4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-21 13:53:32 +08:00

1185 lines
31 KiB
Plaintext

# 2005 December 30
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
# $Id: shared.test,v 1.36 2009/03/16 13:19:36 danielk1977 Exp $
set testdir [file dirname $argv0]
source $testdir/tester.tcl
db close
# These tests cannot be run without the ATTACH command.
#
ifcapable !shared_cache||!attach {
finish_test
return
}
set ::enable_shared_cache [sqlite3_enable_shared_cache 1]
foreach av [list 0 1] {
# Open the database connection and execute the auto-vacuum pragma
forcedelete test.db
sqlite3 db test.db
ifcapable autovacuum {
do_test shared-[expr $av+1].1.0 {
execsql "pragma auto_vacuum=$::av"
execsql {pragma auto_vacuum}
} "$av"
} else {
if {$av} {
db close
break
}
}
# if we're using proxy locks, we use 2 filedescriptors for a db
# that is open but NOT yet locked, after a lock is taken we'll have 3,
# normally sqlite uses 1 (proxy locking adds the conch and the local lock)
set using_proxy 0
foreach {name value} [array get env SQLITE_FORCE_PROXY_LOCKING] {
set using_proxy $value
}
set extrafds_prelock 0
set extrafds_postlock 0
if {$using_proxy>0} {
set extrafds_prelock 1
set extrafds_postlock 2
}
# $av is currently 0 if this loop iteration is to test with auto-vacuum turned
# off, and 1 if it is turned on. Increment it so that (1 -> no auto-vacuum)
# and (2 -> auto-vacuum). The sole reason for this is so that it looks nicer
# when we use this variable as part of test-case names.
#
incr av
# Test organization:
#
# shared-1.*: Simple test to verify basic sanity of table level locking when
# two connections share a pager cache.
# shared-2.*: Test that a read transaction can co-exist with a
# write-transaction, including a simple test to ensure the
# external locking protocol is still working.
# shared-3.*: Simple test of read-uncommitted mode.
# shared-4.*: Check that the schema is locked and unlocked correctly.
# shared-5.*: Test that creating/dropping schema items works when databases
# are attached in different orders to different handles.
# shared-6.*: Locking, UNION ALL queries and sub-queries.
# shared-7.*: Autovacuum and shared-cache.
# shared-8.*: Tests related to the text encoding of shared-cache databases.
# shared-9.*: TEMP triggers and shared-cache databases.
# shared-10.*: Tests of sqlite3_close().
# shared-11.*: Test transaction locking.
#
do_test shared-$av.1.1 {
# Open a second database on the file test.db. It should use the same pager
# cache and schema as the original connection. Verify that only 1 file is
# opened.
sqlite3 db2 test.db
set ::sqlite_open_file_count
expr $sqlite_open_file_count-$extrafds_postlock
} {1}
do_test shared-$av.1.2 {
# Add a table and a single row of data via the first connection.
# Ensure that the second connection can see them.
execsql {
CREATE TABLE abc(a, b, c);
INSERT INTO abc VALUES(1, 2, 3);
} db
execsql {
SELECT * FROM abc;
} db2
} {1 2 3}
do_test shared-$av.1.3 {
# Have the first connection begin a transaction and obtain a read-lock
# on table abc. This should not prevent the second connection from
# querying abc.
execsql {
BEGIN;
SELECT * FROM abc;
}
execsql {
SELECT * FROM abc;
} db2
} {1 2 3}
do_test shared-$av.1.4 {
# Try to insert a row into abc via connection 2. This should fail because
# of the read-lock connection 1 is holding on table abc (obtained in the
# previous test case).
catchsql {
INSERT INTO abc VALUES(4, 5, 6);
} db2
} {1 {database table is locked: abc}}
do_test shared-$av.1.5 {
# Using connection 2 (the one without the open transaction), try to create
# a new table. This should fail because of the open read transaction
# held by connection 1.
catchsql {
CREATE TABLE def(d, e, f);
} db2
} {1 {database table is locked: sqlite_master}}
do_test shared-$av.1.6 {
# Upgrade connection 1's transaction to a write transaction. Create
# a new table - def - and insert a row into it. Because the connection 1
# transaction modifies the schema, it should not be possible for
# connection 2 to access the database at all until the connection 1
# has finished the transaction.
execsql {
CREATE TABLE def(d, e, f);
INSERT INTO def VALUES('IV', 'V', 'VI');
