rt-thread-official/bsp/tm4c129x/libraries/driverlib/flash.c

978 lines
30 KiB
C

//*****************************************************************************
//
// flash.c - Driver for programming the on-chip flash.
//
// Copyright (c) 2005-2017 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.1.4.178 of the Tiva Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup flash_api
//! @{
//
//*****************************************************************************
#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_flash.h"
#include "inc/hw_ints.h"
#include "inc/hw_sysctl.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/flash.h"
#include "driverlib/interrupt.h"
//*****************************************************************************
//
// An array that maps the specified memory bank to the appropriate Flash
// Memory Protection Program Enable (FMPPE) register.
//
//*****************************************************************************
static const uint32_t g_pui32FMPPERegs[] =
{
FLASH_FMPPE0,
FLASH_FMPPE1,
FLASH_FMPPE2,
FLASH_FMPPE3,
FLASH_FMPPE4,
FLASH_FMPPE5,
FLASH_FMPPE6,
FLASH_FMPPE7,
FLASH_FMPPE8,
FLASH_FMPPE9,
FLASH_FMPPE10,
FLASH_FMPPE11,
FLASH_FMPPE12,
FLASH_FMPPE13,
FLASH_FMPPE14,
FLASH_FMPPE15,
};
//*****************************************************************************
//
// An array that maps the specified memory bank to the appropriate Flash
// Memory Protection Read Enable (FMPRE) register.
//
//*****************************************************************************
static const uint32_t g_pui32FMPRERegs[] =
{
FLASH_FMPRE0,
FLASH_FMPRE1,
FLASH_FMPRE2,
FLASH_FMPRE3,
FLASH_FMPRE4,
FLASH_FMPRE5,
FLASH_FMPRE6,
FLASH_FMPRE7,
FLASH_FMPRE8,
FLASH_FMPRE9,
FLASH_FMPRE10,
FLASH_FMPRE11,
FLASH_FMPRE12,
FLASH_FMPRE13,
FLASH_FMPRE14,
FLASH_FMPRE15,
};
//*****************************************************************************
//
//! Erases a block of flash.
//!
//! \param ui32Address is the start address of the flash block to be erased.
//!
//! This function erases a block of the on-chip flash. After erasing, the
//! block is filled with 0xFF bytes. Read-only and execute-only blocks cannot
//! be erased.
//!
//! The flash block size is device-class dependent. All TM4C123x devices use
//! 1-KB blocks but TM4C129x devices use 16-KB blocks. Please consult the
//! device datasheet to determine the block size in use.
//!
//! This function does not return until the block has been erased.
//!
//! \return Returns 0 on success, or -1 if an invalid block address was
//! specified or the block is write-protected.
//
//*****************************************************************************
int32_t
FlashErase(uint32_t ui32Address)
{
//
// Check the arguments.
//
ASSERT(!(ui32Address & (FLASH_ERASE_SIZE - 1)));
//
// Clear the flash access and error interrupts.
//
HWREG(FLASH_FCMISC) = (FLASH_FCMISC_AMISC | FLASH_FCMISC_VOLTMISC |
FLASH_FCMISC_ERMISC);
//
// Erase the block.
//
HWREG(FLASH_FMA) = ui32Address;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_ERASE;
//
// Wait until the block has been erased.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_ERASE)
{
}
//
// Return an error if an access violation or erase error occurred.
//
if(HWREG(FLASH_FCRIS) & (FLASH_FCRIS_ARIS | FLASH_FCRIS_VOLTRIS |
FLASH_FCRIS_ERRIS))
{
return(-1);
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Programs flash.
//!
//! \param pui32Data is a pointer to the data to be programmed.
//! \param ui32Address is the starting address in flash to be programmed. Must
//! be a multiple of four.
//! \param ui32Count is the number of bytes to be programmed. Must be a
//! multiple of four.
//!
//! This function programs a sequence of words into the on-chip flash.
