rt-thread-official/bsp/at32/libraries/f403a_407/rt_drivers/drv_sdio.c

824 lines
21 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-03-08 shelton first version
*/
#include "board.h"
#include "drv_sdio.h"
#ifdef BSP_USING_SDIO
#if !defined (BSP_USING_SDIO1)
#error "Please define at least one SDIOx"
#endif
//#define DRV_DEBUG
#define LOG_TAG "drv.sdio"
#include <drv_log.h>
static struct at32_sdio_config sdio_config = SDIO_BUS_CONFIG;
static struct at32_sdio_class sdio_obj;
static struct rt_mmcsd_host *host;
#define SDIO_TX_RX_COMPLETE_TIMEOUT_LOOPS (100000)
#define RT_HW_SDIO_LOCK(_sdio) rt_mutex_take(&_sdio->mutex, RT_WAITING_FOREVER)
#define RT_HW_SDIO_UNLOCK(_sdio) rt_mutex_release(&_sdio->mutex);
struct sdio_pkg
{
struct rt_mmcsd_cmd *cmd;
void *buff;
rt_uint32_t flag;
};
struct rt_hw_sdio
{
struct rt_mmcsd_host *host;
struct at32_sdio_des sdio_des;
struct rt_event event;
struct rt_mutex mutex;
struct sdio_pkg *pkg;
};
ALIGN(SDIO_ALIGN_LEN)
static rt_uint8_t cache_buf[SDIO_BUFF_SIZE];
static rt_uint32_t at32_sdio_clk_get(struct at32_sdio *hw_sdio)
{
return SDIO_CLOCK_FREQ;
}
/**
* @brief this function get order from sdio.
* @param data
* @retval sdio order
*/
static int get_order(rt_uint32_t data)
{
int order = 0;
switch (data)
{
case 1:
order = 0;
break;
case 2:
order = 1;
break;
case 4:
order = 2;
break;
case 8:
order = 3;
break;
case 16:
order = 4;
break;
case 32:
order = 5;
break;
case 64:
order = 6;
break;
case 128:
order = 7;
break;
case 256:
order = 8;
break;
case 512:
order = 9;
break;
case 1024:
order = 10;
break;
case 2048:
order = 11;
break;
case 4096:
order = 12;
break;
case 8192:
order = 13;
break;
case 16384:
order = 14;
break;
default :
order = 0;
break;
}
return order;
}
/**
* @brief this function wait sdio completed.
* @param sdio rt_hw_sdio
* @retval none
*/
static void rt_hw_sdio_wait_completed(struct rt_hw_sdio *sdio)
{
rt_uint32_t status;
struct rt_mmcsd_cmd *cmd = sdio->pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
struct at32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
if (rt_event_recv(&sdio->event, 0xffffffff, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
rt_tick_from_millisecond(5000), &status) != RT_EOK)
{
LOG_E("wait completed timeout");
cmd->err = -RT_ETIMEOUT;
return;
}
if (sdio->pkg == RT_NULL)
{
return;
}
cmd->resp[0] = hw_sdio->resp1;
cmd->resp[1] = hw_sdio->resp2;
cmd->resp[2] = hw_sdio->resp3;
cmd->resp[3] = hw_sdio->resp4;
if (status & HW_SDIO_ERRORS)
{
if ((status & HW_SDIO_IT_CCRCFAIL) && (resp_type(cmd) & (RESP_R3 | RESP_R4)))
{
cmd->err = RT_EOK;
}
else
{
cmd->err = -RT_ERROR;
}
if (status & HW_SDIO_IT_CTIMEOUT)
{
cmd->err = -RT_ETIMEOUT;
}
if (status & HW_SDIO_IT_DCRCFAIL)
{
data->err = -RT_ERROR;
}
if (status & HW_SDIO_IT_DTIMEOUT)
{
data->err = -RT_ETIMEOUT;
}
if (cmd->err == RT_EOK)
{
LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
LOG_D("err:0x%08x, %s%s%s%s%s%s%s cmd:%d arg:0x%08x rw:%c len:%d blksize:%d",
status,
status & HW_SDIO_IT_CCRCFAIL ? "CCRCFAIL " : "",
status & HW_SDIO_IT_DCRCFAIL ? "DCRCFAIL " : "",
status & HW_SDIO_IT_CTIMEOUT ? "CTIMEOUT " : "",
status & HW_SDIO_IT_DTIMEOUT ? "DTIMEOUT " : "",
status & HW_SDIO_IT_TXUNDERR ? "TXUNDERR " : "",
status & HW_SDIO_IT_RXOVERR ? "RXOVERR " : "",
status == 0 ? "NULL" : "",
cmd->cmd_code,
cmd->arg,
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
}
}
else
{
cmd->err = RT_EOK;
LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
}
/**
* @brief this function transfer data by dma.
