_param
{
bool captureInputSel; /*!< true: Use the edge counter signal as source
false: Use the raw input signal from the pin as source */
uint8_t edgeCompareValue; /*!< Compare value, used only if edge counter is used as source */
pwm_input_capture_edge_t edge0; /*!< Specify which edge causes a capture for input circuitry 0 */
pwm_input_capture_edge_t edge1; /*!< Specify which edge causes a capture for input circuitry 1 */
bool enableOneShotCapture; /*!< true: Use one-shot capture mode;
false: Use free-running capture mode */
uint8_t fifoWatermark; /*!< Watermark level for capture FIFO. The capture flags in
the status register will set if the word count in the FIFO
is greater than this watermark level */
} pwm_input_capture_param_t;
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif
/*!
* @name Initialization and deinitialization
* @{
*/
/*!
* @brief Ungates the PWM submodule clock and configures the peripheral for basic operation.
*
* @note This API should be called at the beginning of the application using the PWM driver.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param config Pointer to user's PWM config structure.
*
* @return kStatus_Success means success; else failed.
*/
status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t *config);
/*!
* @brief Gate the PWM submodule clock
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to deinitialize
*/
void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule);
/*!
* @brief Fill in the PWM config struct with the default settings
*
* The default values are:
* @code
* config->enableDebugMode = false;
* config->enableWait = false;
* config->reloadSelect = kPWM_LocalReload;
* config->clockSource = kPWM_BusClock;
* config->prescale = kPWM_Prescale_Divide_1;
* config->initializationControl = kPWM_Initialize_LocalSync;
* config->forceTrigger = kPWM_Force_Local;
* config->reloadFrequency = kPWM_LoadEveryOportunity;
* config->reloadLogic = kPWM_ReloadImmediate;
* config->pairOperation = kPWM_Independent;
* @endcode
* @param config Pointer to user's PWM config structure.
*/
void PWM_GetDefaultConfig(pwm_config_t *config);
/*! @}*/
/*!
* @name Module PWM output
* @{
*/
/*!
* @brief Sets up the PWM signals for a PWM submodule.
*
* The function initializes the submodule according to the parameters passed in by the user. The function
* also sets up the value compare registers to match the PWM signal requirements.
* If the dead time insertion logic is enabled, the pulse period is reduced by the
* dead time period specified by the user.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param chnlParams Array of PWM channel parameters to configure the channel(s)
* @param numOfChnls Number of channels to configure, this should be the size of the array passed in.
* Array size should not be more than 2 as each submodule has 2 pins to output PWM
* @param mode PWM operation mode, options available in enumeration ::pwm_mode_t
* @param pwmFreq_Hz PWM signal frequency in Hz
* @param srcClock_Hz PWM main counter clock in Hz.
*
* @return Returns kStatusFail if there was error setting up the signal; kStatusSuccess otherwise
*/
status_t PWM_SetupPwm(PWM_Type *base,
pwm_submodule_t subModule,
const pwm_signal_param_t *chnlParams,
uint8_t numOfChnls,
pwm_mode_t mode,
uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz);
/*!
* @brief Updates the PWM signal's dutycycle.
*
* The function updates the PWM dutycyle to the new value that is passed in.
* If the dead time insertion logic is enabled then the pulse period is reduced by the
* dead time period specified by the user.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwmSignal Signal (PWM A or PWM B) to update
* @param currPwmMode The current PWM mode set during PWM setup
* @param dutyCyclePercent New PWM pulse width, value should be between 0 to 100
* 0=inactive signal(0% duty cycle)...
* 100=active signal (100% duty cycle)
*/
void PWM_UpdatePwmDutycycle(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmSignal,
pwm_mode_t currPwmMode,
uint8_t dutyCyclePercent);
/*!
* @brief Updates the PWM signal's dutycycle with 16-bit accuracy.
*
* The function updates the PWM dutycyle to the new value that is passed in.
* If the dead time insertion logic is enabled then the pulse period is reduced by the
* dead time period specified by the user.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwmSignal Signal (PWM A or PWM B) to update
* @param currPwmMode The current PWM mode set during PWM setup
* @param dutyCycle New PWM pulse width, value should be between 0 to 65535
* 0=inactive signal(0% duty cycle)...
* 65535=active signal (100% duty cycle)
*/
void PWM_UpdatePwmDutycycleHighAccuracy(
PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmSignal, pwm_mode_t currPwmMode, uint16_t dutyCycle);
/*! @}*/
/*!
* @brief Sets up the PWM input capture
*
* Each PWM submodule has 3 pins that can be configured for use as input capture pins. This function
* sets up the capture parameters for each pin and enables the pin for input capture operation.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwmChannel Channel in the submodule to setup
* @param inputCaptureParams Parameters passed in to set up the input pin
*/
void PWM_SetupInputCapture(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmChannel,
const pwm_input_capture_param_t *inputCaptureParams);
/*!
