rt-thread-official/bsp/imxrt/libraries/MIMXRT1020/MIMXRT1021/drivers/fsl_pwm.c

936 lines
35 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_pwm.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.pwm"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the instance from the base address
*
* @param base PWM peripheral base address
*
* @return The PWM module instance
*/
static uint32_t PWM_GetInstance(PWM_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to PWM bases for each instance. */
static PWM_Type *const s_pwmBases[] = PWM_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to PWM clocks for each PWM submodule. */
static const clock_ip_name_t s_pwmClocks[][FSL_FEATURE_PWM_SUBMODULE_COUNT] = PWM_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
/*!
* brief Complement the variable of type uint16_t as needed
*
* This function can complement the variable of type uint16_t as needed.For example,
* need to ask for the opposite of a positive integer.
*
* param value Parameters of type uint16_t
*/
static inline uint16_t PWM_GetComplementU16(uint16_t value)
{
return (~value + 1U);
}
static inline uint16_t dutyCycleToReloadValue(uint8_t dutyCyclePercent)
{
/* Rounding calculations to improve the accuracy of reloadValue */
return ((65535U * dutyCyclePercent) + 50U) / 100U;
}
static uint32_t PWM_GetInstance(PWM_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_pwmBases); instance++)
{
if (s_pwmBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_pwmBases));
return instance;
}
/*!
* brief Ungates the PWM submodule clock and configures the peripheral for basic operation.
*
* note This API should be called at the beginning of the application using the PWM driver.
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param config Pointer to user's PWM config structure.
*
* return kStatus_Success means success; else failed.
*/
status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t *config)
{
assert(config);
uint16_t reg;
/* Source clock for submodule 0 cannot be itself */
if ((config->clockSource == kPWM_Submodule0Clock) && (subModule == kPWM_Module_0))
{
return kStatus_Fail;
}
/* Reload source select clock for submodule 0 cannot be master reload */
if ((config->reloadSelect == kPWM_MasterReload) && (subModule == kPWM_Module_0))
{
return kStatus_Fail;
}
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate the PWM submodule clock*/
CLOCK_EnableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Clear the fault status flags */
base->FSTS |= PWM_FSTS_FFLAG_MASK;
reg = base->SM[subModule].CTRL2;
/* Setup the submodule clock-source, control source of the INIT signal,
* source of the force output signal, operation in debug & wait modes and reload source select
*/
reg &= ~(uint16_t)(PWM_CTRL2_CLK_SEL_MASK | PWM_CTRL2_FORCE_SEL_MASK | PWM_CTRL2_INIT_SEL_MASK |
PWM_CTRL2_INDEP_MASK | PWM_CTRL2_WAITEN_MASK | PWM_CTRL2_DBGEN_MASK | PWM_CTRL2_RELOAD_SEL_MASK);
reg |= (PWM_CTRL2_CLK_SEL(config->clockSource) | PWM_CTRL2_FORCE_SEL(config->forceTrigger) |
PWM_CTRL2_INIT_SEL(config->initializationControl) | PWM_CTRL2_DBGEN(config->enableDebugMode) |
PWM_CTRL2_WAITEN(config->enableWait) | PWM_CTRL2_RELOAD_SEL(config->reloadSelect));
/* Setup PWM A & B to be independent or a complementary-pair */
switch (config->pairOperation)
{
case kPWM_Independent:
reg |= PWM_CTRL2_INDEP_MASK;
break;
case kPWM_ComplementaryPwmA:
base->MCTRL &= ~((uint16_t)1U << (PWM_MCTRL_IPOL_SHIFT + (uint16_t)subModule));
break;
case kPWM_ComplementaryPwmB:
base->MCTRL |= ((uint16_t)1U << (PWM_MCTRL_IPOL_SHIFT + (uint16_t)subModule));
break;
default:
assert(false);
break;
}
base->SM[subModule].CTRL2 = reg;
reg = base->SM[subModule].CTRL;
/* Setup the clock prescale, load mode and frequency */
reg &= ~(uint16_t)(PWM_CTRL_PRSC_MASK | PWM_CTRL_LDFQ_MASK | PWM_CTRL_LDMOD_MASK);
