rt-thread-official/bsp/frdm-k64f/device/MK64F12/fsl_dspi.c

1670 lines
58 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_dspi.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Typedef for master interrupt handler. */
typedef void (*dspi_master_isr_t)(SPI_Type *base, dspi_master_handle_t *handle);
/*! @brief Typedef for slave interrupt handler. */
typedef void (*dspi_slave_isr_t)(SPI_Type *base, dspi_slave_handle_t *handle);
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for DSPI module.
*
* @param base DSPI peripheral base address.
*/
uint32_t DSPI_GetInstance(SPI_Type *base);
/*!
* @brief Configures the DSPI peripheral chip select polarity.
*
* This function takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
* configures the Pcs signal to operate with the desired characteristic.
*
* @param base DSPI peripheral address.
* @param pcs The particular peripheral chip select (parameter value is of type dspi_which_pcs_t) for which we wish to
* apply the active high or active low characteristic.
* @param activeLowOrHigh The setting for either "active high, inactive low (0)" or "active low, inactive high(1)" of
* type dspi_pcs_polarity_config_t.
*/
static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh);
/*!
* @brief Master fill up the TX FIFO with data.
* This is not a public API.
*/
static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle);
/*!
* @brief Master finish up a transfer.
* It would call back if there is callback function and set the state to idle.
* This is not a public API.
*/
static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle);
/*!
* @brief Slave fill up the TX FIFO with data.
* This is not a public API.
*/
static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle);
/*!
* @brief Slave finish up a transfer.
* It would call back if there is callback function and set the state to idle.
* This is not a public API.
*/
static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle);
/*!
* @brief DSPI common interrupt handler.
*
* @param base DSPI peripheral address.
* @param handle pointer to g_dspiHandle which stores the transfer state.
*/
static void DSPI_CommonIRQHandler(SPI_Type *base, void *param);
/*!
* @brief Master prepare the transfer.
* Basically it set up dspi_master_handle .
* This is not a public API.
*/
static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer);
/*******************************************************************************
* Variables
******************************************************************************/
/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
static const uint32_t s_baudratePrescaler[] = {2, 3, 5, 7};
static const uint32_t s_baudrateScaler[] = {2, 4, 6, 8, 16, 32, 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768};
static const uint32_t s_delayPrescaler[] = {1, 3, 5, 7};
static const uint32_t s_delayScaler[] = {2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536};
/*! @brief Pointers to dspi bases for each instance. */
static SPI_Type *const s_dspiBases[] = SPI_BASE_PTRS;
/*! @brief Pointers to dspi IRQ number for each instance. */
static IRQn_Type const s_dspiIRQ[] = SPI_IRQS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to dspi clocks for each instance. */
static clock_ip_name_t const s_dspiClock[] = DSPI_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointers to dspi handles for each instance. */
static void *g_dspiHandle[ARRAY_SIZE(s_dspiBases)];
/*! @brief Pointer to master IRQ handler for each instance. */
static dspi_master_isr_t s_dspiMasterIsr;
/*! @brief Pointer to slave IRQ handler for each instance. */
static dspi_slave_isr_t s_dspiSlaveIsr;
/**********************************************************************************************************************
* Code
*********************************************************************************************************************/
uint32_t DSPI_GetInstance(SPI_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_dspiBases); instance++)
{
if (s_dspiBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_dspiBases));
return instance;
}
void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
assert(masterConfig);
uint32_t temp;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* enable DSPI clock */
CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
DSPI_Enable(base, true);
DSPI_StopTransfer(base);
DSPI_SetMasterSlaveMode(base, kDSPI_Master);
temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
base->MCR = temp | SPI_MCR_CONT_SCKE(masterConfig->enableContinuousSCK) |
SPI_MCR_MTFE(masterConfig->enableModifiedTimingFormat) |
SPI_MCR_ROOE(masterConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(masterConfig->samplePoint) |
SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false);
DSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);