//! Because the flash is programmed one word at a time, the starting address
//! and byte count must both be multiples of four. It is up to the caller to
//! verify the programmed contents, if such verification is required.
//!
//! This function does not return until the data has been programmed.
//!
//! \return Returns 0 on success, or -1 if a programming error is encountered.
//
//*****************************************************************************
int32_t
FlashProgram(uint32_t *pui32Data, uint32_t ui32Address, uint32_t ui32Count)
{
//
// Check the arguments.
//
ASSERT(!(ui32Address & 3));
ASSERT(!(ui32Count & 3));
//
// Clear the flash access and error interrupts.
//
HWREG(FLASH_FCMISC) = (FLASH_FCMISC_AMISC | FLASH_FCMISC_VOLTMISC |
FLASH_FCMISC_INVDMISC | FLASH_FCMISC_PROGMISC);
//
// Loop over the words to be programmed.
//
while(ui32Count)
{
//
// Set the address of this block of words.
//
HWREG(FLASH_FMA) = ui32Address & ~(0x7f);
//
// Loop over the words in this 32-word block.
//
while(((ui32Address & 0x7c) || (HWREG(FLASH_FWBVAL) == 0)) &&
(ui32Count != 0))
{
//
// Write this word into the write buffer.
//
HWREG(FLASH_FWBN + (ui32Address & 0x7c)) = *pui32Data++;
ui32Address += 4;
ui32Count -= 4;
}
//
// Program the contents of the write buffer into flash.
//
HWREG(FLASH_FMC2) = FLASH_FMC2_WRKEY | FLASH_FMC2_WRBUF;
//
// Wait until the write buffer has been programmed.
//
while(HWREG(FLASH_FMC2) & FLASH_FMC2_WRBUF)
{
}
}
//
// Return an error if an access violation occurred.
//
if(HWREG(FLASH_FCRIS) & (FLASH_FCRIS_ARIS | FLASH_FCRIS_VOLTRIS |
FLASH_FCRIS_INVDRIS | FLASH_FCRIS_PROGRIS))
{
return(-1);
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Gets the protection setting for a block of flash.
//!
//! \param ui32Address is the start address of the flash block to be queried.
//!
//! This function gets the current protection for the specified block of flash.
//! Refer to the device data sheet to determine the granularity for each
//! protection option. A block can be read/write, read-only, or execute-only.
//! Read/write blocks can be read, executed, erased, and programmed. Read-only
//! blocks can be read and executed. Execute-only blocks can only be executed;
//! processor and debugger data reads are not allowed.
//!
//! \return Returns the protection setting for this block. See
//! FlashProtectSet() for possible values.
//
//*****************************************************************************
tFlashProtection
FlashProtectGet(uint32_t ui32Address)
{
uint32_t ui32FMPRE, ui32FMPPE;
uint32_t ui32Bank;
//
// Check the argument.
//
ASSERT(!(ui32Address & (FLASH_PROTECT_SIZE - 1)));
//
// Calculate the Flash Bank from Base Address, and mask off the Bank
// from ui32Address for subsequent reference.
//
ui32Bank = (((ui32Address / FLASH_PROTECT_SIZE) / 32) % 4);
ui32Address &= ((FLASH_PROTECT_SIZE * 32) - 1);
//
// Read the appropriate flash protection registers for the specified
// flash bank.
//
ui32FMPRE = HWREG(g_pui32FMPRERegs[ui32Bank]);
ui32FMPPE = HWREG(g_pui32FMPPERegs[ui32Bank]);
//
// Check the appropriate protection bits for the block of memory that
// is specified by the address.
//
switch((((ui32FMPRE >> (ui32Address / FLASH_PROTECT_SIZE)) & 0x1) << 1) |
((ui32FMPPE >> (ui32Address / FLASH_PROTECT_SIZE)) & 0x1))
{
//
// This block is marked as execute only (that is, it can not be erased
// or programmed, and the only reads allowed are via the instruction
// fetch interface).