reg |= (PWM_CTRL_PRSC(config->prescale) | PWM_CTRL_LDFQ(config->reloadFrequency));
/* Setup register reload logic */
switch (config->reloadLogic)
{
case kPWM_ReloadImmediate:
reg |= PWM_CTRL_LDMOD_MASK;
break;
case kPWM_ReloadPwmHalfCycle:
reg |= PWM_CTRL_HALF_MASK;
reg &= (uint16_t)(~PWM_CTRL_FULL_MASK);
break;
case kPWM_ReloadPwmFullCycle:
reg &= (uint16_t)(~PWM_CTRL_HALF_MASK);
reg |= PWM_CTRL_FULL_MASK;
break;
case kPWM_ReloadPwmHalfAndFullCycle:
reg |= PWM_CTRL_HALF_MASK;
reg |= PWM_CTRL_FULL_MASK;
break;
default:
assert(false);
break;
}
base->SM[subModule].CTRL = reg;
/* Issue a Force trigger event when configured to trigger locally */
if (config->forceTrigger == kPWM_Force_Local)
{
base->SM[subModule].CTRL2 |= PWM_CTRL2_FORCE(1U);
}
return kStatus_Success;
}
/*!
* brief Gate the PWM submodule clock
*
* param base PWM peripheral base address
* param subModule PWM submodule to deinitialize
*/
void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule)
{
/* Stop the submodule */
base->MCTRL &= ~((uint16_t)1U << (PWM_MCTRL_RUN_SHIFT + (uint16_t)subModule));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Gate the PWM submodule clock*/
CLOCK_DisableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Fill in the PWM config struct with the default settings
*
* The default values are:
* code
* config->enableDebugMode = false;
* config->enableWait = false;
* config->reloadSelect = kPWM_LocalReload;
* config->clockSource = kPWM_BusClock;
* config->prescale = kPWM_Prescale_Divide_1;
* config->initializationControl = kPWM_Initialize_LocalSync;
* config->forceTrigger = kPWM_Force_Local;
* config->reloadFrequency = kPWM_LoadEveryOportunity;
* config->reloadLogic = kPWM_ReloadImmediate;
* config->pairOperation = kPWM_Independent;
* endcode
* param config Pointer to user's PWM config structure.
*/
void PWM_GetDefaultConfig(pwm_config_t *config)
{
assert(config);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
/* PWM is paused in debug mode */
config->enableDebugMode = false;
/* PWM is paused in wait mode */
config->enableWait = false;
/* PWM module uses the local reload signal to reload registers */
config->reloadSelect = kPWM_LocalReload;
/* Use the IP Bus clock as source clock for the PWM submodule */
config->clockSource = kPWM_BusClock;
/* Clock source prescale is set to divide by 1*/
config->prescale = kPWM_Prescale_Divide_1;
/* Local sync causes initialization */
config->initializationControl = kPWM_Initialize_LocalSync;
/* The local force signal, CTRL2[FORCE], from the submodule is used to force updates */
config->forceTrigger = kPWM_Force_Local;
/* PWM reload frequency, reload opportunity is PWM half cycle or full cycle.
* This field is not used in Immediate reload mode
*/
config->reloadFrequency = kPWM_LoadEveryOportunity;
/* Buffered-registers get loaded with new values as soon as LDOK bit is set */
config->reloadLogic = kPWM_ReloadImmediate;
/* PWM A & PWM B operate as 2 independent channels */
config->pairOperation = kPWM_Independent;
}
/*!
* brief Sets up the PWM signals for a PWM submodule.
*
* The function initializes the submodule according to the parameters passed in by the user. The function
* also sets up the value compare registers to match the PWM signal requirements.
* If the dead time insertion logic is enabled, the pulse period is reduced by the
* dead time period specified by the user.
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param chnlParams Array of PWM channel parameters to configure the channel(s)
* param numOfChnls Number of channels to configure, this should be the size of the array passed in.
* Array size should not be more than 2 as each submodule has 2 pins to output PWM
* param mode PWM operation mode, options available in enumeration ::pwm_mode_t
* param pwmFreq_Hz PWM signal frequency in Hz
* param srcClock_Hz PWM main counter clock in Hz.