if (0 == DSPI_MasterSetBaudRate(base, masterConfig->whichCtar, masterConfig->ctarConfig.baudRate, srcClock_Hz))
{
assert(false);
}
temp = base->CTAR[masterConfig->whichCtar] &
~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);
base->CTAR[masterConfig->whichCtar] =
temp | SPI_CTAR_FMSZ(masterConfig->ctarConfig.bitsPerFrame - 1) | SPI_CTAR_CPOL(masterConfig->ctarConfig.cpol) |
SPI_CTAR_CPHA(masterConfig->ctarConfig.cpha) | SPI_CTAR_LSBFE(masterConfig->ctarConfig.direction);
DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_PcsToSck, srcClock_Hz,
masterConfig->ctarConfig.pcsToSckDelayInNanoSec);
DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_LastSckToPcs, srcClock_Hz,
masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec);
DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_BetweenTransfer, srcClock_Hz,
masterConfig->ctarConfig.betweenTransferDelayInNanoSec);
DSPI_StartTransfer(base);
}
void DSPI_MasterGetDefaultConfig(dspi_master_config_t *masterConfig)
{
assert(masterConfig);
masterConfig->whichCtar = kDSPI_Ctar0;
masterConfig->ctarConfig.baudRate = 500000;
masterConfig->ctarConfig.bitsPerFrame = 8;
masterConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
masterConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
masterConfig->ctarConfig.direction = kDSPI_MsbFirst;
masterConfig->ctarConfig.pcsToSckDelayInNanoSec = 1000;
masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec = 1000;
masterConfig->ctarConfig.betweenTransferDelayInNanoSec = 1000;
masterConfig->whichPcs = kDSPI_Pcs0;
masterConfig->pcsActiveHighOrLow = kDSPI_PcsActiveLow;
masterConfig->enableContinuousSCK = false;
masterConfig->enableRxFifoOverWrite = false;
masterConfig->enableModifiedTimingFormat = false;
masterConfig->samplePoint = kDSPI_SckToSin0Clock;
}
void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig)
{
assert(slaveConfig);
uint32_t temp = 0;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* enable DSPI clock */
CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
DSPI_Enable(base, true);
DSPI_StopTransfer(base);
DSPI_SetMasterSlaveMode(base, kDSPI_Slave);
temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
base->MCR = temp | SPI_MCR_CONT_SCKE(slaveConfig->enableContinuousSCK) |
SPI_MCR_MTFE(slaveConfig->enableModifiedTimingFormat) |
SPI_MCR_ROOE(slaveConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(slaveConfig->samplePoint) |
SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false);
DSPI_SetOnePcsPolarity(base, kDSPI_Pcs0, kDSPI_PcsActiveLow);
temp = base->CTAR[slaveConfig->whichCtar] &
~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);
base->CTAR[slaveConfig->whichCtar] = temp | SPI_CTAR_SLAVE_FMSZ(slaveConfig->ctarConfig.bitsPerFrame - 1) |
SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) |
SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha);
DSPI_StartTransfer(base);
}
void DSPI_SlaveGetDefaultConfig(dspi_slave_config_t *slaveConfig)
{
assert(slaveConfig);
slaveConfig->whichCtar = kDSPI_Ctar0;
slaveConfig->ctarConfig.bitsPerFrame = 8;
slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
slaveConfig->enableContinuousSCK = false;
slaveConfig->enableRxFifoOverWrite = false;
slaveConfig->enableModifiedTimingFormat = false;
slaveConfig->samplePoint = kDSPI_SckToSin0Clock;
}
void DSPI_Deinit(SPI_Type *base)
{
DSPI_StopTransfer(base);
DSPI_Enable(base, false);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* disable DSPI clock */
CLOCK_DisableClock(s_dspiClock[DSPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh)
{
uint32_t temp;
temp = base->MCR;
if (activeLowOrHigh == kDSPI_PcsActiveLow)
{
temp |= SPI_MCR_PCSIS(pcs);
}
else
{
temp &= ~SPI_MCR_PCSIS(pcs);
}
base->MCR = temp;
}
uint32_t DSPI_MasterSetBaudRate(SPI_Type *base,
dspi_ctar_selection_t whichCtar,
uint32_t baudRate_Bps,
uint32_t srcClock_Hz)
{
/* for master mode configuration, if slave mode detected, return 0*/
if (!DSPI_IsMaster(base))
{
return 0;
}
uint32_t temp;
uint32_t prescaler, bestPrescaler;
uint32_t scaler, bestScaler;
uint32_t dbr, bestDbr;
uint32_t realBaudrate, bestBaudrate;
uint32_t diff, min_diff;
uint32_t baudrate = baudRate_Bps;
/* find combination of prescaler and scaler resulting in baudrate closest to the requested value */
min_diff = 0xFFFFFFFFU;
bestPrescaler = 0;
bestScaler = 0;
bestDbr = 1;
bestBaudrate = 0; /* required to avoid compilation warning */
/* In all for loops, if min_diff = 0, the exit for loop*/
for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
{
for (scaler = 0; (scaler < 16) && min_diff; scaler++)
{
for (dbr = 1; (dbr < 3) && min_diff; dbr++)
{
realBaudrate = ((srcClock_Hz * dbr) / (s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler])));
/* calculate the baud rate difference based on the conditional statement that states that the calculated
* baud rate must not exceed the desired baud rate.