//
case 0:
case 1:
{
return(FlashExecuteOnly);
}
//
// This block is marked as read only (that is, it can not be erased or
// programmed).
//
case 2:
{
return(FlashReadOnly);
}
//
// This block is read/write; it can be read, erased, and programmed.
//
case 3:
default:
{
return(FlashReadWrite);
}
}
}
//*****************************************************************************
//
//! Sets the protection setting for a block of flash.
//!
//! \param ui32Address is the start address of the flash block to be protected.
//! \param eProtect is the protection to be applied to the block. Can be one
//! of \b FlashReadWrite, \b FlashReadOnly, or \b FlashExecuteOnly.
//!
//! This function sets the protection for the specified block of flash. Refer
//! to the device data sheet to determine the granularity for each protection
//! option. Blocks that are read/write can be made read-only or execute-only.
//! Blocks that are read-only can be made execute-only. Blocks that are
//! execute-only cannot have their protection modified. Attempts to make the
//! block protection less stringent (that is, read-only to read/write)
//! result in a failure (and are prevented by the hardware).
//!
//! Changes to the flash protection are maintained only until the next reset.
//! This protocol allows the application to be executed in the desired flash
//! protection environment to check for inappropriate flash access (via the
//! flash interrupt). To make the flash protection permanent, use the
//! FlashProtectSave() function.
//!
//! \return Returns 0 on success, or -1 if an invalid address or an invalid
//! protection was specified.
//
//*****************************************************************************
int32_t
FlashProtectSet(uint32_t ui32Address, tFlashProtection eProtect)
{
uint32_t ui32ProtectRE, ui32ProtectPE;
uint32_t ui32Bank;
//
// Check the argument.
//
ASSERT(!(ui32Address & (FLASH_PROTECT_SIZE - 1)));
ASSERT((eProtect == FlashReadWrite) || (eProtect == FlashReadOnly) ||
(eProtect == FlashExecuteOnly));
//
// Convert the address into a block number.
//
ui32Address /= FLASH_PROTECT_SIZE;
//
// ui32Address contains a "raw" block number. Derive the Flash Bank from
// the "raw" block number, and convert ui32Address to a "relative"
// block number.
//
ui32Bank = ((ui32Address / 32) % 4);
ui32Address %= 32;
//
// Get the current protection for the specified flash bank.
//
ui32ProtectRE = HWREG(g_pui32FMPRERegs[ui32Bank]);
ui32ProtectPE = HWREG(g_pui32FMPPERegs[ui32Bank]);
//
// Set the protection based on the requested protection.
//
switch(eProtect)
{
//
// Make this block execute only.
//
case FlashExecuteOnly:
{
//
// Turn off the read and program bits for this block.
//
ui32ProtectRE &= ~(0x1 << ui32Address);
ui32ProtectPE &= ~(0x1 << ui32Address);
//
// We're done handling this protection.
//
break;
}
//
// Make this block read only.
//
case FlashReadOnly:
{
//
// The block can not be made read only if it is execute only.
//
if(((ui32ProtectRE >> ui32Address) & 0x1) != 0x1)
{
return(-1);
}
//
// Make this block read only.
//
ui32ProtectPE &= ~(0x1 << ui32Address);
//
// We're done handling this protection.
//
break;
}
//
// Make this block read/write.
//
case FlashReadWrite:
default:
{
//
// The block can not be made read/write if it is not already
// read/write.
//
if((((ui32ProtectRE >> ui32Address) & 0x1) != 0x1) ||
(((ui32ProtectPE >> ui32Address) & 0x1) != 0x1))
{
return(-1);
}
//
// The block is already read/write, so there is nothing to do.
//
return(0);
}
}
//
// Set the new protection for the specified flash bank.
//
HWREG(g_pui32FMPRERegs[ui32Bank]) = ui32ProtectRE;
HWREG(g_pui32FMPPERegs[ui32Bank]) = ui32ProtectPE;
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Saves the flash protection settings.