*
* return Returns kStatusFail if there was error setting up the signal; kStatusSuccess otherwise
*/
status_t PWM_SetupPwm(PWM_Type *base,
pwm_submodule_t subModule,
const pwm_signal_param_t *chnlParams,
uint8_t numOfChnls,
pwm_mode_t mode,
uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz)
{
assert(chnlParams);
assert(pwmFreq_Hz);
assert(numOfChnls);
assert(srcClock_Hz);
uint32_t pwmClock;
uint16_t pulseCnt = 0, pwmHighPulse = 0;
uint16_t modulo = 0;
uint8_t i, polarityShift = 0, outputEnableShift = 0;
if (numOfChnls > 2U)
{
/* Each submodule has 2 signals; PWM A & PWM B */
return kStatus_Fail;
}
/* Divide the clock by the prescale value */
pwmClock = (srcClock_Hz / (1UL << ((base->SM[subModule].CTRL & PWM_CTRL_PRSC_MASK) >> PWM_CTRL_PRSC_SHIFT)));
pulseCnt = (uint16_t)(pwmClock / pwmFreq_Hz);
/* Setup each PWM channel */
for (i = 0; i < numOfChnls; i++)
{
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * chnlParams->dutyCyclePercent) / 100U;
/* Setup the different match registers to generate the PWM signal */
switch (mode)
{
case kPWM_SignedCenterAligned:
/* Setup the PWM period for a signed center aligned signal */
if (i == 0U)
{
modulo = (pulseCnt >> 1U);
/* Indicates the start of the PWM period */
base->SM[subModule].INIT = PWM_GetComplementU16(modulo);
/* Indicates the center value */
base->SM[subModule].VAL0 = 0;
/* Indicates the end of the PWM period */
/* The change during the end to start of the PWM period requires a count time */
base->SM[subModule].VAL1 = modulo - 1U;
}
/* Setup the PWM dutycycle */
if (chnlParams->pwmChannel == kPWM_PwmA)
{
base->SM[subModule].VAL2 = PWM_GetComplementU16(pwmHighPulse / 2U);
base->SM[subModule].VAL3 = (pwmHighPulse / 2U);
}
else
{
base->SM[subModule].VAL4 = PWM_GetComplementU16(pwmHighPulse / 2U);
base->SM[subModule].VAL5 = (pwmHighPulse / 2U);
}
break;
case kPWM_CenterAligned:
/* Setup the PWM period for an unsigned center aligned signal */
/* Indicates the start of the PWM period */
if (i == 0U)
{
base->SM[subModule].INIT = 0;
/* Indicates the center value */
base->SM[subModule].VAL0 = (pulseCnt / 2U);
/* Indicates the end of the PWM period */
/* The change during the end to start of the PWM period requires a count time */
base->SM[subModule].VAL1 = pulseCnt - 1U;
}
/* Setup the PWM dutycycle */
if (chnlParams->pwmChannel == kPWM_PwmA)
{
base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2U);
base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2U);
}
else
{
base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2U);
base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2U);
}
break;
case kPWM_SignedEdgeAligned:
/* Setup the PWM period for a signed edge aligned signal */
if (i == 0U)
{
modulo = (pulseCnt >> 1U);
/* Indicates the start of the PWM period */
base->SM[subModule].INIT = PWM_GetComplementU16(modulo);
/* Indicates the center value */
base->SM[subModule].VAL0 = 0;
/* Indicates the end of the PWM period */
/* The change during the end to start of the PWM period requires a count time */
base->SM[subModule].VAL1 = modulo - 1U;
}
/* Setup the PWM dutycycle */
if (chnlParams->pwmChannel == kPWM_PwmA)
{
base->SM[subModule].VAL2 = PWM_GetComplementU16(modulo);
base->SM[subModule].VAL3 = PWM_GetComplementU16(modulo) + pwmHighPulse;
}
else
{
base->SM[subModule].VAL4 = PWM_GetComplementU16(modulo);
base->SM[subModule].VAL5 = PWM_GetComplementU16(modulo) + pwmHighPulse;
}
break;
case kPWM_EdgeAligned:
/* Setup the PWM period for a unsigned edge aligned signal */
/* Indicates the start of the PWM period */
if (i == 0U)
{
base->SM[subModule].INIT = 0;
/* Indicates the center value */
base->SM[subModule].VAL0 = (pulseCnt / 2U);
/* Indicates the end of the PWM period */
/* The change during the end to start of the PWM period requires a count time */
base->SM[subModule].VAL1 = pulseCnt - 1U;
}
/* Setup the PWM dutycycle */
if (chnlParams->pwmChannel == kPWM_PwmA)
{
base->SM[subModule].VAL2 = 0;
base->SM[subModule].VAL3 = pwmHighPulse;
}
else
{
base->SM[subModule].VAL4 = 0;
base->SM[subModule].VAL5 = pwmHighPulse;
}
break;
default:
assert(false);
break;
}
/* Setup register shift values based on the channel being configured.