*/
if (baudrate >= realBaudrate)
{
diff = baudrate - realBaudrate;
if (min_diff > diff)
{
/* a better match found */
min_diff = diff;
bestPrescaler = prescaler;
bestScaler = scaler;
bestBaudrate = realBaudrate;
bestDbr = dbr;
}
}
}
}
}
/* write the best dbr, prescalar, and baud rate scalar to the CTAR */
temp = base->CTAR[whichCtar] & ~(SPI_CTAR_DBR_MASK | SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK);
base->CTAR[whichCtar] = temp | ((bestDbr - 1) << SPI_CTAR_DBR_SHIFT) | (bestPrescaler << SPI_CTAR_PBR_SHIFT) |
(bestScaler << SPI_CTAR_BR_SHIFT);
/* return the actual calculated baud rate */
return bestBaudrate;
}
void DSPI_MasterSetDelayScaler(
SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t prescaler, uint32_t scaler, dspi_delay_type_t whichDelay)
{
/* these settings are only relevant in master mode */
if (DSPI_IsMaster(base))
{
switch (whichDelay)
{
case kDSPI_PcsToSck:
base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PCSSCK_MASK) & (~SPI_CTAR_CSSCK_MASK)) |
SPI_CTAR_PCSSCK(prescaler) | SPI_CTAR_CSSCK(scaler);
break;
case kDSPI_LastSckToPcs:
base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PASC_MASK) & (~SPI_CTAR_ASC_MASK)) |
SPI_CTAR_PASC(prescaler) | SPI_CTAR_ASC(scaler);
break;
case kDSPI_BetweenTransfer:
base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PDT_MASK) & (~SPI_CTAR_DT_MASK)) |
SPI_CTAR_PDT(prescaler) | SPI_CTAR_DT(scaler);
break;
default:
break;
}
}
}
uint32_t DSPI_MasterSetDelayTimes(SPI_Type *base,
dspi_ctar_selection_t whichCtar,
dspi_delay_type_t whichDelay,
uint32_t srcClock_Hz,
uint32_t delayTimeInNanoSec)
{
/* for master mode configuration, if slave mode detected, return 0 */
if (!DSPI_IsMaster(base))
{
return 0;
}
uint32_t prescaler, bestPrescaler;
uint32_t scaler, bestScaler;
uint32_t realDelay, bestDelay;
uint32_t diff, min_diff;
uint32_t initialDelayNanoSec;
/* find combination of prescaler and scaler resulting in the delay closest to the
* requested value
*/
min_diff = 0xFFFFFFFFU;
/* Initialize prescaler and scaler to their max values to generate the max delay */
bestPrescaler = 0x3;
bestScaler = 0xF;
bestDelay = (((1000000000U * 4) / srcClock_Hz) * s_delayPrescaler[bestPrescaler] * s_delayScaler[bestScaler]) / 4;
/* First calculate the initial, default delay */
initialDelayNanoSec = 1000000000U / srcClock_Hz * 2;
/* If the initial, default delay is already greater than the desired delay, then
* set the delays to their initial value (0) and return the delay. In other words,
* there is no way to decrease the delay value further.
*/
if (initialDelayNanoSec >= delayTimeInNanoSec)
{
DSPI_MasterSetDelayScaler(base, whichCtar, 0, 0, whichDelay);
return initialDelayNanoSec;
}
/* In all for loops, if min_diff = 0, the exit for loop */
for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
{
for (scaler = 0; (scaler < 16) && min_diff; scaler++)
{
realDelay = ((4000000000U / srcClock_Hz) * s_delayPrescaler[prescaler] * s_delayScaler[scaler]) / 4;
/* calculate the delay difference based on the conditional statement
* that states that the calculated delay must not be less then the desired delay
*/
if (realDelay >= delayTimeInNanoSec)
{
diff = realDelay - delayTimeInNanoSec;
if (min_diff > diff)
{
/* a better match found */
min_diff = diff;
bestPrescaler = prescaler;
bestScaler = scaler;
bestDelay = realDelay;
}
}
}
}
/* write the best dbr, prescalar, and baud rate scalar to the CTAR */
DSPI_MasterSetDelayScaler(base, whichCtar, bestPrescaler, bestScaler, whichDelay);
/* return the actual calculated baud rate */
return bestDelay;
}
void DSPI_GetDefaultDataCommandConfig(dspi_command_data_config_t *command)
{
assert(command);
command->isPcsContinuous = false;
command->whichCtar = kDSPI_Ctar0;
command->whichPcs = kDSPI_Pcs0;
command->isEndOfQueue = false;
command->clearTransferCount = false;
}
void DSPI_MasterWriteDataBlocking(SPI_Type *base, dspi_command_data_config_t *command, uint16_t data)
{
assert(command);
/* First, clear Transmit Complete Flag (TCF) */
DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
{
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
}
base->PUSHR = SPI_PUSHR_CONT(command->isPcsContinuous) | SPI_PUSHR_CTAS(command->whichCtar) |
SPI_PUSHR_PCS(command->whichPcs) | SPI_PUSHR_EOQ(command->isEndOfQueue) |
SPI_PUSHR_CTCNT(command->clearTransferCount) | SPI_PUSHR_TXDATA(data);
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
/* Wait till TCF sets */
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
{
}
}
void DSPI_MasterWriteCommandDataBlocking(SPI_Type *base, uint32_t data)
{
/* First, clear Transmit Complete Flag (TCF) */
DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
{
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
}
base->PUSHR = data;
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
/* Wait till TCF sets */
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
{
}
}
void DSPI_SlaveWriteDataBlocking(SPI_Type *base, uint32_t data)
{
/* First, clear Transmit Complete Flag (TCF) */
DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
{
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
}
base->PUSHR_SLAVE = data;