* @param sdio rt_hw_sdio
* @param pkg sdio package
* @retval none
*/
static void rt_hw_sdio_transfer_by_dma(struct rt_hw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_data *data;
int size;
void *buff;
struct at32_sdio *hw_sdio;
if ((RT_NULL == pkg) || (RT_NULL == sdio))
{
LOG_E("rt_hw_sdio_transfer_by_dma invalid args");
return;
}
data = pkg->cmd->data;
if (RT_NULL == data)
{
LOG_E("rt_hw_sdio_transfer_by_dma invalid args");
return;
}
buff = pkg->buff;
if (RT_NULL == buff)
{
LOG_E("rt_hw_sdio_transfer_by_dma invalid args");
return;
}
hw_sdio = sdio->sdio_des.hw_sdio;
size = data->blks * data->blksize;
if (data->flags & DATA_DIR_WRITE)
{
sdio->sdio_des.txconfig((rt_uint32_t *)buff, (rt_uint32_t *)&hw_sdio->fifo, size);
hw_sdio->dctrl |= HW_SDIO_DMA_ENABLE;
}
else if (data->flags & DATA_DIR_READ)
{
sdio->sdio_des.rxconfig((rt_uint32_t *)&hw_sdio->fifo, (rt_uint32_t *)buff, size);
hw_sdio->dctrl |= HW_SDIO_DMA_ENABLE | HW_SDIO_DPSM_ENABLE;
}
}
/**
* @brief this function send command.
* @param sdio rt_hw_sdio
* @param pkg sdio package
* @retval none
*/
static void rt_hw_sdio_send_command(struct rt_hw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_cmd *cmd = pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
struct at32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
rt_uint32_t reg_cmd;
/* save pkg */
sdio->pkg = pkg;
LOG_D("CMD:%d ARG:0x%08x RES:%s%s%s%s%s%s%s%s%s rw:%c len:%d blksize:%d",
cmd->cmd_code,
cmd->arg,
resp_type(cmd) == RESP_NONE ? "NONE" : "",
resp_type(cmd) == RESP_R1 ? "R1" : "",
resp_type(cmd) == RESP_R1B ? "R1B" : "",
resp_type(cmd) == RESP_R2 ? "R2" : "",
resp_type(cmd) == RESP_R3 ? "R3" : "",
resp_type(cmd) == RESP_R4 ? "R4" : "",
resp_type(cmd) == RESP_R5 ? "R5" : "",
resp_type(cmd) == RESP_R6 ? "R6" : "",
resp_type(cmd) == RESP_R7 ? "R7" : "",
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
/* config cmd reg */
reg_cmd = cmd->cmd_code | HW_SDIO_CPSM_ENABLE;
if (resp_type(cmd) == RESP_NONE)
reg_cmd |= HW_SDIO_RESPONSE_NO;
else if (resp_type(cmd) == RESP_R2)
reg_cmd |= HW_SDIO_RESPONSE_LONG;
else
reg_cmd |= HW_SDIO_RESPONSE_SHORT;
/* config data reg */
if (data != RT_NULL)
{
rt_uint32_t dir = 0;
rt_uint32_t size = data->blks * data->blksize;
