4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-27 03:57:23 +08:00

380 lines
10 KiB
C

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-02-26 Yilin Sun Initial version.
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "fsl_ctimer.h"
#define MCX_PWM_MATCH_COUNT 4
#ifdef RT_USING_PWM
typedef struct
{
struct rt_device_pwm pwm_device;
CTIMER_Type *ct_instance;
uint32_t counter_period_ps;
} mcx_pwm_obj_t;
static CTIMER_Type *mcx_pwm_instances[] = CTIMER_BASE_PTRS;
static mcx_pwm_obj_t mcx_pwm_list[ARRAY_SIZE(mcx_pwm_instances)];
static int mcx_pwm_current_period_channel(mcx_pwm_obj_t *pwm)
{
CTIMER_Type *ct = (CTIMER_Type *)pwm->ct_instance;
uint32_t mcr = ct->MCR;
for (uint8_t i = 0; i < 4; i++)
{
if (mcr & (1U << (3 * i + CTIMER_MCR_MR0R_SHIFT)))
{
return i;
}
}
return -1;
}
static int mcx_pwm_first_free_channel(mcx_pwm_obj_t *pwm)
{
CTIMER_Type *ct = (CTIMER_Type *)pwm->ct_instance;
int pc = mcx_pwm_current_period_channel(pwm);
uint32_t pwmc = ct->PWMC;
for (uint8_t i = 0; i < 4; i++)
{
if (pwmc & (1U << i))
{
/* Skip this channel if there's an active PWM output */
continue;
}
if (i == pc)
{
/* Skip this channel if this channel is the current period channel */
continue;
}
return i;
}
/* There are no free channels left. */
return -1;
}
static int mcx_pwm_period_set(mcx_pwm_obj_t *pwm, uint32_t period_ns)
{
CTIMER_Type *ct = (CTIMER_Type *)pwm->ct_instance;
int p_channel = mcx_pwm_current_period_channel(pwm);
if (p_channel < 0)
{
return -EINVAL;
}
/* Store new values in shadow registers */
ct->MSR[p_channel] = period_ns * 1000 / pwm->counter_period_ps;
/* Enable period channel interrupt to check a reload event occurs.
* Since interrupts are not configured from NVIC, so no ISR will occur.
* Check IR[MRnINT] for reload point.
*/
uint32_t mcr_mask = (CTIMER_MCR_MR0RL_MASK << p_channel) | (CTIMER_MCR_MR0I_MASK << (3 * p_channel));
for (uint8_t i = 0; i < 4; i++)
{
if (ct->PWMC & (1U << i))
{
/* Channel PWM output is enabled, calculate new values and store into shadow registers */
uint32_t new_mr = ct->MR[i] * ct->MSR[p_channel] / ct->MR[p_channel];
ct->MSR[i] = new_mr;
/* Update MRnRL map */
mcr_mask |= CTIMER_MCR_MR0RL_MASK << i;
}
}
/* Reload MRs on next counter reset, enable reload MR interrupt */
ct->MCR |= mcr_mask;
while ((ct->IR & (CTIMER_IR_MR0INT_MASK << p_channel)) == 0U)
{
/* -- */
}
/* Disable reload channel interrupt and MSR synchronization */
ct->MCR &= ~mcr_mask;
/* Clear interrupt flags. */
ct->IR |= (CTIMER_IR_MR0INT_MASK << p_channel);
return 0;
}
static int mcx_pwm_period_get(mcx_pwm_obj_t *pwm, uint32_t *period_ns)
{
CTIMER_Type *ct = (CTIMER_Type *)pwm->ct_instance;
int p_channel = mcx_pwm_current_period_channel(pwm);
if (p_channel < 0)
{
return -1;
}
*period_ns = ct->MR[p_channel] * pwm->counter_period_ps / 1000;
return 0;
}
static int mcx_pwm_pulse_set(mcx_pwm_obj_t *pwm, uint8_t channel, uint32_t pulse_ns)
{
CTIMER_Type *ct = (CTIMER_Type *)pwm->ct_instance;
int p_channel = mcx_pwm_current_period_channel(pwm);
if (p_channel < 0)
{
return -1;
}
/* Up-counting counters, the polarity is inversed */
ct->MSR[channel] = ct->MR[p_channel] - pulse_ns * 1000 / pwm->counter_period_ps;
/* Reload MRn on the next cycle */
ct->MCR |= (CTIMER_MCR_MR0RL_MASK << channel);
/* Wait for new duty cycle loaded into the MRn */
while (ct->MR[channel] != ct->MSR[channel])
{
/* -- */
}
/* Disable shadow register updates */
ct->MCR &= ~(CTIMER_MCR_MR0RL_MASK << channel);
return 0;
}
static int mcx_pwm_pulse_get(mcx_pwm_obj_t *pwm, uint8_t channel, uint32_t *pulse_ns)
{
CTIMER_Type *ct = (CTIMER_Type *)pwm->ct_instance;
int p_channel = mcx_pwm_current_period_channel(pwm);
if (p_channel < 0)
{
return -1;
}
/* Up-counting counters, the polarity is inversed */
*pulse_ns = (ct->MR[p_channel] - ct->MR[channel]) * pwm->counter_period_ps / 1000;
return 0;
}
static rt_err_t mcx_drv_pwm_get(mcx_pwm_obj_t *pwm, struct rt_pwm_configuration *configuration)
{
if (mcx_pwm_period_get(pwm, &configuration->period) < 0)
{
return -RT_EFAULT;
}
if (mcx_pwm_pulse_get(pwm, configuration->channel, &configuration->pulse) < 0)
{
return -RT_EFAULT;
}
return RT_EOK;
}
static rt_err_t mcx_drv_pwm_set(mcx_pwm_obj_t *pwm, struct rt_pwm_configuration *configuration)
{
CTIMER_Type *ct = pwm->ct_instance;
uint32_t period = configuration->period * 1000 / pwm->counter_period_ps;