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
/* Wait till TCF sets */
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
{
}
}
void DSPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
{
if (mask & SPI_RSER_TFFF_RE_MASK)
{
base->RSER &= ~SPI_RSER_TFFF_DIRS_MASK;
}
if (mask & SPI_RSER_RFDF_RE_MASK)
{
base->RSER &= ~SPI_RSER_RFDF_DIRS_MASK;
}
base->RSER |= mask;
}
/*Transactional APIs -- Master*/
void DSPI_MasterTransferCreateHandle(SPI_Type *base,
dspi_master_handle_t *handle,
dspi_master_transfer_callback_t callback,
void *userData)
{
assert(handle);
/* Zero the handle. */
memset(handle, 0, sizeof(*handle));
g_dspiHandle[DSPI_GetInstance(base)] = handle;
handle->callback = callback;
handle->userData = userData;
}
status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer)
{
assert(transfer);
uint16_t wordToSend = 0;
uint16_t wordReceived = 0;
uint8_t dummyData = DSPI_DUMMY_DATA;
uint8_t bitsPerFrame;
uint32_t command;
uint32_t lastCommand;
uint8_t *txData;
uint8_t *rxData;
uint32_t remainingSendByteCount;
uint32_t remainingReceiveByteCount;
uint32_t fifoSize;
dspi_command_data_config_t commandStruct;
/* If the transfer count is zero, then return immediately.*/
if (transfer->dataSize == 0)
{
return kStatus_InvalidArgument;
}
DSPI_StopTransfer(base);
DSPI_DisableInterrupts(base, kDSPI_AllInterruptEnable);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
/*Calculate the command and lastCommand*/
commandStruct.whichPcs =
(dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
commandStruct.isEndOfQueue = false;
commandStruct.clearTransferCount = false;
commandStruct.whichCtar =
(dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);
command = DSPI_MasterGetFormattedCommand(&(commandStruct));
commandStruct.isEndOfQueue = true;
commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
/*Calculate the bitsPerFrame*/
bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;
txData = transfer->txData;
rxData = transfer->rxData;
remainingSendByteCount = transfer->dataSize;
remainingReceiveByteCount = transfer->dataSize;
if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
{
fifoSize = 1;
}
else
{
fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
}
DSPI_StartTransfer(base);
if (bitsPerFrame <= 8)
{
while (remainingSendByteCount > 0)
{
if (remainingSendByteCount == 1)
{
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
{
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
}
if (txData != NULL)
{
base->PUSHR = (*txData) | (lastCommand);
txData++;
}
else
{
base->PUSHR = (lastCommand) | (dummyData);
}
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
remainingSendByteCount--;
while (remainingReceiveByteCount > 0)
{
if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
{
if (rxData != NULL)
{
/* Read data from POPR*/
*(rxData) = DSPI_ReadData(base);
rxData++;
}
else
{
DSPI_ReadData(base);
}
remainingReceiveByteCount--;
DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
}
}
}
else
{
/*Wait until Tx Fifo is not full*/
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
{
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
}
if (txData != NULL)
{
base->PUSHR = command | (uint16_t)(*txData);
txData++;
}
else
{
base->PUSHR = command | dummyData;
}
remainingSendByteCount--;
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
while ((remainingReceiveByteCount - remainingSendByteCount) >= fifoSize)
{
if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
{
if (rxData != NULL)
{
*(rxData) = DSPI_ReadData(base);
rxData++;
}
else
{
DSPI_ReadData(base);
}
remainingReceiveByteCount--;
DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
}
}
}
}
}
else
{
while (remainingSendByteCount > 0)
{
if (remainingSendByteCount <= 2)
{
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
{
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
}
if (txData != NULL)
{
wordToSend = *(txData);
++txData;
if (remainingSendByteCount > 1)
{
wordToSend |= (unsigned)(*(txData)) << 8U;
++txData;
}
}
else
{
wordToSend = dummyData;
}
base->PUSHR = lastCommand | wordToSend;
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
remainingSendByteCount = 0;
while (remainingReceiveByteCount > 0)
{
if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
{
wordReceived = DSPI_ReadData(base);
if (remainingReceiveByteCount != 1)
{
if (rxData != NULL)
{
*(rxData) = wordReceived;
++rxData;
*(rxData) = wordReceived >> 8;
++rxData;
}
remainingReceiveByteCount -= 2;
}
else
{
if (rxData != NULL)
{
*(rxData) = wordReceived;
++rxData;
}
remainingReceiveByteCount--;
}
DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
}
}
}
else
{
/*Wait until Tx Fifo is not full*/
while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
{
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
}
if (txData != NULL)
{
wordToSend = *(txData);
++txData;
wordToSend |= (unsigned)(*(txData)) << 8U;
++txData;
}
else
{
wordToSend = dummyData;
}
base->PUSHR = command | wordToSend;
remainingSendByteCount -= 2;
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
while (((remainingReceiveByteCount - remainingSendByteCount) / 2) >= fifoSize)
{
