4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 12:07:23 +08:00
2017-08-08 11:56:50 +08:00

267 lines
8.3 KiB
C

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_phy.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0xFFFFU
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the ENET instance from peripheral base address.
*
* @param base ENET peripheral base address.
* @return ENET instance.
*/
extern uint32_t ENET_GetInstance(ENET_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to enet clocks for each instance. */
#if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0)
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
#elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_LPC_ENET_COUNT];
#endif
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{
uint32_t reg;
uint32_t idReg = 0;
uint32_t delay = PHY_TIMEOUT_COUNT;
uint32_t instance = ENET_GetInstance(base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Set SMI first. */
CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
#if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0)
ENET_SetSMI(base, srcClock_Hz, false);
#elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
ENET_SetSMI(base);
#endif
/* Initialization after PHY stars to work. */
while ((idReg != PHY_CONTROL_ID1) && (delay != 0))
{
PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
delay --;
}
if (!delay)
{
return kStatus_Fail;
}
delay = PHY_TIMEOUT_COUNT;
/* Reset PHY and wait until completion. */
PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
do
{
PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &reg);
} while (delay-- && reg & PHY_BCTL_RESET_MASK);
if (!delay)
{
return kStatus_Fail;
}
/* Set the ability. */
PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG, (PHY_ALL_CAPABLE_MASK | 0x1U));
/* Start Auto negotiation and wait until auto negotiation completion */
PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
delay = PHY_TIMEOUT_COUNT;
do
{
PHY_Read(base, phyAddr, PHY_SEPCIAL_CONTROL_REG, &reg);
delay --;
} while (delay && ((reg & PHY_SPECIALCTL_AUTONEGDONE_MASK) == 0));
if (!delay)
{
return kStatus_Fail;
}
return kStatus_Success;
}
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
#if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0)
uint32_t counter;
/* Clear the SMI interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI write command. */
ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
/* Wait for SMI complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
#elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
ENET_StartSMIWrite(base, phyAddr, phyReg, data);
while (ENET_IsSMIBusy(base))
;
#endif
return kStatus_Success;
}
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
{
#if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0)
assert(dataPtr);
uint32_t counter;
/* Clear the MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI read command operation. */
ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
/* Wait for MII complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Get data from MII register. */
*dataPtr = ENET_ReadSMIData(base);
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
#elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
ENET_StartSMIRead(base, phyAddr, phyReg);
while (ENET_IsSMIBusy(base))
;
*dataPtr = ENET_ReadSMIData(base);
#endif
return kStatus_Success;
}
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
{
uint32_t reg;
status_t result = kStatus_Success;
/* Read the basic status register. */
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &reg);
if (result == kStatus_Success)
{
if (reg & PHY_BSTATUS_LINKSTATUS_MASK)
{
/* link up. */
*status = true;
}
else
{
*status = false;
}
}
return result;
}
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
{
assert(duplex);
assert(speed);
uint32_t reg;
status_t result = kStatus_Success;
/* Read the control two register. */
result = PHY_Read(base, phyAddr, PHY_SEPCIAL_CONTROL_REG, &reg);
if (result == kStatus_Success)
{
if (reg & PHY_SPECIALCTL_DUPLEX_MASK)
{
/* Full duplex. */
*duplex = kPHY_FullDuplex;
}
else
{
/* Half duplex. */
*duplex = kPHY_HalfDuplex;
}
if (reg & PHY_SPECIALCTL_100SPEED_MASK)
{
/* 100M speed. */
*speed = kPHY_Speed100M;
}
else
{ /* 10M speed. */
*speed = kPHY_Speed10M;
}
}
return result;
}