* @brief Sets up the PWM fault input filter.
*
* @param base PWM peripheral base address
* @param faultInputFilterParams Parameters passed in to set up the fault input filter.
*/
void PWM_SetupFaultInputFilter(PWM_Type *base, const pwm_fault_input_filter_param_t *faultInputFilterParams);
/*!
* @brief Sets up the PWM fault protection.
*
* PWM has 4 fault inputs.
*
* @param base PWM peripheral base address
* @param faultNum PWM fault to configure.
* @param faultParams Pointer to the PWM fault config structure
*/
void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const pwm_fault_param_t *faultParams);
/*!
* @brief Fill in the PWM fault config struct with the default settings
*
* The default values are:
* @code
* config->faultClearingMode = kPWM_Automatic;
* config->faultLevel = false;
* config->enableCombinationalPath = true;
* config->recoverMode = kPWM_NoRecovery;
* @endcode
* @param config Pointer to user's PWM fault config structure.
*/
void PWM_FaultDefaultConfig(pwm_fault_param_t *config);
/*!
* @brief Selects the signal to output on a PWM pin when a FORCE_OUT signal is asserted.
*
* The user specifies which channel to configure by supplying the submodule number and whether
* to modify PWM A or PWM B within that submodule.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwmChannel Channel to configure
* @param mode Signal to output when a FORCE_OUT is triggered
*/
void PWM_SetupForceSignal(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmChannel,
pwm_force_signal_t mode);
/*!
* @name Interrupts Interface
* @{
*/
/*!
* @brief Enables the selected PWM interrupts
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param mask The interrupts to enable. This is a logical OR of members of the
* enumeration ::pwm_interrupt_enable_t
*/
void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask);
/*!
* @brief Disables the selected PWM interrupts
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param mask The interrupts to enable. This is a logical OR of members of the
* enumeration ::pwm_interrupt_enable_t
*/
void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask);
/*!
* @brief Gets the enabled PWM interrupts
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
*
* @return The enabled interrupts. This is the logical OR of members of the
* enumeration ::pwm_interrupt_enable_t
*/
uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t subModule);
/*! @}*/
/*!
* @name DMA Interface
* @{
*/
/*!
* @brief Capture DMA Enable Source Select.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwm_watermark_control PWM FIFO watermark and control
*/
static inline void PWM_DMAFIFOWatermarkControl(PWM_Type *base,
pwm_submodule_t subModule,
pwm_watermark_control_t pwm_watermark_control)
{
uint16_t reg = base->SM[subModule].DMAEN;
if (pwm_watermark_control == kPWM_FIFOWatermarksOR)
{
reg &= ~((uint16_t)PWM_DMAEN_FAND_MASK);
}
else
{
reg |= ((uint16_t)PWM_DMAEN_FAND_MASK);
}
base->SM[subModule].DMAEN = reg;
}
/*!
* @brief Capture DMA Enable Source Select.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwm_dma_source_select PWM capture DMA enable source select
*/
static inline void PWM_DMACaptureSourceSelect(PWM_Type *base,
pwm_submodule_t subModule,
pwm_dma_source_select_t pwm_dma_source_select)
{
uint16_t reg = base->SM[subModule].DMAEN;
reg &= ~((uint16_t)PWM_DMAEN_CAPTDE_MASK);
reg |= (((uint16_t)pwm_dma_source_select << (uint16_t)PWM_DMAEN_CAPTDE_SHIFT) & (uint16_t)PWM_DMAEN_CAPTDE_MASK);
base->SM[subModule].DMAEN = reg;
}
/*!
* @brief Enables or disables the selected PWM DMA Capture read request.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param mask The DMA to enable or disable. This is a logical OR of members of the
* enumeration ::pwm_dma_enable_t
* @param activate true: Enable DMA read request; false: Disable DMA read request
*/
static inline void PWM_EnableDMACapture(PWM_Type *base, pwm_submodule_t subModule, uint16_t mask, bool activate)
{
uint16_t reg = base->SM[subModule].DMAEN;
if (activate)
{
reg |= (uint16_t)(mask);
}
else
{
reg &= ~((uint16_t)(mask));
}
base->SM[subModule].DMAEN = reg;
}
/*!