if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
{
wordReceived = DSPI_ReadData(base);
if (rxData != NULL)
{
*rxData = wordReceived;
++rxData;
*rxData = wordReceived >> 8;
++rxData;
}
remainingReceiveByteCount -= 2;
DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
}
}
}
}
}
return kStatus_Success;
}
static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
{
assert(handle);
assert(transfer);
dspi_command_data_config_t commandStruct;
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
commandStruct.whichPcs =
(dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
commandStruct.isEndOfQueue = false;
commandStruct.clearTransferCount = false;
commandStruct.whichCtar =
(dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);
handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
commandStruct.isEndOfQueue = true;
commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;
if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
{
handle->fifoSize = 1;
}
else
{
handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
}
handle->txData = transfer->txData;
handle->rxData = transfer->rxData;
handle->remainingSendByteCount = transfer->dataSize;
handle->remainingReceiveByteCount = transfer->dataSize;
handle->totalByteCount = transfer->dataSize;
}
status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
{
assert(handle);
assert(transfer);
/* If the transfer count is zero, then return immediately.*/
if (transfer->dataSize == 0)
{
return kStatus_InvalidArgument;
}
/* Check that we're not busy.*/
if (handle->state == kDSPI_Busy)
{
return kStatus_DSPI_Busy;
}
handle->state = kDSPI_Busy;
DSPI_MasterTransferPrepare(base, handle, transfer);
DSPI_StartTransfer(base);
/* Enable the NVIC for DSPI peripheral. */
EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
DSPI_MasterTransferFillUpTxFifo(base, handle);
/* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt
* Since SPI is a synchronous interface, we only need to enable the RX interrupt.
* The IRQ handler will get the status of RX and TX interrupt flags.
*/
s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ;
DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);
return kStatus_Success;
}
status_t DSPI_MasterTransferGetCount(SPI_Type *base, dspi_master_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state != kDSPI_Busy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
*count = handle->totalByteCount - handle->remainingReceiveByteCount;
return kStatus_Success;
}
static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle)
{
assert(handle);
/* Disable interrupt requests*/
DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable);
status_t status = 0;
if (handle->state == kDSPI_Error)
{
status = kStatus_DSPI_Error;
}
else
{
status = kStatus_Success;
}
handle->state = kDSPI_Idle;
if (handle->callback)
{
handle->callback(base, handle, status, handle->userData);
}
}
static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle)
{
assert(handle);
uint16_t wordToSend = 0;
uint8_t dummyData = DSPI_DUMMY_DATA;
/* If bits/frame is greater than one byte */
if (handle->bitsPerFrame > 8)
{
/* Fill the fifo until it is full or until the send word count is 0 or until the difference
* between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
* The reason for checking the difference is to ensure we only send as much as the
* RX FIFO can receive.
* For this case where bitsPerFrame > 8, each entry in the FIFO contains 2 bytes of the
* send data, hence the difference between the remainingReceiveByteCount and
* remainingSendByteCount must be divided by 2 to convert this difference into a
* 16-bit (2 byte) value.
*/
while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) &&
((handle->remainingReceiveByteCount - handle->remainingSendByteCount) / 2 < handle->fifoSize))
{
if (handle->remainingSendByteCount <= 2)
{
if (handle->txData)
{
if (handle->remainingSendByteCount == 1)
{
wordToSend = *(handle->txData);
}
else
{
wordToSend = *(handle->txData);
++handle->txData; /* increment to next data byte */
wordToSend |= (unsigned)(*(handle->txData)) << 8U;
}
}
else
{
wordToSend = dummyData;
}
handle->remainingSendByteCount = 0;
base->PUSHR = handle->lastCommand | wordToSend;
}
/* For all words except the last word */
else
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData; /* increment to next data byte */
wordToSend |= (unsigned)(*(handle->txData)) << 8U;
++handle->txData; /* increment to next data byte */
}
else
{
wordToSend = dummyData;
}
handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */
base->PUSHR = handle->command | wordToSend;
}
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
/* exit loop if send count is zero, else update local variables for next loop */
if (handle->remainingSendByteCount == 0)
{
break;
}
} /* End of TX FIFO fill while loop */
}
/* Optimized for bits/frame less than or equal to one byte. */
else
{
/* Fill the fifo until it is full or until the send word count is 0 or until the difference
* between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
* The reason for checking the difference is to ensure we only send as much as the
* RX FIFO can receive.