* Also setup the deadtime value
*/
if (chnlParams->pwmChannel == kPWM_PwmA)
{
polarityShift = PWM_OCTRL_POLA_SHIFT;
outputEnableShift = PWM_OUTEN_PWMA_EN_SHIFT;
base->SM[subModule].DTCNT0 = PWM_DTCNT0_DTCNT0(chnlParams->deadtimeValue);
}
else
{
polarityShift = PWM_OCTRL_POLB_SHIFT;
outputEnableShift = PWM_OUTEN_PWMB_EN_SHIFT;
base->SM[subModule].DTCNT1 = PWM_DTCNT1_DTCNT1(chnlParams->deadtimeValue);
}
/* Set PWM output fault status */
switch (chnlParams->pwmChannel)
{
case kPWM_PwmA:
base->SM[subModule].OCTRL &= ~((uint16_t)PWM_OCTRL_PWMAFS_MASK);
base->SM[subModule].OCTRL |= (((uint16_t)(chnlParams->faultState) << (uint16_t)PWM_OCTRL_PWMAFS_SHIFT) &
(uint16_t)PWM_OCTRL_PWMAFS_MASK);
break;
case kPWM_PwmB:
base->SM[subModule].OCTRL &= ~((uint16_t)PWM_OCTRL_PWMBFS_MASK);
base->SM[subModule].OCTRL |= (((uint16_t)(chnlParams->faultState) << (uint16_t)PWM_OCTRL_PWMBFS_SHIFT) &
(uint16_t)PWM_OCTRL_PWMBFS_MASK);
break;
case kPWM_PwmX:
base->SM[subModule].OCTRL &= ~((uint16_t)PWM_OCTRL_PWMXFS_MASK);
base->SM[subModule].OCTRL |= (((uint16_t)(chnlParams->faultState) << (uint16_t)PWM_OCTRL_PWMXFS_SHIFT) &
(uint16_t)PWM_OCTRL_PWMXFS_MASK);
break;
default:
assert(false);
break;
}
/* Setup signal active level */
if ((bool)chnlParams->level == kPWM_HighTrue)
{
base->SM[subModule].OCTRL &= ~((uint16_t)1U << (uint16_t)polarityShift);
}
else
{
base->SM[subModule].OCTRL |= ((uint16_t)1U << (uint16_t)polarityShift);
}
/* Enable PWM output */
base->OUTEN |= ((uint16_t)1U << ((uint16_t)outputEnableShift + (uint16_t)subModule));
/* Get the next channel parameters */
chnlParams++;
}
return kStatus_Success;
}
/*!
* brief Updates the PWM signal's dutycycle.
*
* The function updates the PWM dutycyle to the new value that is passed in.
* If the dead time insertion logic is enabled then the pulse period is reduced by the
* dead time period specified by the user.
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param pwmSignal Signal (PWM A or PWM B) to update
* param currPwmMode The current PWM mode set during PWM setup
* param dutyCyclePercent New PWM pulse width, value should be between 0 to 100
* 0=inactive signal(0% duty cycle)...