* @brief Enables or disables the PWM DMA write request.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param activate true: Enable DMA write request; false: Disable DMA write request
*/
static inline void PWM_EnableDMAWrite(PWM_Type *base, pwm_submodule_t subModule, bool activate)
{
uint16_t reg = base->SM[subModule].DMAEN;
if (activate)
{
reg |= ((uint16_t)PWM_DMAEN_VALDE_MASK);
}
else
{
reg &= ~((uint16_t)PWM_DMAEN_VALDE_MASK);
}
base->SM[subModule].DMAEN = reg;
}
/*! @}*/
/*!
* @name Status Interface
* @{
*/
/*!
* @brief Gets the PWM status flags
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
*
* @return The status flags. This is the logical OR of members of the
* enumeration ::pwm_status_flags_t
*/
uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule);
/*!
* @brief Clears the PWM status flags
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param mask The status flags to clear. This is a logical OR of members of the
* enumeration ::pwm_status_flags_t
*/
void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask);
/*! @}*/
/*!
* @name Timer Start and Stop
* @{
*/
/*!
* @brief Starts the PWM counter for a single or multiple submodules.
*
* Sets the Run bit which enables the clocks to the PWM submodule. This function can start multiple
* submodules at the same time.
*
* @param base PWM peripheral base address
* @param subModulesToStart PWM submodules to start. This is a logical OR of members of the
* enumeration ::pwm_module_control_t
*/
static inline void PWM_StartTimer(PWM_Type *base, uint8_t subModulesToStart)
{
base->MCTRL |= PWM_MCTRL_RUN(subModulesToStart);
}
/*!
* @brief Stops the PWM counter for a single or multiple submodules.
*
* Clears the Run bit which resets the submodule's counter. This function can stop multiple
* submodules at the same time.
*
* @param base PWM peripheral base address
* @param subModulesToStop PWM submodules to stop. This is a logical OR of members of the
* enumeration ::pwm_module_control_t
*/
static inline void PWM_StopTimer(PWM_Type *base, uint8_t subModulesToStop)
{
base->MCTRL &= ~(PWM_MCTRL_RUN(subModulesToStop));
}
/*! @}*/
/*!
* @brief Enables or disables the PWM output trigger.
*
* This function allows the user to enable or disable the PWM trigger. The PWM has 2 triggers. Trigger 0
* is activated when the counter matches VAL 0, VAL 2, or VAL 4 register. Trigger 1 is activated
* when the counter matches VAL 1, VAL 3, or VAL 5 register.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param valueRegister Value register that will activate the trigger
* @param activate true: Enable the trigger; false: Disable the trigger
*/
static inline void PWM_OutputTriggerEnable(PWM_Type *base,
pwm_submodule_t subModule,
pwm_value_register_t valueRegister,
bool activate)
{
if (activate)
{
base->SM[subModule].TCTRL |= ((uint16_t)1U << (uint16_t)valueRegister);
}
else
{
base->SM[subModule].TCTRL &= ~((uint16_t)1U << (uint16_t)valueRegister);
}
}
/*!
* @brief Enables the PWM output trigger.
*
* This function allows the user to enable one or more (VAL0-5) PWM trigger.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param valueRegisterMask Value register mask that will activate one or more (VAL0-5) trigger
* enumeration ::_pwm_value_register_mask
*/
static inline void PWM_ActivateOutputTrigger(PWM_Type *base, pwm_submodule_t subModule, uint16_t valueRegisterMask)
{
base->SM[subModule].TCTRL |= (PWM_TCTRL_OUT_TRIG_EN_MASK & (valueRegisterMask));
}
/*!
* @brief Disables the PWM output trigger.
*
* This function allows the user to disables one or more (VAL0-5) PWM trigger.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param valueRegisterMask Value register mask that will Deactivate one or more (VAL0-5) trigger
* enumeration ::_pwm_value_register_mask
*/
static inline void PWM_DeactivateOutputTrigger(PWM_Type *base, pwm_submodule_t subModule, uint16_t valueRegisterMask)
{
base->SM[subModule].TCTRL &= ~(PWM_TCTRL_OUT_TRIG_EN_MASK & (valueRegisterMask));
}
/*!
* @brief Sets the software control output for a pin to high or low.
*
* The user specifies which channel to modify by supplying the submodule number and whether
* to modify PWM A or PWM B within that submodule.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwmChannel Channel to configure
* @param value true: Supply a logic 1, false: Supply a logic 0.
*/
static inline void PWM_SetupSwCtrlOut(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, bool value)
{
if (value)
{
base->SWCOUT |=
((uint16_t)1U << (((uint16_t)subModule * (uint16_t)PWM_SUBMODULE_SWCONTROL_WIDTH) + (uint16_t)pwmChannel));
}
else
{
base->SWCOUT &=
~((uint16_t)1U << (((uint16_t)subModule * (uint16_t)PWM_SUBMODULE_SWCONTROL_WIDTH) + (uint16_t)pwmChannel));
}
}
/*!