*/
while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) &&
((handle->remainingReceiveByteCount - handle->remainingSendByteCount) < handle->fifoSize))
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData;
}
else
{
wordToSend = dummyData;
}
if (handle->remainingSendByteCount == 1)
{
base->PUSHR = handle->lastCommand | wordToSend;
}
else
{
base->PUSHR = handle->command | wordToSend;
}
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
--handle->remainingSendByteCount;
/* exit loop if send count is zero, else update local variables for next loop */
if (handle->remainingSendByteCount == 0)
{
break;
}
}
}
}
void DSPI_MasterTransferAbort(SPI_Type *base, dspi_master_handle_t *handle)
{
assert(handle);
DSPI_StopTransfer(base);
/* Disable interrupt requests*/
DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable);
handle->state = kDSPI_Idle;
}
void DSPI_MasterTransferHandleIRQ(SPI_Type *base, dspi_master_handle_t *handle)
{
assert(handle);
/* RECEIVE IRQ handler: Check read buffer only if there are remaining bytes to read. */
if (handle->remainingReceiveByteCount)
{
/* Check read buffer.*/
uint16_t wordReceived; /* Maximum supported data bit length in master mode is 16-bits */
/* If bits/frame is greater than one byte */
if (handle->bitsPerFrame > 8)
{
while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
{
wordReceived = DSPI_ReadData(base);
/* clear the rx fifo drain request, needed for non-DMA applications as this flag
* will remain set even if the rx fifo is empty. By manually clearing this flag, it
* either remain clear if no more data is in the fifo, or it will set if there is
* more data in the fifo.
*/
DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
/* Store read bytes into rx buffer only if a buffer pointer was provided */
if (handle->rxData)
{
/* For the last word received, if there is an extra byte due to the odd transfer
* byte count, only save the the last byte and discard the upper byte
*/
if (handle->remainingReceiveByteCount == 1)
{
*handle->rxData = wordReceived; /* Write first data byte */
--handle->remainingReceiveByteCount;
}
else
{
*handle->rxData = wordReceived; /* Write first data byte */
++handle->rxData; /* increment to next data byte */
*handle->rxData = wordReceived >> 8; /* Write second data byte */
++handle->rxData; /* increment to next data byte */
handle->remainingReceiveByteCount -= 2;
}
}
else
{
if (handle->remainingReceiveByteCount == 1)
{
--handle->remainingReceiveByteCount;
}
else
{
handle->remainingReceiveByteCount -= 2;
}
}
if (handle->remainingReceiveByteCount == 0)
{
break;
}
} /* End of RX FIFO drain while loop */
}
/* Optimized for bits/frame less than or equal to one byte. */
else
{
while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
{
wordReceived = DSPI_ReadData(base);
/* clear the rx fifo drain request, needed for non-DMA applications as this flag
* will remain set even if the rx fifo is empty. By manually clearing this flag, it
* either remain clear if no more data is in the fifo, or it will set if there is
* more data in the fifo.
*/
DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
/* Store read bytes into rx buffer only if a buffer pointer was provided */
if (handle->rxData)
{
*handle->rxData = wordReceived;
++handle->rxData;
}
--handle->remainingReceiveByteCount;
if (handle->remainingReceiveByteCount == 0)
{
break;
}
} /* End of RX FIFO drain while loop */
}
}
/* Check write buffer. We always have to send a word in order to keep the transfer
* moving. So if the caller didn't provide a send buffer, we just send a zero.
*/
if (handle->remainingSendByteCount)
{
DSPI_MasterTransferFillUpTxFifo(base, handle);
}
/* Check if we're done with this transfer.*/
if ((handle->remainingSendByteCount == 0) && (handle->remainingReceiveByteCount == 0))
{
/* Complete the transfer and disable the interrupts */
DSPI_MasterTransferComplete(base, handle);
}
}
/*Transactional APIs -- Slave*/
void DSPI_SlaveTransferCreateHandle(SPI_Type *base,
dspi_slave_handle_t *handle,
dspi_slave_transfer_callback_t callback,
void *userData)
{
assert(handle);
/* Zero the handle. */
memset(handle, 0, sizeof(*handle));
g_dspiHandle[DSPI_GetInstance(base)] = handle;
handle->callback = callback;
handle->userData = userData;
}
status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *handle, dspi_transfer_t *transfer)
{
assert(handle);
assert(transfer);
/* If receive length is zero */
if (transfer->dataSize == 0)
{
return kStatus_InvalidArgument;
}
/* If both send buffer and receive buffer is null */
if ((!(transfer->txData)) && (!(transfer->rxData)))
{
return kStatus_InvalidArgument;
}
/* Check that we're not busy.*/
if (handle->state == kDSPI_Busy)
{
return kStatus_DSPI_Busy;
}
handle->state = kDSPI_Busy;
/* Enable the NVIC for DSPI peripheral. */
EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
/* Store transfer information */
handle->txData = transfer->txData;
handle->rxData = transfer->rxData;
handle->remainingSendByteCount = transfer->dataSize;