}
} {}
do_test shared-$av.1.7 {
# Read from the sqlite_master table with connection 1 (inside the
# transaction). Then test that we can not do this with connection 2. This
# is because of the schema-modified lock established by connection 1
# in the previous test case.
execsql {
SELECT * FROM sqlite_master;
}
catchsql {
SELECT * FROM sqlite_master;
} db2
} {1 {database schema is locked: main}}
do_test shared-$av.1.8 {
# Commit the connection 1 transaction.
execsql {
COMMIT;
}
} {}
do_test shared-$av.2.1 {
# Open connection db3 to the database. Use a different path to the same
# file so that db3 does *not* share the same pager cache as db and db2
# (there should be two open file handles).
if {$::tcl_platform(platform)=="unix"} {
sqlite3 db3 ./test.db
} else {
sqlite3 db3 TEST.DB
}
set ::sqlite_open_file_count
expr $sqlite_open_file_count-($extrafds_prelock+$extrafds_postlock)
} {2}
do_test shared-$av.2.2 {
# Start read transactions on db and db2 (the shared pager cache). Ensure
# db3 cannot write to the database.
execsql {
BEGIN;
SELECT * FROM abc;
}
execsql {
BEGIN;
SELECT * FROM abc;
} db2
catchsql {
INSERT INTO abc VALUES(1, 2, 3);
} db2
} {1 {database table is locked: abc}}
do_test shared-$av.2.3 {
# Turn db's transaction into a write-transaction. db3 should still be
# able to read from table def (but will not see the new row). Connection
# db2 should not be able to read def (because of the write-lock).
# Todo: The failed "INSERT INTO abc ..." statement in the above test
# has started a write-transaction on db2 (should this be so?). This
# would prevent connection db from starting a write-transaction. So roll the
# db2 transaction back and replace it with a new read transaction.
execsql {
ROLLBACK;
BEGIN;
SELECT * FROM abc;
} db2
execsql {
INSERT INTO def VALUES('VII', 'VIII', 'IX');
}
concat [
catchsql { SELECT * FROM def; } db3
] [
catchsql { SELECT * FROM def; } db2
]
} {0 {IV V VI} 1 {database table is locked: def}}
do_test shared-$av.2.4 {
# Commit the open transaction on db. db2 still holds a read-transaction.
# This should prevent db3 from writing to the database, but not from
# reading.
execsql {
COMMIT;
}
concat [
catchsql { SELECT * FROM def; } db3
] [
catchsql { INSERT INTO def VALUES('X', 'XI', 'XII'); } db3
]
} {0 {IV V VI VII VIII IX} 1 {database is locked}}
catchsql COMMIT db2
do_test shared-$av.3.1.1 {
# This test case starts a linear scan of table 'seq' using a
# read-uncommitted connection. In the middle of the scan, rows are added
# to the end of the seq table (ahead of the current cursor position).
# The uncommitted rows should be included in the results of the scan.
execsql "
CREATE TABLE seq(i PRIMARY KEY, x);
INSERT INTO seq VALUES(1, '[string repeat X 500]');
INSERT INTO seq VALUES(2, '[string repeat X 500]');
"
execsql {SELECT * FROM sqlite_master} db2
execsql {PRAGMA read_uncommitted = 1} db2
set ret [list]
db2 eval {SELECT i FROM seq ORDER BY i} {
if {$i < 4} {
set max [execsql {SELECT max(i) FROM seq}]
db eval {
INSERT INTO seq SELECT i + :max, x FROM seq;
}
}
lappend ret $i
}
set ret
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16}
do_test shared-$av.3.1.2 {
# Another linear scan through table seq using a read-uncommitted connection.
# This time, delete each row as it is read. Should not affect the results of
# the scan, but the table should be empty after the scan is concluded
# (test 3.1.3 verifies this).
set ret [list]
db2 eval {SELECT i FROM seq} {
db eval {DELETE FROM seq WHERE i = :i}
lappend ret $i
}
set ret
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16}
do_test shared-$av.3.1.3 {
execsql {
SELECT * FROM seq;