int order;
hw_sdio->dctrl = 0;
hw_sdio->dtimer = HW_SDIO_DATATIMEOUT;
hw_sdio->dlen = size;
order = get_order(data->blksize);
dir = (data->flags & DATA_DIR_READ) ? HW_SDIO_TO_HOST : 0;
hw_sdio->dctrl = /* HW_SDIO_IO_ENABLE | */ (order << 4) | dir;
}
/* transfer config */
if (data != RT_NULL)
{
rt_hw_sdio_transfer_by_dma(sdio, pkg);
}
/* open irq */
hw_sdio->mask |= HW_SDIO_IT_CMDSENT | HW_SDIO_IT_CMDREND | HW_SDIO_ERRORS;
if (data != RT_NULL)
{
hw_sdio->mask |= HW_SDIO_IT_DATAEND;
}
/* send cmd */
hw_sdio->arg = cmd->arg;
hw_sdio->cmd = reg_cmd;
/* wait completed */
rt_hw_sdio_wait_completed(sdio);
/* waiting for data to be sent to completion */
if (data != RT_NULL)
{
volatile rt_uint32_t count = SDIO_TX_RX_COMPLETE_TIMEOUT_LOOPS;
while (count && (hw_sdio->sta & (HW_SDIO_IT_TXACT | HW_SDIO_IT_RXACT)))
{
count--;
}
if ((count == 0) || (hw_sdio->sta & HW_SDIO_ERRORS))
{
cmd->err = -RT_ERROR;
}
}
/* close irq, keep sdio irq */
hw_sdio->mask = hw_sdio->mask & HW_SDIO_IT_SDIOIT ? HW_SDIO_IT_SDIOIT : 0x00;
/* clear pkg */
sdio->pkg = RT_NULL;
}
/**
* @brief this function send sdio request.
* @param sdio rt_hw_sdio
* @param req request
* @retval none
*/
static void rt_hw_sdio_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct sdio_pkg pkg;
struct rt_hw_sdio *sdio = host->private_data;
struct rt_mmcsd_data *data;
RT_HW_SDIO_LOCK(sdio);
if (req->cmd != RT_NULL)
{
memset(&pkg, 0, sizeof(pkg));
data = req->cmd->data;
pkg.cmd = req->cmd;
if (data != RT_NULL)
{
rt_uint32_t size = data->blks * data->blksize;
RT_ASSERT(size <= SDIO_BUFF_SIZE);
pkg.buff = data->buf;
if ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1))
{
pkg.buff = cache_buf;
if (data->flags & DATA_DIR_WRITE)
{
memcpy(cache_buf, data->buf, size);
}
}
}
rt_hw_sdio_send_command(sdio, &pkg);
if ((data != RT_NULL) && (data->flags & DATA_DIR_READ) && ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1)))
{
memcpy(data->buf, cache_buf, data->blksize * data->blks);
}
}
if (req->stop != RT_NULL)
{
memset(&pkg, 0, sizeof(pkg));
pkg.cmd = req->stop;
rt_hw_sdio_send_command(sdio, &pkg);
}
RT_HW_SDIO_UNLOCK(sdio);
mmcsd_req_complete(sdio->host);
}
/**
* @brief this function config sdio.
