4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 12:39:19 +08:00
Meco Man f58d3c5200 rt_device_write/read return data type as rt_ssize_t
rt_ssize_t can give negative error code, which follows the unix style correctly
2023-02-07 21:43:57 -05:00

462 lines
12 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-02-22 airm2m first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#include "drv_usart.h"
#ifdef RT_USING_SERIAL
#define LOG_TAG "drv.usart"
#include <drv_log.h>
#if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
!defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
!defined(BSP_USING_UART7) && !defined(BSP_USING_UART8)
#error "Please define at least one BSP_USING_UARTx"
/* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */
#endif
/* air32 config class */
struct air32_uart_config
{
const char *name;
USART_TypeDef *Instance;
IRQn_Type irq_type;
};
/* air32 uart dirver class */
struct air32_uart
{
USART_InitTypeDef Init;
struct air32_uart_config *config;
struct rt_serial_device serial;
};
#if defined(BSP_USING_UART1)
#ifndef UART1_CONFIG
#define UART1_CONFIG \
{ \
.name = "uart1", \
.Instance = USART1, \
.irq_type = USART1_IRQn, \
}
#endif /* UART1_CONFIG */
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
#ifndef UART2_CONFIG
#define UART2_CONFIG \
{ \
.name = "uart2", \
.Instance = USART2, \
.irq_type = USART2_IRQn, \
}
#endif /* UART2_CONFIG */
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
#ifndef UART3_CONFIG
#define UART3_CONFIG \
{ \
.name = "uart3", \
.Instance = USART3, \
.irq_type = USART3_IRQn, \
}
#endif /* UART3_CONFIG */
#endif /* BSP_USING_UART3 */
enum
{
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
#ifdef BSP_USING_UART6
UART6_INDEX,
#endif
#ifdef BSP_USING_UART7
UART7_INDEX,
#endif
#ifdef BSP_USING_UART8
UART8_INDEX,
#endif
};
static struct air32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART1
UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
UART3_CONFIG,
#endif
#ifdef BSP_USING_UART4
UART4_CONFIG,
#endif
#ifdef BSP_USING_UART5
UART5_CONFIG,
#endif
#ifdef BSP_USING_UART6
UART6_CONFIG,
#endif
#ifdef BSP_USING_UART7
UART7_CONFIG,
#endif
#ifdef BSP_USING_UART8
UART8_CONFIG,
#endif
};
static struct air32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
static rt_err_t air32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct air32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct air32_uart, serial);
air32_usart_clock_and_io_init(uart->config->Instance);
USART_StructInit(&uart->Init);
uart->Init.USART_BaudRate = cfg->baud_rate;
uart->Init.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
uart->Init.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
switch (cfg->flowcontrol)
{
case RT_SERIAL_FLOWCONTROL_NONE:
uart->Init.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
break;
case RT_SERIAL_FLOWCONTROL_CTSRTS:
uart->Init.USART_HardwareFlowControl = USART_HardwareFlowControl_RTS_CTS;
break;
default:
uart->Init.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
break;
}
switch (cfg->data_bits)
{
case DATA_BITS_8:
if (cfg->parity == PARITY_ODD || cfg->parity == PARITY_EVEN)
uart->Init.USART_WordLength = USART_WordLength_9b;
else
uart->Init.USART_WordLength = USART_WordLength_8b;
break;
case DATA_BITS_9:
uart->Init.USART_WordLength = USART_WordLength_9b;
break;
default:
uart->Init.USART_WordLength = USART_WordLength_8b;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_1:
uart->Init.USART_StopBits = USART_StopBits_1;
break;
case STOP_BITS_2:
uart->Init.USART_StopBits = USART_StopBits_2;
break;
default:
uart->Init.USART_StopBits = USART_StopBits_1;
break;
}
switch (cfg->parity)
{
case PARITY_NONE:
uart->Init.USART_Parity = USART_Parity_No;
break;
case PARITY_ODD:
uart->Init.USART_Parity = USART_Parity_Odd;
break;
case PARITY_EVEN:
uart->Init.USART_Parity = USART_Parity_Even;
break;
default:
uart->Init.USART_Parity = USART_Parity_No;
break;
}
USART_Init(uart->config->Instance, &uart->Init);
USART_Cmd(uart->config->Instance, ENABLE);
return RT_EOK;
}
static rt_err_t air32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct air32_uart *uart;
NVIC_InitTypeDef NVIC_InitStruct;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct air32_uart, serial);
NVIC_InitStruct.NVIC_IRQChannel = uart->config->irq_type;
NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1;
switch (cmd)
{
/* disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
/* disable rx irq */
// NVIC_DisableIRQ(uart->config->irq_type);
NVIC_InitStruct.NVIC_IRQChannelCmd = DISABLE;
NVIC_Init(&NVIC_InitStruct);
/* disable interrupt */
USART_ITConfig(uart->config->Instance,USART_IT_RXNE,DISABLE);
break;
/* enable interrupt */
case RT_DEVICE_CTRL_SET_INT:
/* enable rx irq */
// NVIC_EnableIRQ(uart->config->irq_type);
NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStruct);
/* enable interrupt */
USART_ITConfig(uart->config->Instance, USART_IT_RXNE,ENABLE);
break;
}
return RT_EOK;
}
static int air32_putc(struct rt_serial_device *serial, char c)
{
struct air32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct air32_uart, serial);
while (USART_GetFlagStatus(uart->config->Instance, USART_FLAG_TXE) == RESET);
USART_SendData(uart->config->Instance, (uint8_t)c);
return 1;
}
static int air32_getc(struct rt_serial_device *serial)
{
int ch;
struct air32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct air32_uart, serial);
ch = -1;
if (RESET != USART_GetFlagStatus(uart->config->Instance, USART_FLAG_RXNE))
{
ch = USART_ReceiveData(uart->config->Instance) & 0xff;
}
return ch;
}
static rt_ssize_t air32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
{
return 0;
}
/**
* Uart common interrupt process. This need add to uart ISR.
*
* @param serial serial device
*/
static void uart_isr(struct rt_serial_device *serial)
{
struct air32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct air32_uart, serial);
/* UART in mode Receiver -------------------------------------------------*/
if ((USART_GetITStatus(uart->config->Instance, USART_IT_RXNE) != RESET) && (RESET != USART_GetFlagStatus(uart->config->Instance, USART_FLAG_RXNE)))
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
USART_ClearITPendingBit(uart->config->Instance, USART_IT_RXNE);
USART_ClearFlag(uart->config->Instance, USART_FLAG_RXNE);
}
else
{
if (USART_GetFlagStatus(uart->config->Instance, USART_FLAG_CTS) != RESET)
{
USART_ClearFlag(uart->config->Instance, USART_FLAG_CTS);
}
if (USART_GetFlagStatus(uart->config->Instance, USART_FLAG_LBD) != RESET)
{
USART_ClearFlag(uart->config->Instance, USART_FLAG_LBD);
}
if (USART_GetFlagStatus(uart->config->Instance, USART_FLAG_TC) != RESET)
{
USART_ClearFlag(uart->config->Instance, USART_FLAG_TC);
}
}
}
#if defined(BSP_USING_UART1)
void USART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART1_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
void USART2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART2_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
void USART3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART3_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART3*/
#if defined(BSP_USING_UART4)
void UART4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART4_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART4*/
#if defined(BSP_USING_UART5)
void UART5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART5_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART5*/
#if defined(BSP_USING_UART6)
void USART6_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART6_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART6*/
#if defined(BSP_USING_UART7)
void UART7_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART7_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART7*/
#if defined(BSP_USING_UART8)
void UART8_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART8_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART8*/
static const struct rt_uart_ops air32_uart_ops =
{
.configure = air32_configure,
.control = air32_control,
.putc = air32_putc,
.getc = air32_getc,
.dma_transmit = air32_dma_transmit
};
int rt_hw_usart_init(void)
{
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
rt_err_t result = 0;
for (rt_size_t i = 0; i < sizeof(uart_obj) / sizeof(struct air32_uart); i++)
{
/* init UART object */
uart_obj[i].config = &uart_config[i];
uart_obj[i].serial.ops = &air32_uart_ops;
uart_obj[i].serial.config = config;
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
RT_DEVICE_FLAG_RDWR
| RT_DEVICE_FLAG_INT_RX
| RT_DEVICE_FLAG_INT_TX
, RT_NULL);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif /* RT_USING_SERIAL */