//!
//! This function makes the currently programmed flash protection settings
//! permanent. This operation is non-reversible; a chip reset or power cycle
//! does not change the flash protection.
//!
//! This function does not return until the protection has been saved.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
int32_t
FlashProtectSave(void)
{
uint32_t ui32Temp;
//
// Save the entire bank of 8 flash protection registers.
//
for(ui32Temp = 0; ui32Temp < 8; ui32Temp++)
{
//
// Tell the flash controller to write the flash protection register.
//
HWREG(FLASH_FMA) = ui32Temp;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT;
//
// Wait until the write has completed.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Gets the user registers.
//!
//! \param pui32User0 is a pointer to the location to store USER Register 0.
//! \param pui32User1 is a pointer to the location to store USER Register 1.
//!
//! This function reads the contents of user registers 0 and 1, and
//! stores them in the specified locations.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
int32_t
FlashUserGet(uint32_t *pui32User0, uint32_t *pui32User1)
{
//
// Verify that the pointers are valid.
//
ASSERT(pui32User0 != 0);
ASSERT(pui32User1 != 0);
//
// Get and store the current value of the user registers.
//
*pui32User0 = HWREG(FLASH_USERREG0);
*pui32User1 = HWREG(FLASH_USERREG1);
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Sets the user registers.
//!
//! \param ui32User0 is the value to store in USER Register 0.
//! \param ui32User1 is the value to store in USER Register 1.
//!
//! This function sets the contents of the user registers 0 and 1 to
//! the specified values.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
int32_t
FlashUserSet(uint32_t ui32User0, uint32_t ui32User1)
{
//
// Save the new values into the user registers.
//
HWREG(FLASH_USERREG0) = ui32User0;
HWREG(FLASH_USERREG1) = ui32User1;
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Gets all the user registers.
//!
//! \param pui32User0 is a pointer to the location to store USER Register 0.
//! \param pui32User1 is a pointer to the location to store USER Register 1.
//! \param pui32User2 is a pointer to the location to store USER Register 2.
//! \param pui32User3 is a pointer to the location to store USER Register 3.
//!
//! This function reads the contents of user registers 0, 1, 2 and 3, and
//! stores them in the specified locations.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
int32_t
FlashAllUserRegisterGet(uint32_t *pui32User0, uint32_t *pui32User1,
uint32_t *pui32User2, uint32_t *pui32User3)
{
//
// Verify that the pointers are valid.
//
ASSERT(pui32User0 != 0);
ASSERT(pui32User1 != 0);
ASSERT(pui32User2 != 0);
ASSERT(pui32User3 != 0);
//
// Get and store the current value of the user registers.
//
*pui32User0 = HWREG(FLASH_USERREG0);
*pui32User1 = HWREG(FLASH_USERREG1);
*pui32User2 = HWREG(FLASH_USERREG2);
*pui32User3 = HWREG(FLASH_USERREG3);
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Sets the user registers 0 to 3
//!
//! \param ui32User0 is the value to store in USER Register 0.
//! \param ui32User1 is the value to store in USER Register 1.
//! \param ui32User2 is the value to store in USER Register 2.
//! \param ui32User3 is the value to store in USER Register 3.
//!
//! This function sets the contents of the user registers 0, 1, 2 and 3 to
//! the specified values.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
int32_t
FlashAllUserRegisterSet(uint32_t ui32User0, uint32_t ui32User1,
uint32_t ui32User2, uint32_t ui32User3)
{
//
// Save the new values into the user registers.
//
HWREG(FLASH_USERREG0) = ui32User0;
HWREG(FLASH_USERREG1) = ui32User1;
HWREG(FLASH_USERREG2) = ui32User2;
HWREG(FLASH_USERREG3) = ui32User3;
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Saves the user registers 0 and 1.
//!
//! This function makes the currently programmed user register 0 and 1 settings
//! permanent. This operation is non-reversible; a chip reset or power cycle
//! does not change the flash protection.