}
} {}
catch {db close}
catch {db2 close}
catch {db3 close}
#--------------------------------------------------------------------------
# Tests shared-4.* test that the schema locking rules are applied
# correctly. i.e.:
#
# 1. All transactions require a read-lock on the schemas of databases they
# access.
# 2. Transactions that modify a database schema require a write-lock on that
# schema.
# 3. It is not possible to compile a statement while another handle has a
# write-lock on the schema.
#
# Open two database handles db and db2. Each has a single attach database
# (as well as main):
#
# db.main -> ./test.db
# db.test2 -> ./test2.db
# db2.main -> ./test2.db
# db2.test -> ./test.db
#
forcedelete test.db
forcedelete test2.db
forcedelete test2.db-journal
sqlite3 db test.db
sqlite3 db2 test2.db
do_test shared-$av.4.1.1 {
set sqlite_open_file_count
expr $sqlite_open_file_count-($extrafds_prelock*2)
} {2}
do_test shared-$av.4.1.2 {
execsql {ATTACH 'test2.db' AS test2}
set sqlite_open_file_count
expr $sqlite_open_file_count-($extrafds_postlock*2)
} {2}
do_test shared-$av.4.1.3 {
execsql {ATTACH 'test.db' AS test} db2
set sqlite_open_file_count
expr $sqlite_open_file_count-($extrafds_postlock*2)
} {2}
# Sanity check: Create a table in ./test.db via handle db, and test that handle
# db2 can "see" the new table immediately. A handle using a seperate pager
# cache would have to reload the database schema before this were possible.
#
do_test shared-$av.4.2.1 {
execsql {
CREATE TABLE abc(a, b, c);
CREATE TABLE def(d, e, f);
INSERT INTO abc VALUES('i', 'ii', 'iii');
INSERT INTO def VALUES('I', 'II', 'III');
}
} {}
do_test shared-$av.4.2.2 {
execsql {
SELECT * FROM test.abc;
} db2
} {i ii iii}
# Open a read-transaction and read from table abc via handle 2. Check that
# handle 1 can read table abc. Check that handle 1 cannot modify table abc
# or the database schema. Then check that handle 1 can modify table def.
#
do_test shared-$av.4.3.1 {
execsql {
BEGIN;
SELECT * FROM test.abc;
} db2
} {i ii iii}
do_test shared-$av.4.3.2 {
catchsql {
INSERT INTO abc VALUES('iv', 'v', 'vi');
}
} {1 {database table is locked: abc}}
do_test shared-$av.4.3.3 {
catchsql {
CREATE TABLE ghi(g, h, i);
}
} {1 {database table is locked: sqlite_master}}
do_test shared-$av.4.3.3 {
catchsql {
INSERT INTO def VALUES('IV', 'V', 'VI');
}
} {0 {}}
do_test shared-$av.4.3.4 {
# Cleanup: commit the transaction opened by db2.
execsql {
COMMIT
} db2
} {}
# Open a write-transaction using handle 1 and modify the database schema.
# Then try to execute a compiled statement to read from the same
# database via handle 2 (fails to get the lock on sqlite_master). Also
# try to compile a read of the same database using handle 2 (also fails).
# Finally, compile a read of the other database using handle 2. This
# should also fail.
#
ifcapable compound {
do_test shared-$av.4.4.1.2 {
# Sanity check 1: Check that the schema is what we think it is when viewed
# via handle 1.
execsql {
CREATE TABLE test2.ghi(g, h, i);
SELECT 'test.db:'||name FROM sqlite_master
UNION ALL
SELECT 'test2.db:'||name FROM test2.sqlite_master;