* @param host rt_mmcsd_host
* @param io_cfg rt_mmcsd_io_cfg
* @retval none
*/
static void rt_hw_sdio_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
rt_uint32_t clkcr, div, clk_src;
rt_uint32_t clk = io_cfg->clock;
struct rt_hw_sdio *sdio = host->private_data;
struct at32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
clk_src = sdio->sdio_des.clk_get(sdio->sdio_des.hw_sdio);
if (clk_src < 400 * 1000)
{
LOG_E("The clock rate is too low! rata:%d", clk_src);
return;
}
if (clk > host->freq_max) clk = host->freq_max;
if (clk > clk_src)
{
LOG_W("Setting rate is greater than clock source rate.");
clk = clk_src;
}
LOG_D("clk:%d width:%s%s%s power:%s%s%s",
clk,
io_cfg->bus_width == MMCSD_BUS_WIDTH_8 ? "8" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_4 ? "4" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_1 ? "1" : "",
io_cfg->power_mode == MMCSD_POWER_OFF ? "OFF" : "",
io_cfg->power_mode == MMCSD_POWER_UP ? "UP" : "",
io_cfg->power_mode == MMCSD_POWER_ON ? "ON" : ""
);
RT_HW_SDIO_LOCK(sdio);
div = clk_src / clk;
if ((clk == 0) || (div == 0))
{
clkcr = 0;
}
else
{
if (div < 2)
{
div = 2;
}
else if (div > 0x3FF)
{
div = 0x3FF;
}
div -= 2;
clkcr = (div & 0xFF) | ((div & 0x300) << 7) | HW_SDIO_CLK_ENABLE;
}
if (io_cfg->bus_width == MMCSD_BUS_WIDTH_8)
{
clkcr |= HW_SDIO_BUSWIDE_8B;
}
else if (io_cfg->bus_width == MMCSD_BUS_WIDTH_4)
{
clkcr |= HW_SDIO_BUSWIDE_4B;
}
else
{
clkcr |= HW_SDIO_BUSWIDE_1B;
}
hw_sdio->clkcr = clkcr;
switch (io_cfg->power_mode)
{
case MMCSD_POWER_OFF:
hw_sdio->power = HW_SDIO_POWER_OFF;
break;
case MMCSD_POWER_UP:
hw_sdio->power = HW_SDIO_POWER_UP;
break;
case MMCSD_POWER_ON:
hw_sdio->power = HW_SDIO_POWER_ON;
break;
default:
LOG_W("unknown power_mode %d", io_cfg->power_mode);
break;
}
RT_HW_SDIO_UNLOCK(sdio);
}
/**
* @brief this function update sdio interrupt.
* @param host rt_mmcsd_host
* @param enable
* @retval none
*/
void rt_hw_sdio_irq_update(struct rt_mmcsd_host *host, rt_int32_t enable)
{
struct rt_hw_sdio *sdio = host->private_data;
struct at32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
if (enable)
{
LOG_D("enable sdio irq");
hw_sdio->mask |= HW_SDIO_IT_SDIOIT;
}
else
{
LOG_D("disable sdio irq");
hw_sdio->mask &= ~HW_SDIO_IT_SDIOIT;
}
}
/**
* @brief this function delect sdcard.
* @param host rt_mmcsd_host
* @retval 0x01
*/
static rt_int32_t rt_hw_sd_delect(struct rt_mmcsd_host *host)
{
LOG_D("try to detect device");
return 0x01;
}
/**
* @brief this function interrupt process function.
* @param host rt_mmcsd_host
* @retval none
*/
void rt_hw_sdio_irq_process(struct rt_mmcsd_host *host)
{
int complete = 0;
struct rt_hw_sdio *sdio = host->private_data;
struct at32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
rt_uint32_t intstatus = hw_sdio->sta;
if (intstatus & HW_SDIO_ERRORS)
{
hw_sdio->icr = HW_SDIO_ERRORS;
complete = 1;
}
else
{
if (intstatus & HW_SDIO_IT_CMDREND)
{
hw_sdio->icr = HW_SDIO_IT_CMDREND;
if (sdio->pkg != RT_NULL)
{
if (!sdio->pkg->cmd->data)
{
complete = 1;
}
else if ((sdio->pkg->cmd->data->flags & DATA_DIR_WRITE))
{
hw_sdio->dctrl |= HW_SDIO_DPSM_ENABLE;
}
}
}
if (intstatus & HW_SDIO_IT_CMDSENT)
{
hw_sdio->icr = HW_SDIO_IT_CMDSENT;
if (resp_type(sdio->pkg->cmd) == RESP_NONE)
{
complete = 1;
}
}
if (intstatus & HW_SDIO_IT_DATAEND)
{
hw_sdio->icr = HW_SDIO_IT_DATAEND;
complete = 1;
}
}
if ((intstatus & HW_SDIO_IT_SDIOIT) && (hw_sdio->mask & HW_SDIO_IT_SDIOIT))
{
hw_sdio->icr = HW_SDIO_IT_SDIOIT;
sdio_irq_wakeup(host);
}
if (complete)
{
hw_sdio->mask &= ~HW_SDIO_ERRORS;
rt_event_send(&sdio->event, intstatus);
}
}
static const struct rt_mmcsd_host_ops ops =
{
rt_hw_sdio_request,
rt_hw_sdio_iocfg,
rt_hw_sd_delect,
rt_hw_sdio_irq_update,
};
/**
* @brief this function create mmcsd host.