//!
//! This function does not return until the protection has been saved.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
int32_t
FlashUserSave(void)
{
//
// Setting the MSB of FMA will trigger a permanent save of a USER
// register. Bit 0 will indicate User 0 (0) or User 1 (1).
//
HWREG(FLASH_FMA) = 0x80000000;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT;
//
// Wait until the write has completed.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
//
// Tell the flash controller to write the USER1 Register.
//
HWREG(FLASH_FMA) = 0x80000001;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT;
//
// Wait until the write has completed.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Saves the user registers.
//!
//! This function makes the currently programmed user register 0, 1, 2 and 3
//! settings permanent. This operation is non-reversible; a chip reset or
//! power cycle does not change the flash protection.
//!
//! This function does not return until the protection has been saved.
//!
//! \note To ensure data integrity of the user registers, the commits should
//! not be interrupted with a power loss.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
int32_t
FlashAllUserRegisterSave(void)
{
uint32_t ui32Index;
//
// Setting the MSB of FMA will trigger a permanent save of a USER Register.
// The 2 least signigicant bits, specify the exact User Register to save.
// The value of the least significant bits for
// USER Register 0 is 00,
// USER Register 1 is 01,
// USER Register 2 is 10 and
// USER Register 3 is 11.
//
for(ui32Index = 0; ui32Index < 4; ui32Index++)
{
//
// Tell the flash controller to commit a USER Register.
//
HWREG(FLASH_FMA) = (0x80000000 + ui32Index);
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT;
//
// Wait until the write has completed.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Registers an interrupt handler for the flash interrupt.
//!
//! \param pfnHandler is a pointer to the function to be called when the flash
//! interrupt occurs.
//!
//! This function sets the handler to be called when the flash interrupt
//! occurs. The flash controller can generate an interrupt when an invalid
//! flash access occurs, such as trying to program or erase a read-only block,
//! or trying to read from an execute-only block. It can also generate an
//! interrupt when a program or erase operation has completed. The interrupt
//! is automatically enabled when the handler is registered.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntRegister(void (*pfnHandler)(void))
{
//
// Register the interrupt handler, returning an error if an error occurs.
//
IntRegister(INT_FLASH_TM4C123, pfnHandler);
//
// Enable the flash interrupt.
//
IntEnable(INT_FLASH_TM4C123);
}
//*****************************************************************************
//
//! Unregisters the interrupt handler for the flash interrupt.
//!
//! This function clears the handler to be called when the flash interrupt
//! occurs. This function also masks off the interrupt in the interrupt
//! controller so that the interrupt handler is no longer called.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntUnregister(void)
{
//
// Disable the interrupt.
//
IntDisable(INT_FLASH_TM4C123);
//
// Unregister the interrupt handler.
//
IntUnregister(INT_FLASH_TM4C123);
}
//*****************************************************************************
//
//! Enables individual flash controller interrupt sources.
//!
//! \param ui32IntFlags is a bit mask of the interrupt sources to be enabled.
//! The ui32IntFlags parameter can be the logical OR of any of the following
//! values:
//!
//! - \b FLASH_INT_ACCESS occurs when a program or erase action was attempted
//! on a block of flash that is marked as read-only or execute-only.
//! - \b FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.
//! - \b FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of
//! the EEPROM interrupt can be determined by reading the EEDONE register.
//! - \b FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during
//! the flash operation and the operation was terminated.
//! - \b FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that
//! contains a 0 to a 1.
//! - \b FLASH_INT_ERASE_ERR occurs when an erase operation fails.
//! - \b FLASH_INT_PROGRAM_ERR occurs when a program operation fails.
//!
//! This function enables the indicated flash controller interrupt sources.
//! Only the sources that are enabled can be reflected to the processor
//! interrupt; disabled sources have no effect on the processor.
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntEnable(uint32_t ui32IntFlags)
{
//
// Enable the specified interrupts.