}
} {test.db:abc test.db:def test2.db:ghi}
do_test shared-$av.4.4.1.2 {
# Sanity check 2: Check that the schema is what we think it is when viewed
# via handle 2.
execsql {
SELECT 'test2.db:'||name FROM sqlite_master
UNION ALL
SELECT 'test.db:'||name FROM test.sqlite_master;
} db2
} {test2.db:ghi test.db:abc test.db:def}
}
do_test shared-$av.4.4.2 {
set ::DB2 [sqlite3_connection_pointer db2]
set sql {SELECT * FROM abc}
set ::STMT1 [sqlite3_prepare $::DB2 $sql -1 DUMMY]
execsql {
BEGIN;
CREATE TABLE jkl(j, k, l);
}
sqlite3_step $::STMT1
} {SQLITE_ERROR}
do_test shared-$av.4.4.3 {
sqlite3_finalize $::STMT1
} {SQLITE_LOCKED}
do_test shared-$av.4.4.4 {
set rc [catch {
set ::STMT1 [sqlite3_prepare $::DB2 $sql -1 DUMMY]
} msg]
list $rc $msg
} {1 {(6) database schema is locked: test}}
do_test shared-$av.4.4.5 {
set rc [catch {
set ::STMT1 [sqlite3_prepare $::DB2 "SELECT * FROM ghi" -1 DUMMY]
} msg]
list $rc $msg
} {1 {(6) database schema is locked: test}}
catch {db2 close}
catch {db close}
#--------------------------------------------------------------------------
# Tests shared-5.*
#
foreach db [list test.db test1.db test2.db test3.db] {
forcedelete $db ${db}-journal
}
do_test shared-$av.5.1.1 {
sqlite3 db1 test.db
sqlite3 db2 test.db
execsql {
ATTACH 'test1.db' AS test1;
ATTACH 'test2.db' AS test2;
ATTACH 'test3.db' AS test3;
} db1
execsql {
ATTACH 'test3.db' AS test3;
ATTACH 'test2.db' AS test2;
ATTACH 'test1.db' AS test1;
} db2
} {}
do_test shared-$av.5.1.2 {
execsql {
CREATE TABLE test1.t1(a, b);
CREATE INDEX test1.i1 ON t1(a, b);
} db1
} {}
ifcapable view {
do_test shared-$av.5.1.3 {
execsql {
CREATE VIEW test1.v1 AS SELECT * FROM t1;
} db1
} {}
}
ifcapable trigger {
do_test shared-$av.5.1.4 {
execsql {
CREATE TRIGGER test1.trig1 AFTER INSERT ON t1 BEGIN
INSERT INTO t1 VALUES(new.a, new.b);
END;
} db1
} {}
}
do_test shared-$av.5.1.5 {
execsql {
DROP INDEX i1;
} db2
} {}
ifcapable view {
do_test shared-$av.5.1.6 {
execsql {
DROP VIEW v1;
} db2
} {}
}
ifcapable trigger {
do_test shared-$av.5.1.7 {
execsql {
DROP TRIGGER trig1;
} db2
} {}
}
do_test shared-$av.5.1.8 {
execsql {
DROP TABLE t1;
} db2
} {}
ifcapable compound {
do_test shared-$av.5.1.9 {
execsql {
SELECT * FROM sqlite_master UNION ALL SELECT * FROM test1.sqlite_master
} db1
} {}
}
#--------------------------------------------------------------------------
# Tests shared-6.* test that a query obtains all the read-locks it needs
# before starting execution of the query. This means that there is no chance
# some rows of data will be returned before a lock fails and SQLITE_LOCK
# is returned.
#
do_test shared-$av.6.1.1 {
execsql {
CREATE TABLE t1(a, b);
CREATE TABLE t2(a, b);
INSERT INTO t1 VALUES(1, 2);
INSERT INTO t2 VALUES(3, 4);
} db1
} {}
ifcapable compound {
do_test shared-$av.6.1.2 {
execsql {
SELECT * FROM t1 UNION ALL SELECT * FROM t2;
} db2
} {1 2 3 4}
}
do_test shared-$av.6.1.3 {
# Establish a write lock on table t2 via connection db2. Then make a
# UNION all query using connection db1 that first accesses t1, followed
# by t2. If the locks are grabbed at the start of the statement (as
# they should be), no rows are returned. If (as was previously the case)
# they are grabbed as the tables are accessed, the t1 rows will be
# returned before the query fails.
#
execsql {
BEGIN;
INSERT INTO t2 VALUES(5, 6);
} db2
set ret [list]
catch {
db1 eval {SELECT * FROM t1 UNION ALL SELECT * FROM t2} {
lappend ret $a $b
}
}
set ret
} {}
do_test shared-$av.6.1.4 {
execsql {
COMMIT;
BEGIN;
INSERT INTO t1 VALUES(7, 8);
} db2
set ret [list]
catch {
db1 eval {
SELECT (CASE WHEN a>4 THEN (SELECT a FROM t1) ELSE 0 END) AS d FROM t2;
} {
lappend ret $d
}
}
set ret
} {}
catch {db1 close}
catch {db2 close}
foreach f [list test.db test2.db] {
forcedelete $f ${f}-journal
}
#--------------------------------------------------------------------------
# Tests shared-7.* test auto-vacuum does not invalidate cursors from
# other shared-cache users when it reorganizes the database on
# COMMIT.
#
do_test shared-$av.7.1 {
# This test case sets up a test database in auto-vacuum mode consisting
# of two tables, t1 and t2. Both have a single index. Table t1 is
# populated first (so consists of pages toward the start of the db file),
# t2 second (pages toward the end of the file).
sqlite3 db test.db
sqlite3 db2 test.db
execsql {
BEGIN;
CREATE TABLE t1(a PRIMARY KEY, b);
CREATE TABLE t2(a PRIMARY KEY, b);
}
set ::contents {}
for {set i 0} {$i < 100} {incr i} {
set a [string repeat "$i " 20]
set b [string repeat "$i " 20]
db eval {
INSERT INTO t1 VALUES(:a, :b);
}
lappend ::contents [list [expr $i+1] $a $b]
}
execsql {
INSERT INTO t2 SELECT * FROM t1;
COMMIT;