* 100=active signal (100% duty cycle)
*/
void PWM_UpdatePwmDutycycle(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmSignal,
pwm_mode_t currPwmMode,
uint8_t dutyCyclePercent)
{
assert(dutyCyclePercent <= 100U);
assert((uint16_t)pwmSignal < 2U);
uint16_t reloadValue = dutyCycleToReloadValue(dutyCyclePercent);
PWM_UpdatePwmDutycycleHighAccuracy(base, subModule, pwmSignal, currPwmMode, reloadValue);
}
/*!
* brief Updates the PWM signal's dutycycle with 16-bit accuracy.
*
* The function updates the PWM dutycyle to the new value that is passed in.
* If the dead time insertion logic is enabled then the pulse period is reduced by the
* dead time period specified by the user.
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param pwmSignal Signal (PWM A or PWM B) to update
* param currPwmMode The current PWM mode set during PWM setup
* param dutyCycle New PWM pulse width, value should be between 0 to 65535
* 0=inactive signal(0% duty cycle)...
* 65535=active signal (100% duty cycle)
*/
void PWM_UpdatePwmDutycycleHighAccuracy(
PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmSignal, pwm_mode_t currPwmMode, uint16_t dutyCycle)
{
assert((uint16_t)pwmSignal < 2U);
uint16_t pulseCnt = 0, pwmHighPulse = 0;
uint16_t modulo = 0;
switch (currPwmMode)
{
case kPWM_SignedCenterAligned:
modulo = base->SM[subModule].VAL1 + 1U;
pulseCnt = modulo * 2U;
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * dutyCycle) / 65535U;
/* Setup the PWM dutycycle */
if (pwmSignal == kPWM_PwmA)
{
base->SM[subModule].VAL2 = PWM_GetComplementU16(pwmHighPulse / 2U);
base->SM[subModule].VAL3 = (pwmHighPulse / 2U);
}
else
{
base->SM[subModule].VAL4 = PWM_GetComplementU16(pwmHighPulse / 2U);
base->SM[subModule].VAL5 = (pwmHighPulse / 2U);
}
break;
case kPWM_CenterAligned:
pulseCnt = base->SM[subModule].VAL1 + 1U;
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * dutyCycle) / 65535U;
/* Setup the PWM dutycycle */
if (pwmSignal == kPWM_PwmA)
{
base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2U);
base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2U);
}
else
{
base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2U);
base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2U);
}
break;
case kPWM_SignedEdgeAligned:
modulo = base->SM[subModule].VAL1 + 1U;
pulseCnt = modulo * 2U;
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * dutyCycle) / 65535U;
/* Setup the PWM dutycycle */
if (pwmSignal == kPWM_PwmA)
{
base->SM[subModule].VAL2 = PWM_GetComplementU16(modulo);
base->SM[subModule].VAL3 = PWM_GetComplementU16(modulo) + pwmHighPulse;
}
else
{
base->SM[subModule].VAL4 = PWM_GetComplementU16(modulo);
base->SM[subModule].VAL5 = PWM_GetComplementU16(modulo) + pwmHighPulse;
}
break;
case kPWM_EdgeAligned:
pulseCnt = base->SM[subModule].VAL1 + 1U;
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * dutyCycle) / 65535U;
/* Setup the PWM dutycycle */
if (pwmSignal == kPWM_PwmA)
{
base->SM[subModule].VAL2 = 0;
base->SM[subModule].VAL3 = pwmHighPulse;
}
else
{
base->SM[subModule].VAL4 = 0;
base->SM[subModule].VAL5 = pwmHighPulse;
}
break;
default:
assert(false);
break;
}
}
/*!
* brief Sets up the PWM input capture
*
* Each PWM submodule has 3 pins that can be configured for use as input capture pins. This function
* sets up the capture parameters for each pin and enables the pin for input capture operation.