//
HWREG(FLASH_FCIM) |= ui32IntFlags;
}
//*****************************************************************************
//
//! Disables individual flash controller interrupt sources.
//!
//! \param ui32IntFlags is a bit mask of the interrupt sources to be disabled.
//! The ui32IntFlags parameter can be the logical OR of any of the following
//! values:
//!
//! - \b FLASH_INT_ACCESS occurs when a program or erase action was attempted
//! on a block of flash that is marked as read-only or execute-only.
//! - \b FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.
//! - \b FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of
//! the EEPROM interrupt can be determined by reading the EEDONE register.
//! - \b FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during
//! the flash operation and the operation was terminated.
//! - \b FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that
//! contains a 0 to a 1.
//! - \b FLASH_INT_ERASE_ERR occurs when an erase operation fails.
//! - \b FLASH_INT_PROGRAM_ERR occurs when a program operation fails.
//!
//! This function disables the indicated flash controller interrupt sources.
//! Only the sources that are enabled can be reflected to the processor
//! interrupt; disabled sources have no effect on the processor.
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntDisable(uint32_t ui32IntFlags)
{
//
// Disable the specified interrupts.
//
HWREG(FLASH_FCIM) &= ~(ui32IntFlags);
}
//*****************************************************************************
//
//! Gets the current interrupt status.
//!
//! \param bMasked is false if the raw interrupt status is required and true if
//! the masked interrupt status is required.
//!
//! This function returns the interrupt status for the flash controller.
//! Either the raw interrupt status or the status of interrupts that are
//! allowed to reflect to the processor can be returned.
//!
//! \return The current interrupt status, enumerated as a bit field of
//! \b FLASH_INT_ACCESS, \b FLASH_INT_PROGRAM, \b FLASH_INT_EEPROM,
//! FLASH_INT_VOLTAGE_ERR, FLASH_INT_DATA_ERR, FLASH_INT_ERASE_ERR, and
//! FLASH_INT_PROGRAM_ERR.
//
//*****************************************************************************
uint32_t
FlashIntStatus(bool bMasked)
{
//
// Return either the interrupt status or the raw interrupt status as
// requested.
//
if(bMasked)
{
return(HWREG(FLASH_FCMISC));
}
else
{
return(HWREG(FLASH_FCRIS));
}
}
//*****************************************************************************
//
//! Clears flash controller interrupt sources.
//!
//! \param ui32IntFlags is the bit mask of the interrupt sources to be cleared.
//!
//! The specified flash controller interrupt sources are cleared, so that they
//! no longer assert. The
//! ui32IntFlags parameter can be the logical OR of any of the following
//! values:
//!
//! - \b FLASH_INT_ACCESS occurs when a program or erase action was attempted
//! on a block of flash that is marked as read-only or execute-only.
//! - \b FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.
//! - \b FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of
//! the EEPROM interrupt can be determined by reading the EEDONE register.
//! - \b FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during
//! the flash operation and the operation was terminated.
//! - \b FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that
//! contains a 0 to a 1.
//! - \b FLASH_INT_ERASE_ERR occurs when an erase operation fails.
//! - \b FLASH_INT_PROGRAM_ERR occurs when a program operation fails.
//!
//! This function must be called in the interrupt handler to keep the
//! interrupt from being triggered again immediately upon exit.
//!
//! \note Because there is a write buffer in the Cortex-M processor, it may
//! take several clock cycles before the interrupt source is actually cleared.
//! Therefore, it is recommended that the interrupt source be cleared early in
//! the interrupt handler (as opposed to the very last action) to avoid
//! returning from the interrupt handler before the interrupt source is
//! actually cleared. Failure to do so may result in the interrupt handler
//! being immediately reentered (because the interrupt controller still sees
//! the interrupt source asserted).
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntClear(uint32_t ui32IntFlags)
{
//
// Clear the flash interrupt.
//
HWREG(FLASH_FCMISC) = ui32IntFlags;
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************