}
} {}
do_test shared-$av.7.2 {
# This test case deletes the contents of table t1 (the one at the start of
# the file) while many cursors are open on table t2 and its index. All of
# the non-root pages will be moved from the end to the start of the file
# when the DELETE is committed - this test verifies that moving the pages
# does not disturb the open cursors.
#
proc lockrow {db tbl oids body} {
set ret [list]
db eval "SELECT oid AS i, a, b FROM $tbl ORDER BY a" {
if {$i==[lindex $oids 0]} {
set noids [lrange $oids 1 end]
if {[llength $noids]==0} {
set subret [eval $body]
} else {
set subret [lockrow $db $tbl $noids $body]
}
}
lappend ret [list $i $a $b]
}
return [linsert $subret 0 $ret]
}
proc locktblrows {db tbl body} {
set oids [db eval "SELECT oid FROM $tbl"]
lockrow $db $tbl $oids $body
}
set scans [locktblrows db t2 {
execsql {
DELETE FROM t1;
} db2
}]
set error 0
# Test that each SELECT query returned the expected contents of t2.
foreach s $scans {
if {[lsort -integer -index 0 $s]!=$::contents} {
set error 1
}
}
set error
} {0}
catch {db close}
catch {db2 close}
unset -nocomplain contents
#--------------------------------------------------------------------------
# The following tests try to trick the shared-cache code into assuming
# the wrong encoding for a database.
#
forcedelete test.db test.db-journal
ifcapable utf16 {
do_test shared-$av.8.1.1 {
sqlite3 db test.db
execsql {
PRAGMA encoding = 'UTF-16';
SELECT * FROM sqlite_master;
}
} {}
do_test shared-$av.8.1.2 {
string range [execsql {PRAGMA encoding;}] 0 end-2
} {UTF-16}
do_test shared-$av.8.1.3 {
sqlite3 db2 test.db
execsql {
PRAGMA encoding = 'UTF-8';
CREATE TABLE abc(a, b, c);
} db2
} {}
do_test shared-$av.8.1.4 {
execsql {
SELECT * FROM sqlite_master;
}
} "table abc abc [expr $AUTOVACUUM?3:2] {CREATE TABLE abc(a, b, c)}"
do_test shared-$av.8.1.5 {
db2 close
execsql {
PRAGMA encoding;
}
} {UTF-8}
forcedelete test2.db test2.db-journal
do_test shared-$av.8.2.1 {
execsql {
ATTACH 'test2.db' AS aux;
SELECT * FROM aux.sqlite_master;
}
} {}
do_test shared-$av.8.2.2 {
sqlite3 db2 test2.db
execsql {
PRAGMA encoding = 'UTF-16';
CREATE TABLE def(d, e, f);
} db2
string range [execsql {PRAGMA encoding;} db2] 0 end-2
} {UTF-16}
catch {db close}
catch {db2 close}
forcedelete test.db test2.db
do_test shared-$av.8.3.2 {
sqlite3 db test.db
execsql { CREATE TABLE def(d, e, f) }
execsql { PRAGMA encoding }
} {UTF-8}
do_test shared-$av.8.3.3 {
set zDb16 "[encoding convertto unicode test.db]\x00\x00"
set db16 [sqlite3_open16 $zDb16 {}]
set stmt [sqlite3_prepare $db16 "SELECT sql FROM sqlite_master" -1 DUMMY]
sqlite3_step $stmt
set sql [sqlite3_column_text $stmt 0]
sqlite3_finalize $stmt
set sql
} {CREATE TABLE def(d, e, f)}
do_test shared-$av.8.3.4 {
set stmt [sqlite3_prepare $db16 "PRAGMA encoding" -1 DUMMY]
sqlite3_step $stmt
set enc [sqlite3_column_text $stmt 0]
sqlite3_finalize $stmt
set enc
} {UTF-8}
sqlite3_close $db16
# Bug #2547 is causing this to fail.
if 0 {
do_test shared-$av.8.2.3 {
catchsql {
SELECT * FROM aux.sqlite_master;