handle->remainingReceiveByteCount = transfer->dataSize;
handle->totalByteCount = transfer->dataSize;
handle->errorCount = 0;
uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT;
handle->bitsPerFrame =
(((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1;
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
DSPI_StartTransfer(base);
/* Prepare data to transmit */
DSPI_SlaveTransferFillUpTxFifo(base, handle);
s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ;
/* Enable RX FIFO drain request, the slave only use this interrupt */
DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);
if (handle->rxData)
{
/* RX FIFO overflow request enable */
DSPI_EnableInterrupts(base, kDSPI_RxFifoOverflowInterruptEnable);
}
if (handle->txData)
{
/* TX FIFO underflow request enable */
DSPI_EnableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable);
}
return kStatus_Success;
}
status_t DSPI_SlaveTransferGetCount(SPI_Type *base, dspi_slave_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state != kDSPI_Busy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
*count = handle->totalByteCount - handle->remainingReceiveByteCount;
return kStatus_Success;
}
static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle)
{
assert(handle);
uint16_t transmitData = 0;
uint8_t dummyPattern = DSPI_DUMMY_DATA;
/* Service the transmitter, if transmit buffer provided, transmit the data,
* else transmit dummy pattern
*/
while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
{
/* Transmit data */
if (handle->remainingSendByteCount > 0)
{
/* Have data to transmit, update the transmit data and push to FIFO */
if (handle->bitsPerFrame <= 8)
{
/* bits/frame is 1 byte */
if (handle->txData)
{
/* Update transmit data and transmit pointer */
transmitData = *handle->txData;
handle->txData++;
}
else
{
transmitData = dummyPattern;
}
/* Decrease remaining dataSize */
--handle->remainingSendByteCount;
}
/* bits/frame is 2 bytes */
else
{
/* With multibytes per frame transmission, the transmit frame contains data from
* transmit buffer until sent dataSize matches user request. Other bytes will set to
* dummy pattern value.
*/
if (handle->txData)
{
/* Update first byte of transmit data and transmit pointer */
transmitData = *handle->txData;
handle->txData++;
if (handle->remainingSendByteCount == 1)
{
/* Decrease remaining dataSize */
--handle->remainingSendByteCount;
/* Update second byte of transmit data to second byte of dummy pattern */
transmitData = transmitData | (uint16_t)(((uint16_t)dummyPattern) << 8);
}
else
{
/* Update second byte of transmit data and transmit pointer */
transmitData = transmitData | (uint16_t)((uint16_t)(*handle->txData) << 8);
handle->txData++;
handle->remainingSendByteCount -= 2;
}
}
else
{
if (handle->remainingSendByteCount == 1)
{
--handle->remainingSendByteCount;
}
else
{
handle->remainingSendByteCount -= 2;
}
transmitData = (uint16_t)((uint16_t)(dummyPattern) << 8) | dummyPattern;
}
}
}
else
{
break;
}
/* Write the data to the DSPI data register */
base->PUSHR_SLAVE = transmitData;
/* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
}
}
static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle)
{
assert(handle);
/* Disable interrupt requests */
DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable |
kDSPI_RxFifoOverflowInterruptEnable | kDSPI_RxFifoDrainRequestInterruptEnable);
/* The transfer is complete. */
handle->txData = NULL;
handle->rxData = NULL;
handle->remainingReceiveByteCount = 0;
handle->remainingSendByteCount = 0;
status_t status = 0;
if (handle->state == kDSPI_Error)
{
status = kStatus_DSPI_Error;
}
else
{
status = kStatus_Success;
}
handle->state = kDSPI_Idle;
if (handle->callback)
{
handle->callback(base, handle, status, handle->userData);
}
}
void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle)
{
assert(handle);
DSPI_StopTransfer(base);
/* Disable interrupt requests */
DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable |
kDSPI_RxFifoOverflowInterruptEnable | kDSPI_RxFifoDrainRequestInterruptEnable);
handle->state = kDSPI_Idle;
handle->remainingSendByteCount = 0;
handle->remainingReceiveByteCount = 0;
}
void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle)
{
assert(handle);
uint8_t dummyPattern = DSPI_DUMMY_DATA;
uint32_t dataReceived;
uint32_t dataSend = 0;
/* Because SPI protocol is synchronous, the number of bytes that that slave received from the
* master is the actual number of bytes that the slave transmitted to the master. So we only
* monitor the received dataSize to know when the transfer is complete.
*/
if (handle->remainingReceiveByteCount > 0)
{
while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
{
/* Have received data in the buffer. */
dataReceived = base->POPR;
/*Clear the rx fifo drain request, needed for non-DMA applications as this flag
* will remain set even if the rx fifo is empty. By manually clearing this flag, it
* either remain clear if no more data is in the fifo, or it will set if there is
* more data in the fifo.