* @param sdio_des at32_sdio_des
* @retval rt_mmcsd_host
*/
struct rt_mmcsd_host *sdio_host_create(struct at32_sdio_des *sdio_des)
{
struct rt_mmcsd_host *host;
struct rt_hw_sdio *sdio = RT_NULL;
if ((sdio_des == RT_NULL) || (sdio_des->txconfig == RT_NULL) || (sdio_des->rxconfig == RT_NULL))
{
LOG_E("L:%d F:%s %s %s %s",
(sdio_des == RT_NULL ? "sdio_des is NULL" : ""),
(sdio_des ? (sdio_des->txconfig ? "txconfig is NULL" : "") : ""),
(sdio_des ? (sdio_des->rxconfig ? "rxconfig is NULL" : "") : "")
);
return RT_NULL;
}
sdio = rt_malloc(sizeof(struct rt_hw_sdio));
if (sdio == RT_NULL)
{
LOG_E("L:%d F:%s malloc rt_hw_sdio fail");
return RT_NULL;
}
rt_memset(sdio, 0, sizeof(struct rt_hw_sdio));
host = mmcsd_alloc_host();
if (host == RT_NULL)
{
LOG_E("L:%d F:%s mmcsd alloc host fail");
rt_free(sdio);
return RT_NULL;
}
rt_memcpy(&sdio->sdio_des, sdio_des, sizeof(struct at32_sdio_des));
sdio->sdio_des.hw_sdio = (sdio_des->hw_sdio == RT_NULL ? (struct at32_sdio *)SDIO_BASE_ADDRESS : sdio_des->hw_sdio);
sdio->sdio_des.clk_get = (sdio_des->clk_get == RT_NULL ? at32_sdio_clk_get : sdio_des->clk_get);
rt_event_init(&sdio->event, "sdio", RT_IPC_FLAG_FIFO);
rt_mutex_init(&sdio->mutex, "sdio", RT_IPC_FLAG_PRIO);
/* set host defautl attributes */
host->ops = &ops;
host->freq_min = 400 * 1000;
host->freq_max = SDIO_MAX_FREQ;
host->valid_ocr = 0X00FFFF80;/* the voltage range supported is 1.65v-3.6v */
#ifndef SDIO_USING_1_BIT
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#else
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#endif
host->max_seg_size = SDIO_BUFF_SIZE;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = 512;
/* link up host and sdio */
sdio->host = host;
host->private_data = sdio;
rt_hw_sdio_irq_update(host, 1);
/* ready to change */
mmcsd_change(host);
return host;
}
/**
* @brief this function configures the dmatx.
* @param src: pointer to the source buffer
* @param dst: pointer to the destination buffer
* @param buffer_size: size of tx buffer
* @retval none
*/
void sd_lowlevel_dmatx_config(uint32_t *src, uint32_t *dst, uint32_t buffer_size)
{
static uint32_t size = 0;
dma_init_type dma_init_struct;
size += buffer_size * 4;
sdio_obj.cfg = &sdio_config;
dma_default_para_init(&dma_init_struct);
sdio_obj.dma.handle_tx = sdio_config.dma_tx.dma_channel;
dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
dma_init_struct.buffer_size = buffer_size;
dma_init_struct.memory_base_addr = (uint32_t)src;
dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_WORD;
dma_init_struct.memory_inc_enable = TRUE;
dma_init_struct.peripheral_base_addr = (uint32_t)dst;
dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_WORD;
dma_init_struct.peripheral_inc_enable = FALSE;
dma_init_struct.priority = DMA_PRIORITY_MEDIUM;
nvic_irq_enable(sdio_config.dma_tx.dma_irq, 2, 0);
dma_init(sdio_obj.dma.handle_tx, &dma_init_struct);
dma_interrupt_enable(sdio_obj.dma.handle_tx, DMA_FDT_INT, TRUE);
dma_channel_enable(sdio_obj.dma.handle_tx, TRUE);
}
/**
* @brief this function configures the dmarx.