}
} {1 {attached databases must use the same text encoding as main database}}
}
}
catch {db close}
catch {db2 close}
forcedelete test.db test2.db
#---------------------------------------------------------------------------
# The following tests - shared-9.* - test interactions between TEMP triggers
# and shared-schemas.
#
ifcapable trigger&&tempdb {
do_test shared-$av.9.1 {
sqlite3 db test.db
sqlite3 db2 test.db
execsql {
CREATE TABLE abc(a, b, c);
CREATE TABLE abc_mirror(a, b, c);
CREATE TEMP TRIGGER BEFORE INSERT ON abc BEGIN
INSERT INTO abc_mirror(a, b, c) VALUES(new.a, new.b, new.c);
END;
INSERT INTO abc VALUES(1, 2, 3);
SELECT * FROM abc_mirror;
}
} {1 2 3}
do_test shared-$av.9.2 {
execsql {
INSERT INTO abc VALUES(4, 5, 6);
SELECT * FROM abc_mirror;
} db2
} {1 2 3}
do_test shared-$av.9.3 {
db close
db2 close
} {}
} ; # End shared-9.*
#---------------------------------------------------------------------------
# The following tests - shared-10.* - test that the library behaves
# correctly when a connection to a shared-cache is closed.
#
do_test shared-$av.10.1 {
# Create a small sample database with two connections to it (db and db2).
forcedelete test.db
sqlite3 db test.db
sqlite3 db2 test.db
execsql {
CREATE TABLE ab(a PRIMARY KEY, b);
CREATE TABLE de(d PRIMARY KEY, e);
INSERT INTO ab VALUES('Chiang Mai', 100000);
INSERT INTO ab VALUES('Bangkok', 8000000);
INSERT INTO de VALUES('Ubon', 120000);
INSERT INTO de VALUES('Khon Kaen', 200000);
}
} {}
do_test shared-$av.10.2 {
# Open a read-transaction with the first connection, a write-transaction
# with the second.
execsql {
BEGIN;
SELECT * FROM ab;
}
execsql {
BEGIN;
INSERT INTO de VALUES('Pataya', 30000);
} db2
} {}
do_test shared-$av.10.3 {
# An external connection should be able to read the database, but not
# prepare a write operation.
if {$::tcl_platform(platform)=="unix"} {
sqlite3 db3 ./test.db
} else {
sqlite3 db3 TEST.DB
}
execsql {
SELECT * FROM ab;
} db3
catchsql {
BEGIN;
INSERT INTO de VALUES('Pataya', 30000);
} db3
} {1 {database is locked}}
do_test shared-$av.10.4 {
# Close the connection with the write-transaction open
db2 close
} {}
do_test shared-$av.10.5 {
# Test that the db2 transaction has been automatically rolled back.
# If it has not the ('Pataya', 30000) entry will still be in the table.
execsql {
SELECT * FROM de;
}
} {Ubon 120000 {Khon Kaen} 200000}
do_test shared-$av.10.5 {
# Closing db2 should have dropped the shared-cache back to a read-lock.
# So db3 should be able to prepare a write...
catchsql {INSERT INTO de VALUES('Pataya', 30000);} db3
} {0 {}}
do_test shared-$av.10.6 {
# ... but not commit it.
catchsql {COMMIT} db3
} {1 {database is locked}}
do_test shared-$av.10.7 {
# Commit the (read-only) db transaction. Check via db3 to make sure the
# contents of table "de" are still as they should be.
execsql {
COMMIT;
}
execsql {
SELECT * FROM de;
} db3
} {Ubon 120000 {Khon Kaen} 200000 Pataya 30000}
do_test shared-$av.10.9 {
# Commit the external transaction.
catchsql {COMMIT} db3
} {0 {}}
integrity_check shared-$av.10.10
do_test shared-$av.10.11 {
db close
db3 close
} {}
do_test shared-$av.11.1 {
forcedelete test.db
sqlite3 db test.db
sqlite3 db2 test.db
execsql {
CREATE TABLE abc(a, b, c);
CREATE TABLE abc2(a, b, c);
BEGIN;
INSERT INTO abc VALUES(1, 2, 3);
}
} {}
do_test shared-$av.11.2 {
catchsql {BEGIN;} db2
catchsql {SELECT * FROM abc;} db2
} {1 {database table is locked: abc}}
do_test shared-$av.11.3 {
catchsql {BEGIN} db2
} {1 {cannot start a transaction within a transaction}}
do_test shared-$av.11.4 {
catchsql {SELECT * FROM abc2;} db2
} {0 {}}
do_test shared-$av.11.5 {
catchsql {INSERT INTO abc2 VALUES(1, 2, 3);} db2
} {1 {database table is locked}}
do_test shared-$av.11.6 {
catchsql {SELECT * FROM abc2}
} {0 {}}
do_test shared-$av.11.6 {
execsql {
ROLLBACK;
PRAGMA read_uncommitted = 1;
} db2
} {}
do_test shared-$av.11.7 {
execsql {
INSERT INTO abc2 VALUES(4, 5, 6);
INSERT INTO abc2 VALUES(7, 8, 9);
}
} {}
do_test shared-$av.11.8 {
set res [list]
db2 eval {
SELECT abc.a as I, abc2.a as II FROM abc, abc2;
} {
execsql {
DELETE FROM abc WHERE 1;
}
lappend res $I $II
}
set res
} {1 4 {} 7}
if {[llength [info command sqlite3_shared_cache_report]]==1} {
ifcapable curdir {
do_test shared-$av.11.9 {
string tolower [sqlite3_shared_cache_report]
} [string tolower [list [file nativename [file normalize test.db]] 2]]