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param pwmChannel Channel in the submodule to setup
* param inputCaptureParams Parameters passed in to set up the input pin
*/
void PWM_SetupInputCapture(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmChannel,
const pwm_input_capture_param_t *inputCaptureParams)
{
uint16_t reg = 0;
switch (pwmChannel)
{
case kPWM_PwmA:
/* Setup the capture paramters for PWM A pin */
reg = (PWM_CAPTCTRLA_INP_SELA(inputCaptureParams->captureInputSel) |
PWM_CAPTCTRLA_EDGA0(inputCaptureParams->edge0) | PWM_CAPTCTRLA_EDGA1(inputCaptureParams->edge1) |
PWM_CAPTCTRLA_ONESHOTA(inputCaptureParams->enableOneShotCapture) |
PWM_CAPTCTRLA_CFAWM(inputCaptureParams->fifoWatermark));
/* Enable the edge counter if using the output edge counter */
if (inputCaptureParams->captureInputSel)
{
reg |= PWM_CAPTCTRLA_EDGCNTA_EN_MASK;
}
/* Enable input capture operation */
reg |= PWM_CAPTCTRLA_ARMA_MASK;
base->SM[subModule].CAPTCTRLA = reg;
/* Setup the compare value when using the edge counter as source */
base->SM[subModule].CAPTCOMPA = PWM_CAPTCOMPA_EDGCMPA(inputCaptureParams->edgeCompareValue);
/* Setup PWM A pin for input capture */
base->OUTEN &= ~((uint16_t)1U << (PWM_OUTEN_PWMA_EN_SHIFT + (uint16_t)subModule));
break;
case kPWM_PwmB:
/* Setup the capture paramters for PWM B pin */
reg = (PWM_CAPTCTRLB_INP_SELB(inputCaptureParams->captureInputSel) |
PWM_CAPTCTRLB_EDGB0(inputCaptureParams->edge0) | PWM_CAPTCTRLB_EDGB1(inputCaptureParams->edge1) |
PWM_CAPTCTRLB_ONESHOTB(inputCaptureParams->enableOneShotCapture) |
PWM_CAPTCTRLB_CFBWM(inputCaptureParams->fifoWatermark));
/* Enable the edge counter if using the output edge counter */
if (inputCaptureParams->captureInputSel)
{
reg |= PWM_CAPTCTRLB_EDGCNTB_EN_MASK;
}
/* Enable input capture operation */
reg |= PWM_CAPTCTRLB_ARMB_MASK;
base->SM[subModule].CAPTCTRLB = reg;
/* Setup the compare value when using the edge counter as source */
base->SM[subModule].CAPTCOMPB = PWM_CAPTCOMPB_EDGCMPB(inputCaptureParams->edgeCompareValue);
/* Setup PWM B pin for input capture */
base->OUTEN &= ~((uint16_t)1U << (PWM_OUTEN_PWMB_EN_SHIFT + (uint16_t)subModule));
break;
case kPWM_PwmX:
reg = (PWM_CAPTCTRLX_INP_SELX(inputCaptureParams->captureInputSel) |
PWM_CAPTCTRLX_EDGX0(inputCaptureParams->edge0) | PWM_CAPTCTRLX_EDGX1(inputCaptureParams->edge1) |
PWM_CAPTCTRLX_ONESHOTX(inputCaptureParams->enableOneShotCapture) |
PWM_CAPTCTRLX_CFXWM(inputCaptureParams->fifoWatermark));
/* Enable the edge counter if using the output edge counter */
if (inputCaptureParams->captureInputSel)
{
reg |= PWM_CAPTCTRLX_EDGCNTX_EN_MASK;
}
/* Enable input capture operation */
reg |= PWM_CAPTCTRLX_ARMX_MASK;
base->SM[subModule].CAPTCTRLX = reg;
/* Setup the compare value when using the edge counter as source */
base->SM[subModule].CAPTCOMPX = PWM_CAPTCOMPX_EDGCMPX(inputCaptureParams->edgeCompareValue);
/* Setup PWM X pin for input capture */
base->OUTEN &= ~((uint16_t)1U << (PWM_OUTEN_PWMX_EN_SHIFT + (uint16_t)subModule));
break;
default:
assert(false);
break;
}
}
/*!
* @brief Sets up the PWM fault input filter.
*
* @param base PWM peripheral base address
* @param faultInputFilterParams Parameters passed in to set up the fault input filter.