* @param src: pointer to the source buffer
* @param dst: pointer to the destination buffer
* @param buffer_size: size of rx buffer
* @retval none
*/
void sd_lowlevel_dmarx_config(uint32_t *src, uint32_t *dst, uint32_t buffer_size)
{
sdio_obj.cfg = &sdio_config;
dma_init_type dma_init_struct;
dma_default_para_init(&dma_init_struct);
sdio_obj.dma.handle_rx = sdio_config.dma_rx.dma_channel;
dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
dma_init_struct.buffer_size = buffer_size;
dma_init_struct.memory_base_addr = (uint32_t)dst;
dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_WORD;
dma_init_struct.memory_inc_enable = TRUE;
dma_init_struct.peripheral_base_addr = (uint32_t)src;
dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_WORD;
dma_init_struct.peripheral_inc_enable = FALSE;
dma_init_struct.priority = DMA_PRIORITY_MEDIUM;
nvic_irq_enable(sdio_config.dma_rx.dma_irq, 2, 0);
dma_init(sdio_obj.dma.handle_rx, &dma_init_struct);
dma_interrupt_enable(sdio_obj.dma.handle_rx, DMA_FDT_INT, TRUE);
dma_channel_enable(sdio_obj.dma.handle_rx, TRUE);
}
void DMA2_Channel4_5_IRQHandler(void)
{
if(dma_flag_get(DMA2_FDT4_FLAG))
{
dma_flag_clear(DMA2_FDT4_FLAG);
dma_channel_enable(sdio_config.dma_rx.dma_channel, FALSE);
}
}
/**
* @brief this function get at32 sdio clock.
* @param hw_sdio: at32_sdio
* @retval ahb frequency
*/
static rt_uint32_t at32_sdio_clock_get(struct at32_sdio *hw_sdio)
{
crm_clocks_freq_type clocks;
crm_clocks_freq_get(&clocks);
return clocks.ahb_freq;
}
static rt_err_t dma_tx_config(rt_uint32_t *src, rt_uint32_t *dst, int size)
{
sd_lowlevel_dmatx_config((uint32_t *)src, (uint32_t *)dst, size / 4);
return RT_EOK;
}
static rt_err_t dma_rx_config(rt_uint32_t *src, rt_uint32_t *dst, int size)
{
sd_lowlevel_dmarx_config((uint32_t *)src, (uint32_t *)dst, size / 4);
return RT_EOK;
}
void SDIO1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
rt_hw_sdio_irq_process(host);
/* leave interrupt */
rt_interrupt_leave();
}
int rt_hw_sdio_init(void)
{
struct at32_sdio_des sdio_des;
struct at32_sdio_config hsd;
hsd.sdio_x = SDCARD_INSTANCE;
at32_msp_sdio_init((void *)(hsd.sdio_x));
nvic_irq_enable(SDIO1_IRQn, 2, 0);
sdio_des.clk_get = at32_sdio_clock_get;
sdio_des.hw_sdio = (struct at32_sdio *)SDCARD_INSTANCE;
sdio_des.rxconfig = dma_rx_config;
sdio_des.txconfig = dma_tx_config;
host = sdio_host_create(&sdio_des);
if (host == RT_NULL)
{
LOG_E("host create fail");
return -1;
}
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
void at32_mmcsd_change(void)
{
mmcsd_change(host);
}
#endif