mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-24 08:17:20 +08:00
73a117039f
git-svn-id: https://rt-thread.googlecode.com/svn/trunk@1742 bbd45198-f89e-11dd-88c7-29a3b14d5316
261 lines
4.9 KiB
C
261 lines
4.9 KiB
C
#include <math.h>
|
|
|
|
/*
|
|
* COPYRIGHT: See COPYING in the top level directory
|
|
* PROJECT: ReactOS CRT
|
|
* FILE: lib/crt/math/cos.c
|
|
* PURPOSE: Generic C Implementation of cos
|
|
* PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org)
|
|
*/
|
|
|
|
#define PRECISION 9
|
|
|
|
static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
|
|
static double cos_sign_tbl[] = {1,-1,-1,1};
|
|
|
|
static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
|
|
static double sin_sign_tbl[] = {1,-1,-1,1};
|
|
|
|
double sin(double x)
|
|
{
|
|
int quadrant;
|
|
double x2, result;
|
|
|
|
/* Calculate the quadrant */
|
|
quadrant = x * (2./M_PI);
|
|
|
|
/* Get offset inside quadrant */
|
|
x = x - quadrant * (M_PI/2.);
|
|
|
|
/* Normalize quadrant to [0..3] */
|
|
quadrant = (quadrant - 1) & 0x3;
|
|
|
|
/* Fixup value for the generic function */
|
|
x += sin_off_tbl[quadrant];
|
|
|
|
/* Calculate the negative of the square of x */
|
|
x2 = - (x * x);
|
|
|
|
/* This is an unrolled taylor series using <PRECISION> iterations
|
|
* Example with 4 iterations:
|
|
* result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
|
|
* To save multiplications and to keep the precision high, it's performed
|
|
* like this:
|
|
* result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
|
|
*/
|
|
|
|
/* Start with 0, compiler will optimize this away */
|
|
result = 0;
|
|
|
|
#if (PRECISION >= 10)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 9)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 8)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 7)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 6)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 5)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10);
|
|
result *= x2;
|
|
#endif
|
|
result += 1./(1.*2*3*4*5*6*7*8);
|
|
result *= x2;
|
|
|
|
result += 1./(1.*2*3*4*5*6);
|
|
result *= x2;
|
|
|
|
result += 1./(1.*2*3*4);
|
|
result *= x2;
|
|
|
|
result += 1./(1.*2);
|
|
result *= x2;
|
|
|
|
result += 1;
|
|
|
|
/* Apply correct sign */
|
|
result *= sin_sign_tbl[quadrant];
|
|
|
|
return result;
|
|
}
|
|
|
|
double cos(double x)
|
|
{
|
|
int quadrant;
|
|
double x2, result;
|
|
|
|
/* Calculate the quadrant */
|
|
quadrant = x * (2./M_PI);
|
|
|
|
/* Get offset inside quadrant */
|
|
x = x - quadrant * (M_PI/2.);
|
|
|
|
/* Normalize quadrant to [0..3] */
|
|
quadrant = quadrant & 0x3;
|
|
|
|
/* Fixup value for the generic function */
|
|
x += cos_off_tbl[quadrant];
|
|
|
|
/* Calculate the negative of the square of x */
|
|
x2 = - (x * x);
|
|
|
|
/* This is an unrolled taylor series using <PRECISION> iterations
|
|
* Example with 4 iterations:
|
|
* result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
|
|
* To save multiplications and to keep the precision high, it's performed
|
|
* like this:
|
|
* result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
|
|
*/
|
|
|
|
/* Start with 0, compiler will optimize this away */
|
|
result = 0;
|
|
|
|
#if (PRECISION >= 10)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 9)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 8)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 7)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 6)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
|
|
result *= x2;
|
|
#endif
|
|
#if (PRECISION >= 5)
|
|
result += 1./(1.*2*3*4*5*6*7*8*9*10);
|
|
result *= x2;
|
|
#endif
|
|
result += 1./(1.*2*3*4*5*6*7*8);
|
|
result *= x2;
|
|
|
|
result += 1./(1.*2*3*4*5*6);
|
|
result *= x2;
|
|
|
|
result += 1./(1.*2*3*4);
|
|
result *= x2;
|
|
|
|
result += 1./(1.*2);
|
|
result *= x2;
|
|
|
|
result += 1;
|
|
|
|
/* Apply correct sign */
|
|
result *= cos_sign_tbl[quadrant];
|
|
|
|
return result;
|
|
}
|
|
|
|
static const int N = 100;
|
|
|
|
double coef(int n)
|
|
{
|
|
double t;
|
|
|
|
if (n == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
t = 1.0/n;
|
|
|
|
if (n%2 == 0)
|
|
{
|
|
t = -t;
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
double horner(double x)
|
|
{
|
|
double u = coef(N);
|
|
int i;
|
|
|
|
for(i=N-1; i>=0; i--)
|
|
{
|
|
u = u*x + coef(i);
|
|
}
|
|
|
|
return u;
|
|
}
|
|
|
|
double sqrt(double b)
|
|
{
|
|
double x = 1;
|
|
int step = 0;
|
|
|
|
while ((x*x-b<-0.000000000000001 || x*x-b>0.000000000000001) && step<50)
|
|
{
|
|
x = (b/x+x)/2.0;
|
|
step++;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
double ln(double x)
|
|
{
|
|
int i;
|
|
|
|
if (x > 1.5)
|
|
{
|
|
for(i=0; x>1.25; i++)
|
|
{
|
|
x = sqrt(x);
|
|
}
|
|
return (1<<i)*horner(x-1);
|
|
}
|
|
else if (x<0.7 && x>0)
|
|
{
|
|
for(i=0; x<0.7; i++)
|
|
{
|
|
x = sqrt(x);
|
|
}
|
|
return (1<<i)*horner(x-1);
|
|
}
|
|
else if(x > 0)
|
|
{
|
|
return horner(x-1);
|
|
}
|
|
}
|
|
|
|
double exp(double x)
|
|
{
|
|
double sum = 1;
|
|
int i;
|
|
|
|
for(i=N; i>0; i--)
|
|
{
|
|
sum /= i;
|
|
sum *= x;
|
|
sum += 1;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
double pow(double m, double n)
|
|
{
|
|
return exp(n*ln(m));
|
|
}
|
|
|