*/
void PWM_SetupFaultInputFilter(PWM_Type *base, const pwm_fault_input_filter_param_t *faultInputFilterParams)
{
assert(NULL != faultInputFilterParams);
/* When changing values for fault period from a non-zero value, first write a value of 0 to clear the filter. */
if (0U != (base->FFILT & PWM_FFILT_FILT_PER_MASK))
{
base->FFILT &= ~(uint16_t)(PWM_FFILT_FILT_PER_MASK);
}
base->FFILT = (uint16_t)(PWM_FFILT_FILT_PER(faultInputFilterParams->faultFilterPeriod) |
PWM_FFILT_FILT_CNT(faultInputFilterParams->faultFilterCount) |
PWM_FFILT_GSTR(faultInputFilterParams->faultGlitchStretch ? 1U : 0U));
}
/*!
* brief Sets up the PWM fault protection.
*
* PWM has 4 fault inputs.
*
* param base PWM peripheral base address
* param faultNum PWM fault to configure.
* param faultParams Pointer to the PWM fault config structure
*/
void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const pwm_fault_param_t *faultParams)
{
assert(faultParams);
uint16_t reg;
reg = base->FCTRL;
/* Set the faults level-settting */
if (faultParams->faultLevel)
{
reg |= ((uint16_t)1U << (PWM_FCTRL_FLVL_SHIFT + (uint16_t)faultNum));
}
else
{
reg &= ~((uint16_t)1U << (PWM_FCTRL_FLVL_SHIFT + (uint16_t)faultNum));
}
/* Set the fault clearing mode */
if ((uint16_t)faultParams->faultClearingMode != 0U)
{
/* Use manual fault clearing */
reg &= ~((uint16_t)1U << (PWM_FCTRL_FAUTO_SHIFT + (uint16_t)faultNum));
if (faultParams->faultClearingMode == kPWM_ManualSafety)
{
/* Use manual fault clearing with safety mode enabled */
reg |= ((uint16_t)1U << (PWM_FCTRL_FSAFE_SHIFT + (uint16_t)faultNum));
}
else
{
/* Use manual fault clearing with safety mode disabled */
reg &= ~((uint16_t)1U << (PWM_FCTRL_FSAFE_SHIFT + (uint16_t)faultNum));
}
}
else
{
/* Use automatic fault clearing */
reg |= ((uint16_t)1U << (PWM_FCTRL_FAUTO_SHIFT + (uint16_t)faultNum));
}
base->FCTRL = reg;
/* Set the combinational path option */
if (faultParams->enableCombinationalPath)
{
/* Combinational path from the fault input to the PWM output is available */
base->FCTRL2 &= ~((uint16_t)1U << (uint16_t)faultNum);
}
else
{
/* No combinational path available, only fault filter & latch signal can disable PWM output */
base->FCTRL2 |= ((uint16_t)1U << (uint16_t)faultNum);
}
/* Initially clear both recovery modes */
reg = base->FSTS;
reg &= ~(((uint16_t)1U << (PWM_FSTS_FFULL_SHIFT + (uint16_t)faultNum)) |
((uint16_t)1U << (PWM_FSTS_FHALF_SHIFT + (uint16_t)faultNum)));
/* Setup fault recovery */
switch (faultParams->recoverMode)
{
case kPWM_NoRecovery:
break;
case kPWM_RecoverHalfCycle:
reg |= ((uint16_t)1U << (PWM_FSTS_FHALF_SHIFT + (uint16_t)faultNum));
break;
case kPWM_RecoverFullCycle:
reg |= ((uint16_t)1U << (PWM_FSTS_FFULL_SHIFT + (uint16_t)faultNum));
break;
case kPWM_RecoverHalfAndFullCycle:
reg |= ((uint16_t)1U << (PWM_FSTS_FHALF_SHIFT + (uint16_t)faultNum));
reg |= ((uint16_t)1U << (PWM_FSTS_FFULL_SHIFT + (uint16_t)faultNum));
break;
default:
assert(false);
break;
}
base->FSTS = reg;
}
/*!