* @brief Sets or clears the PWM LDOK bit on a single or multiple submodules
*
* Set LDOK bit to load buffered values into CTRL[PRSC] and the INIT, FRACVAL and VAL registers. The
* values are loaded immediately if kPWM_ReloadImmediate option was choosen during config. Else the
* values are loaded at the next PWM reload point.
* This function can issue the load command to multiple submodules at the same time.
*
* @param base PWM peripheral base address
* @param subModulesToUpdate PWM submodules to update with buffered values. This is a logical OR of
* members of the enumeration ::pwm_module_control_t
* @param value true: Set LDOK bit for the submodule list; false: Clear LDOK bit
*/
static inline void PWM_SetPwmLdok(PWM_Type *base, uint8_t subModulesToUpdate, bool value)
{
if (value)
{
base->MCTRL |= PWM_MCTRL_LDOK(subModulesToUpdate);
}
else
{
base->MCTRL |= PWM_MCTRL_CLDOK(subModulesToUpdate);
}
}
/*!
* @brief Set PWM output fault status
*
* These bits determine the fault state for the PWM_A output in fault conditions
* and STOP mode. It may also define the output state in WAIT and DEBUG modes
* depending on the settings of CTRL2[WAITEN] and CTRL2[DBGEN].
* This function can update PWM output fault status.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwmChannel Channel to configure
* @param faultState PWM output fault status
*/
static inline void PWM_SetPwmFaultState(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmChannel,
pwm_fault_state_t faultState)
{
uint16_t reg = base->SM[subModule].OCTRL;
switch (pwmChannel)
{
case kPWM_PwmA:
reg &= ~((uint16_t)PWM_OCTRL_PWMAFS_MASK);
reg |= (((uint16_t)faultState << (uint16_t)PWM_OCTRL_PWMAFS_SHIFT) & (uint16_t)PWM_OCTRL_PWMAFS_MASK);
break;
case kPWM_PwmB:
reg &= ~((uint16_t)PWM_OCTRL_PWMBFS_MASK);
reg |= (((uint16_t)faultState << (uint16_t)PWM_OCTRL_PWMBFS_SHIFT) & (uint16_t)PWM_OCTRL_PWMBFS_MASK);
break;
case kPWM_PwmX:
reg &= ~((uint16_t)PWM_OCTRL_PWMXFS_MASK);
reg |= (((uint16_t)faultState << (uint16_t)PWM_OCTRL_PWMXFS_SHIFT) & (uint16_t)PWM_OCTRL_PWMXFS_MASK);
break;
default:
assert(false);
break;
}
base->SM[subModule].OCTRL = reg;
}
/*!
* @brief Set PWM fault disable mapping
*
* Each of the four bits of this read/write field is one-to-one associated
* with the four FAULTx inputs of fault channel 0/1. The PWM output will be turned
* off if there is a logic 1 on an FAULTx input and a 1 in the corresponding
* bit of this field. A reset sets all bits in this field.
*
* @param base PWM peripheral base address
* @param subModule PWM submodule to configure
* @param pwmChannel PWM channel to configure
* @param pwm_fault_channels PWM fault channel to configure
* @param value Fault disable mapping mask value
* enumeration ::pwm_fault_disable_t
*/
static inline void PWM_SetupFaultDisableMap(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmChannel,
pwm_fault_channels_t pwm_fault_channels,
uint16_t value)
{
uint16_t reg = base->SM[subModule].DISMAP[pwm_fault_channels];
switch (pwmChannel)
{
case kPWM_PwmA:
reg &= ~((uint16_t)PWM_DISMAP_DIS0A_MASK);
reg |= (((uint16_t)(value) << (uint16_t)PWM_DISMAP_DIS0A_SHIFT) & (uint16_t)PWM_DISMAP_DIS0A_MASK);
break;
case kPWM_PwmB:
reg &= ~((uint16_t)PWM_DISMAP_DIS0B_MASK);
reg |= (((uint16_t)(value) << (uint16_t)PWM_DISMAP_DIS0B_SHIFT) & (uint16_t)PWM_DISMAP_DIS0B_MASK);
break;
case kPWM_PwmX:
reg &= ~((uint16_t)PWM_DISMAP_DIS0X_MASK);
reg |= (((uint16_t)(value) << (uint16_t)PWM_DISMAP_DIS0X_SHIFT) & (uint16_t)PWM_DISMAP_DIS0X_MASK);
break;
default:
assert(false);
break;
}
base->SM[subModule].DISMAP[pwm_fault_channels] = reg;
}
#if defined(__cplusplus)
}
#endif
/*! @}*/
#endif /* _FSL_PWM_H_ */