uint8_t channel = configuration->channel;
if ((ct->TCR & CTIMER_TCR_CEN_MASK) == 0U)
{
/* There's two conditions for a all-zero TCR: either a reset condition or timer is stopped. */
/* In either case, we need to initialize the timer instance (AHB RST CTRL). */
/* TODO: Do not use SDK functions */
ctimer_config_t ct_cfg =
{
.mode = kCTIMER_TimerMode,
.prescale = 1U,
};
/* Frequency: 150MHz max., we got 32bit counters, we can take that. */
/* Approx. maximum period: 28.6 seconds. */
CTIMER_Init(ct, &ct_cfg);
/* Current timer is not running, we are the first channel being configured. */
ct->TC = 0U; /* Reset counter */
ct->PC = 0U; /* Reset prescaler counter */
ct->PR = 0U; /* Prescaler, divide by 1 to get best resolution */
ct->MCR = 0U; /* Reset interrupt and reset condition */
ct->EMR = 0U; /* Do nothing on match event and output 0 as default state */
ct->PWMC = 0U; /* Disable all PWM channels, outputs will be controlled by EMn */
/* Here, we have a favoritism of using channel 3 as period channel, unless channel 3 is used for output */
if (channel != 3)
{
ct->MR[3] = period;
ct->MCR |= CTIMER_MCR_MR3R_MASK;
}
else
{
/* Use channel 2 as period channel. */
ct->MR[2] = period;
ct->MCR |= CTIMER_MCR_MR2R_MASK;
}
/* Start counter */
ct->TCR |= CTIMER_TCR_CEN_MASK;
}
else
{
/*
* Due to the nature of the CTimer, one of the 4 match channels is needed for period control (frequency)
* To find out which one is the current period channel, check the MRxR bit for each match output.
* If we are configuring the same match being used as periodic channel, configure the next free match as period
* then current channel can be re-used. If all 4 channels are in use then the function will fail with an errno.
*/
/* The timer is running, check whether we need to re-locate the period channel */
int p_channel = mcx_pwm_current_period_channel(pwm);
if (p_channel < 0)
{
return -RT_EINVAL;
}
if (p_channel == channel)
{
/* We need to re-locate the period channel */
int f_channel = mcx_pwm_first_free_channel(pwm);
if (f_channel < 0)
{
/* There's no free channel, bail out. */
return -RT_EBUSY;
}
/* Transfer the period channel to first free channel */
/* Step 1: Copy current period to first free channel */
ct->MR[f_channel] = ct->MR[p_channel];
/* Step 2: Enable reset for new period channel */
/* Note: it's safe doing it here since both old and new channel MRs contains same value */
ct->MCR |= (CTIMER_MCR_MR0R_MASK << (3 * f_channel));
/* Step 3: Disable reset for old period channel */
ct->MCR &= ~(CTIMER_MCR_MR0R_MASK << (3 * p_channel));
/* The old period channel is now available for PWM output */
p_channel = f_channel;
}
if (mcx_pwm_period_set(pwm, configuration->period) < 0)
{
return -RT_EINVAL;
}
}
if (mcx_pwm_pulse_set(pwm, channel, configuration->pulse) < 0)
{
return -RT_EINVAL;
}
return 0;
}
static rt_err_t mcx_drv_pwm_enable(mcx_pwm_obj_t *pwm, struct rt_pwm_configuration *configuration)
{
CTIMER_Type *ct = (CTIMER_Type *)pwm->ct_instance;
ct->PWMC |= (1U << configuration->channel);
return 0;
}
static rt_err_t mcx_drv_pwm_disable(mcx_pwm_obj_t *pwm, struct rt_pwm_configuration *configuration)
{
CTIMER_Type *ct = (CTIMER_Type *)pwm->ct_instance;
ct->PWMC &= ~(1U << configuration->channel);
return 0;
}
static rt_err_t mcx_drv_pwm_control(struct rt_device_pwm *device, int cmd, void *args)
{
mcx_pwm_obj_t *pwm = device->parent.user_data;
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)args;
switch (cmd)
{
case PWM_CMD_ENABLE:
return mcx_drv_pwm_enable(pwm, configuration);
case PWM_CMD_DISABLE:
return mcx_drv_pwm_disable(pwm, configuration);
case PWM_CMD_SET:
return mcx_drv_pwm_set(pwm, configuration);
case PWM_CMD_GET:
return mcx_drv_pwm_get(pwm, configuration);
default:
return -RT_EINVAL;
}
return RT_EOK;
}
static struct rt_pwm_ops mcx_pwm_ops =
{
.control = mcx_drv_pwm_control,
};
int mcx_pwm_init(void)
{
rt_err_t ret;
char name_buf[8];
for (uint8_t i = 0; i < ARRAY_SIZE(mcx_pwm_instances); i++)
{
mcx_pwm_list[i].ct_instance = mcx_pwm_instances[i];
mcx_pwm_list[i].counter_period_ps = 1000000000000ULL / CLOCK_GetCTimerClkFreq(i);
rt_snprintf(name_buf, sizeof(name_buf), "pwm%d", i);
ret = rt_device_pwm_register(&mcx_pwm_list[i].pwm_device, name_buf, &mcx_pwm_ops, &mcx_pwm_list[i]);
if (ret != RT_EOK)
{
return ret;
}
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(mcx_pwm_init);
#endif /* RT_USING_PWM */