}
}
do_test shared-$av.11.11 {
db close
db2 close
} {}
# This tests that if it is impossible to free any pages, SQLite will
# exceed the limit set by PRAGMA cache_size.
forcedelete test.db test.db-journal
sqlite3 db test.db
ifcapable pager_pragmas {
do_test shared-$av.12.1 {
execsql {
PRAGMA cache_size = 10;
PRAGMA cache_size;
}
} {10}
}
do_test shared-$av.12.2 {
set ::db_handles [list]
for {set i 1} {$i < 15} {incr i} {
lappend ::db_handles db$i
sqlite3 db$i test.db
execsql "CREATE TABLE db${i}(a, b, c)" db$i
execsql "INSERT INTO db${i} VALUES(1, 2, 3)"
}
} {}
proc nested_select {handles} {
[lindex $handles 0] eval "SELECT * FROM [lindex $handles 0]" {
lappend ::res $a $b $c
if {[llength $handles]>1} {
nested_select [lrange $handles 1 end]
}
}
}
do_test shared-$av.12.3 {
set ::res [list]
nested_select $::db_handles
set ::res
} [string range [string repeat "1 2 3 " [llength $::db_handles]] 0 end-1]
do_test shared-$av.12.X {
db close
foreach h $::db_handles {
$h close
}
} {}
# Internally, locks are acquired on shared B-Tree structures in the order
# that the structures appear in the virtual memory address space. This
# test case attempts to cause the order of the structures in memory
# to be different from the order in which they are attached to a given
# database handle. This covers an extra line or two.
#
do_test shared-$av.13.1 {
forcedelete test2.db test3.db test4.db test5.db
sqlite3 db :memory:
execsql {
ATTACH 'test2.db' AS aux2;
ATTACH 'test3.db' AS aux3;
ATTACH 'test4.db' AS aux4;
ATTACH 'test5.db' AS aux5;
DETACH aux2;
DETACH aux3;
DETACH aux4;
ATTACH 'test2.db' AS aux2;
ATTACH 'test3.db' AS aux3;
ATTACH 'test4.db' AS aux4;
}
} {}
do_test shared-$av.13.2 {
execsql {
CREATE TABLE t1(a, b, c);
CREATE TABLE aux2.t2(a, b, c);
CREATE TABLE aux3.t3(a, b, c);
CREATE TABLE aux4.t4(a, b, c);
CREATE TABLE aux5.t5(a, b, c);
SELECT count(*) FROM
aux2.sqlite_master,
aux3.sqlite_master,
aux4.sqlite_master,
aux5.sqlite_master
}
} {1}
do_test shared-$av.13.3 {
db close
} {}
# Test that nothing horrible happens if a connection to a shared B-Tree
# structure is closed while some other connection has an open cursor.
#
do_test shared-$av.14.1 {
sqlite3 db test.db
sqlite3 db2 test.db
execsql {SELECT name FROM sqlite_master}
} {db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12 db13 db14}
do_test shared-$av.14.2 {
set res [list]