* brief Fill in the PWM fault config struct with the default settings
*
* The default values are:
* code
* config->faultClearingMode = kPWM_Automatic;
* config->faultLevel = false;
* config->enableCombinationalPath = true;
* config->recoverMode = kPWM_NoRecovery;
* endcode
* param config Pointer to user's PWM fault config structure.
*/
void PWM_FaultDefaultConfig(pwm_fault_param_t *config)
{
assert(config);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
/* PWM uses automatic fault clear mode */
config->faultClearingMode = kPWM_Automatic;
/* PWM fault level is set to logic 0 */
config->faultLevel = false;
/* Combinational Path from fault input is enabled */
config->enableCombinationalPath = true;
/* PWM output will stay inactive when recovering from a fault */
config->recoverMode = kPWM_NoRecovery;
}
/*!
* brief Selects the signal to output on a PWM pin when a FORCE_OUT signal is asserted.
*
* The user specifies which channel to configure by supplying the submodule number and whether
* to modify PWM A or PWM B within that submodule.
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param pwmChannel Channel to configure
* param mode Signal to output when a FORCE_OUT is triggered
*/
void PWM_SetupForceSignal(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_force_signal_t mode)
{
uint16_t shift;
uint16_t reg;
/* DTSRCSEL register has 4 bits per submodule; 2 bits for PWM A and 2 bits for PWM B */
shift = ((uint16_t)subModule * 4U) + ((uint16_t)pwmChannel * 2U);
/* Setup the signal to be passed upon occurrence of a FORCE_OUT signal */
reg = base->DTSRCSEL;
reg &= ~((uint16_t)0x3U << shift);
reg |= (uint16_t)((uint16_t)mode << shift);
base->DTSRCSEL = reg;
}
/*!
* brief Enables the selected PWM interrupts
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param mask The interrupts to enable. This is a logical OR of members of the
* enumeration ::pwm_interrupt_enable_t
*/
void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
{
/* Upper 16 bits are for related to the submodule */
base->SM[subModule].INTEN |= ((uint16_t)mask & 0xFFFFU);
/* Fault related interrupts */
base->FCTRL |= ((uint16_t)(mask >> 16U) & PWM_FCTRL_FIE_MASK);
}
/*!
* brief Disables the selected PWM interrupts
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param mask The interrupts to enable. This is a logical OR of members of the
* enumeration ::pwm_interrupt_enable_t
*/
void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
{
base->SM[subModule].INTEN &= ~((uint16_t)mask & 0xFFFFU);
base->FCTRL &= ~((uint16_t)(mask >> 16U) & PWM_FCTRL_FIE_MASK);
}
/*!
* brief Gets the enabled PWM interrupts
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
*
* return The enabled interrupts. This is the logical OR of members of the
* enumeration ::pwm_interrupt_enable_t
*/
uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t subModule)
{
uint32_t enabledInterrupts;
enabledInterrupts = base->SM[subModule].INTEN;
enabledInterrupts |= (((uint32_t)base->FCTRL & PWM_FCTRL_FIE_MASK) << 16UL);
return enabledInterrupts;
}
/*!
* brief Gets the PWM status flags
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
*
* return The status flags. This is the logical OR of members of the
* enumeration ::pwm_status_flags_t
*/
uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule)
{
uint32_t statusFlags;
statusFlags = base->SM[subModule].STS;
statusFlags |= (((uint32_t)base->FSTS & PWM_FSTS_FFLAG_MASK) << 16UL);
return statusFlags;
}
/*!
* brief Clears the PWM status flags
*
* param base PWM peripheral base address
* param subModule PWM submodule to configure
* param mask The status flags to clear. This is a logical OR of members of the
* enumeration ::pwm_status_flags_t
*/
void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
{
uint16_t reg;
base->SM[subModule].STS = ((uint16_t)mask & 0xFFFFU);
reg = base->FSTS;
/* Clear the fault flags and set only the ones we wish to clear as the fault flags are cleared
* by writing a login one
*/
reg &= ~(uint16_t)(PWM_FSTS_FFLAG_MASK);
reg |= (uint16_t)((mask >> 16U) & PWM_FSTS_FFLAG_MASK);
base->FSTS = reg;
}