*/
DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
/* If bits/frame is one byte */
if (handle->bitsPerFrame <= 8)
{
if (handle->rxData)
{
/* Receive buffer is not null, store data into it */
*handle->rxData = dataReceived;
++handle->rxData;
}
/* Descrease remaining receive byte count */
--handle->remainingReceiveByteCount;
if (handle->remainingSendByteCount > 0)
{
if (handle->txData)
{
dataSend = *handle->txData;
++handle->txData;
}
else
{
dataSend = dummyPattern;
}
--handle->remainingSendByteCount;
/* Write the data to the DSPI data register */
base->PUSHR_SLAVE = dataSend;
}
}
else /* If bits/frame is 2 bytes */
{
/* With multibytes frame receiving, we only receive till the received dataSize
* matches user request. Other bytes will be ignored.
*/
if (handle->rxData)
{
/* Receive buffer is not null, store first byte into it */
*handle->rxData = dataReceived;
++handle->rxData;
if (handle->remainingReceiveByteCount == 1)
{
/* Decrease remaining receive byte count */
--handle->remainingReceiveByteCount;
}
else
{
/* Receive buffer is not null, store second byte into it */
*handle->rxData = dataReceived >> 8;
++handle->rxData;
handle->remainingReceiveByteCount -= 2;
}
}
/* If no handle->rxData*/
else
{
if (handle->remainingReceiveByteCount == 1)
{
/* Decrease remaining receive byte count */
--handle->remainingReceiveByteCount;
}
else
{
handle->remainingReceiveByteCount -= 2;
}
}
if (handle->remainingSendByteCount > 0)
{
if (handle->txData)
{
dataSend = *handle->txData;
++handle->txData;
if (handle->remainingSendByteCount == 1)
{
--handle->remainingSendByteCount;
dataSend |= (uint16_t)((uint16_t)(dummyPattern) << 8);
}
else
{
dataSend |= (uint32_t)(*handle->txData) << 8;
++handle->txData;
handle->remainingSendByteCount -= 2;
}
}
/* If no handle->txData*/
else
{
if (handle->remainingSendByteCount == 1)
{
--handle->remainingSendByteCount;
}
else
{
handle->remainingSendByteCount -= 2;
}
dataSend = (uint16_t)((uint16_t)(dummyPattern) << 8) | dummyPattern;
}
/* Write the data to the DSPI data register */
base->PUSHR_SLAVE = dataSend;
}
}
/* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
if (handle->remainingReceiveByteCount == 0)
{
break;
}
}
}
/* Check if remaining receive byte count matches user request */
if ((handle->remainingReceiveByteCount == 0) || (handle->state == kDSPI_Error))
{
/* Other cases, stop the transfer. */
DSPI_SlaveTransferComplete(base, handle);
return;
}
/* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
if ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoUnderflowFlag) && (base->RSER & SPI_RSER_TFUF_RE_MASK))
{
DSPI_ClearStatusFlags(base, kDSPI_TxFifoUnderflowFlag);
/* Change state to error and clear flag */
if (handle->txData)
{
handle->state = kDSPI_Error;
}
handle->errorCount++;
}
/* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
if ((DSPI_GetStatusFlags(base) & kDSPI_RxFifoOverflowFlag) && (base->RSER & SPI_RSER_RFOF_RE_MASK))
{
DSPI_ClearStatusFlags(base, kDSPI_RxFifoOverflowFlag);
/* Change state to error and clear flag */
if (handle->txData)
{
handle->state = kDSPI_Error;
}
handle->errorCount++;
}
}
static void DSPI_CommonIRQHandler(SPI_Type *base, void *param)
{
if (DSPI_IsMaster(base))
{
s_dspiMasterIsr(base, (dspi_master_handle_t *)param);
}
else
{
s_dspiSlaveIsr(base, (dspi_slave_handle_t *)param);
}
}
#if defined(SPI0)
void SPI0_DriverIRQHandler(void)
{
assert(g_dspiHandle[0]);
DSPI_CommonIRQHandler(SPI0, g_dspiHandle[0]);
}
#endif
#if defined(SPI1)
void SPI1_DriverIRQHandler(void)
{
assert(g_dspiHandle[1]);
DSPI_CommonIRQHandler(SPI1, g_dspiHandle[1]);
}
#endif
#if defined(SPI2)
void SPI2_DriverIRQHandler(void)
{
assert(g_dspiHandle[2]);
DSPI_CommonIRQHandler(SPI2, g_dspiHandle[2]);
}
#endif
#if defined(SPI3)
void SPI3_DriverIRQHandler(void)
{
assert(g_dspiHandle[3]);
DSPI_CommonIRQHandler(SPI3, g_dspiHandle[3]);
}
#endif
#if defined(SPI4)
void SPI4_DriverIRQHandler(void)
{
assert(g_dspiHandle[4]);
DSPI_CommonIRQHandler(SPI4, g_dspiHandle[4]);
}
#endif
#if defined(SPI5)
void SPI5_DriverIRQHandler(void)
{
assert(g_dspiHandle[5]);
DSPI_CommonIRQHandler(SPI5, g_dspiHandle[5]);
}
#endif
#if (FSL_FEATURE_SOC_DSPI_COUNT > 6)
#error "Should write the SPIx_DriverIRQHandler function that instance greater than 5 !"
#endif