db eval {SELECT name FROM sqlite_master} {
if {$name eq "db7"} {
db2 close
}
lappend res $name
}
set res
} {db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12 db13 db14}
do_test shared-$av.14.3 {
db close
} {}
# Populate a database schema using connection [db]. Then drop it using
# [db2]. This is to try to find any points where shared-schema elements
# are allocated using the lookaside buffer of [db].
#
# Mutexes are enabled for this test as that activates a couple of useful
# assert() statements in the C code.
#
do_test shared-$av-15.1 {
forcedelete test.db
sqlite3 db test.db -fullmutex 1
sqlite3 db2 test.db -fullmutex 1
execsql {
CREATE TABLE t1(a, b, c);
CREATE INDEX i1 ON t1(a, b);
CREATE VIEW v1 AS SELECT * FROM t1;
CREATE VIEW v2 AS SELECT * FROM t1, v1
WHERE t1.c=v1.c GROUP BY t1.a ORDER BY v1.b;
CREATE TRIGGER tr1 AFTER INSERT ON t1
WHEN new.a!=1
BEGIN
DELETE FROM t1 WHERE a=5;
INSERT INTO t1 VALUES(1, 2, 3);
UPDATE t1 SET c=c+1;
END;
INSERT INTO t1 VALUES(5, 6, 7);
INSERT INTO t1 VALUES(8, 9, 10);
INSERT INTO t1 VALUES(11, 12, 13);
ANALYZE;
SELECT * FROM t1;
}
} {1 2 6 8 9 12 1 2 5 11 12 14 1 2 4}
do_test shared-$av-15.2 {
execsql { DROP TABLE t1 } db2
} {}
db close
db2 close
# Shared cache on a :memory: database. This only works for URI filenames.
#
do_test shared-$av-16.1 {
sqlite3 db1 file::memory: -uri 1
sqlite3 db2 file::memory: -uri 1
db1 eval {
CREATE TABLE t1(x); INSERT INTO t1 VALUES(1),(2),(3);
}
db2 eval {
SELECT x FROM t1 ORDER BY x;
}
} {1 2 3}
do_test shared-$av-16.2 {
db2 eval {
INSERT INTO t1 VALUES(99);
DELETE FROM t1 WHERE x=2;
}
db1 eval {
SELECT x FROM t1 ORDER BY x;
}
} {1 3 99}
# Verify that there is no cache sharing ordinary (non-URI) filenames are
# used.
#
do_test shared-$av-16.3 {
db1 close
db2 close
sqlite3 db1 :memory:
sqlite3 db2 :memory:
db1 eval {
CREATE TABLE t1(x); INSERT INTO t1 VALUES(4),(5),(6);
}
catchsql {
SELECT * FROM t1;
} db2
} {1 {no such table: t1}}
# Shared cache on named memory databases.
#
do_test shared-$av-16.4 {
db1 close
db2 close
forcedelete test.db test.db-wal test.db-journal
sqlite3 db1 file:test.db?mode=memory -uri 1
sqlite3 db2 file:test.db?mode=memory -uri 1
db1 eval {
CREATE TABLE t1(x); INSERT INTO t1 VALUES(1),(2),(3);
}
db2 eval {
SELECT x FROM t1 ORDER BY x;
}
} {1 2 3}
do_test shared-$av-16.5 {
db2 eval {
INSERT INTO t1 VALUES(99);
DELETE FROM t1 WHERE x=2;
}
db1 eval {
SELECT x FROM t1 ORDER BY x;
}
} {1 3 99}
do_test shared-$av-16.6 {
file exists test.db
} {0} ;# Verify that the database is in-memory
# Shared cache on named memory databases with different names.
#
do_test shared-$av-16.7 {
db1 close
db2 close
forcedelete test1.db test2.db
sqlite3 db1 file:test1.db?mode=memory -uri 1
sqlite3 db2 file:test2.db?mode=memory -uri 1
db1 eval {
CREATE TABLE t1(x); INSERT INTO t1 VALUES(1),(2),(3);
}
catchsql {
SELECT x FROM t1 ORDER BY x;
} db2
} {1 {no such table: t1}}
do_test shared-$av-16.8 {
file exists test1.db
} {0} ;# Verify that the database is in-memory
# Shared cache on named memory databases attached to readonly connections.
#
do_test shared-$av-16.8.1 {
db1 close
db2 close
sqlite3 db test1.db
db eval {
CREATE TABLE yy(a, b);
INSERT INTO yy VALUES(77, 88);
}
db close
sqlite3 db1 test1.db -uri 1 -readonly 1
sqlite3 db2 test2.db -uri 1
db1 eval {
ATTACH 'file:mem?mode=memory&cache=shared' AS shared;
CREATE TABLE shared.xx(a, b);
INSERT INTO xx VALUES(55, 66);
}
db2 eval {
ATTACH 'file:mem?mode=memory&cache=shared' AS shared;
SELECT * FROM xx;
}
} {55 66}
do_test shared-$av-16.8.2 { db1 eval { SELECT * FROM yy } } {77 88}
do_test shared-$av-16.8.3 {
list [catch {db1 eval { INSERT INTO yy VALUES(1, 2) }} msg] $msg
} {1 {attempt to write a readonly database}}
db1 close
db2 close
} ;# end of autovacuum on/off loop
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test