rt-thread-official/bsp/bluetrum/libraries/hal_drivers/drv_sdio.c

661 lines
16 KiB
C

/*
* Copyright (c) 2020-2021, Bluetrum Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-11-30 greedyhao first version
*/
#include "drv_sdio.h"
#include "interrupt.h"
#include <rthw.h>
#ifdef BSP_USING_SDIO
// #define DRV_DEBUG
#define LOG_TAG "drv.sdio"
#include <drv_log.h>
#define SDIO_USING_1_BIT
static struct ab32_sdio_config sdio_config[] =
{
{.instance = SDMMC0_BASE,
},
};
static struct rt_mmcsd_host *host = RT_NULL;
#define RTHW_SDIO_LOCK(_sdio) rt_mutex_take(&(_sdio)->mutex, RT_WAITING_FOREVER)
#define RTHW_SDIO_UNLOCK(_sdio) rt_mutex_release(&(_sdio)->mutex);
struct sdio_pkg
{
struct rt_mmcsd_cmd *cmd;
void *buff;
rt_uint32_t flag;
rt_uint32_t xfer_blks;
};
struct rthw_sdio
{
struct rt_mmcsd_host *host;
struct ab32_sdio_des sdio_des;
struct rt_event event;
struct rt_mutex mutex;
struct sdio_pkg *pkg;
};
ALIGN(SDIO_ALIGN_LEN)
static rt_uint8_t cache_buf[SDIO_BUFF_SIZE];
static rt_uint8_t sd_baud = 119;
rt_uint8_t sysclk_update_baud(rt_uint8_t baud);
static rt_uint32_t ab32_sdio_clk_get(hal_sfr_t hw_sdio)
{
return (get_sysclk_nhz() / (sd_baud+1));
}
/**
* @brief This function get order from sdio.
* @param data
* @retval sdio order
*/
static int get_order(rt_uint32_t data)
{
int order = 0;
switch (data)
{
case 1:
order = 0;
break;
case 2:
order = 1;
break;
case 4:
order = 2;
break;
case 8:
order = 3;
break;
case 16:
order = 4;
break;
case 32:
order = 5;
break;
case 64:
order = 6;
break;
case 128:
order = 7;
break;
case 256:
order = 8;
break;
case 512:
order = 9;
break;
case 1024:
order = 10;
break;
case 2048:
order = 11;
break;
case 4096:
order = 12;
break;
case 8192:
order = 13;
break;
case 16384:
order = 14;
break;
default :
order = 0;
break;
}
return order;
}
/**
* @brief This function wait sdio completed.
* @param sdio rthw_sdio
* @retval None
*/
static void rthw_sdio_wait_completed(struct rthw_sdio *sdio)
{
rt_uint32_t status = 0;
struct rt_mmcsd_cmd *cmd = sdio->pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio;
rt_err_t tx_finish = -RT_ERROR;
if (rt_event_recv(&sdio->event, 0xFFFFFFFF & ~HW_SDIO_CON_DFLAG, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
rt_tick_from_millisecond(5000), &status) != RT_EOK)
{
LOG_E("wait completed timeout");
cmd->err = -RT_ETIMEOUT;
return;
}
if (sdio->pkg == RT_NULL)
{
return;
}
cmd->resp[0] = hw_sdio[SDxARG3];
cmd->resp[1] = hw_sdio[SDxARG2];
cmd->resp[2] = hw_sdio[SDxARG1];
cmd->resp[3] = hw_sdio[SDxARG0];
if (!(status & HW_SDIO_CON_NRPS)) {
cmd->err = RT_EOK;
LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
} else {
cmd->err = -RT_ERROR;
}
}
/**
* @brief This function transfer data by dma.
* @param sdio rthw_sdio
* @param pkg sdio package
* @retval None
*/
static void rthw_sdio_transfer_by_dma(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_data *data;
int size;
void *buff;
hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio;
if ((RT_NULL == pkg) || (RT_NULL == sdio))
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
data = pkg->cmd->data;
if (RT_NULL == data)
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
buff = pkg->buff;
if (RT_NULL == buff)
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
hw_sdio = sdio->sdio_des.hw_sdio;
size = data->blks * data->blksize;
if (data->flags & DATA_DIR_WRITE)
{
LOG_D("DATA_DIR_WRITE %d", pkg->xfer_blks);
sdio->sdio_des.txconfig((rt_uint32_t *)((rt_uint8_t *)buff + (pkg->xfer_blks * data->blksize)), 512);
}
else if (data->flags & DATA_DIR_READ)
{
LOG_D("DATA_DIR_WRITE %d", pkg->xfer_blks);
sdio->sdio_des.rxconfig((rt_uint32_t *)((rt_uint8_t *)buff + (pkg->xfer_blks * data->blksize)), data->blksize);
}
}
/**
* @brief This function send command.
* @param sdio rthw_sdio
* @param pkg sdio package
* @retval None
*/
static void rthw_sdio_send_command(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_cmd *cmd = pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio;
rt_uint32_t reg_cmd = 0;
rt_uint32_t data_flag = 0;
/* save pkg */
sdio->pkg = pkg;
#define CK8E BIT(11) //在命令/数据包后加上8CLK
#define CBUSY BIT(10) //Busy Check
#define CLRSP BIT(9) //17Byte Long Rsp
#define CRSP BIT(8) //Need Rsp
/* config cmd reg */
if (cmd->cmd_code != 18) {
reg_cmd = cmd->cmd_code | 0x40 | CK8E;
} else {
reg_cmd = cmd->cmd_code | 0x40;
}
switch (resp_type(cmd))
{
case RESP_R1B:
reg_cmd |= CBUSY | CRSP;
break;
case RESP_R2:
reg_cmd |= CLRSP | CRSP;
break;
default:
reg_cmd |= CRSP;
break;
}
LOG_D("CMD:%d 0x%04X ARG:0x%08x RES:%s%s%s%s%s%s%s%s%s rw:%c len:%d blksize:%d",
cmd->cmd_code,
reg_cmd,
cmd->arg,
resp_type(cmd) == RESP_NONE ? "NONE" : "",
resp_type(cmd) == RESP_R1 ? "R1" : "",
resp_type(cmd) == RESP_R1B ? "R1B" : "",
resp_type(cmd) == RESP_R2 ? "R2" : "",
resp_type(cmd) == RESP_R3 ? "R3" : "",
resp_type(cmd) == RESP_R4 ? "R4" : "",
resp_type(cmd) == RESP_R5 ? "R5" : "",
resp_type(cmd) == RESP_R6 ? "R6" : "",
resp_type(cmd) == RESP_R7 ? "R7" : "",
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
/* config data reg */
if (data != RT_NULL)
{
rt_uint32_t dir = 0;
rt_uint32_t size = data->blks * data->blksize;
int order;
order = get_order(data->blksize);
dir = (data->flags & DATA_DIR_READ) ? HW_SDIO_TO_HOST : 0;
data_flag = data->flags;
}
/* transfer config */
if (data_flag & DATA_DIR_READ)
{
rthw_sdio_transfer_by_dma(sdio, pkg);
}
/* send cmd */
hw_sdio[SDxARG3] = cmd->arg;
hw_sdio[SDxCMD] = reg_cmd;
/* wait cmd completed */
rthw_sdio_wait_completed(sdio);
/* transfer config */
if (data != RT_NULL)
{
do {
if ((data_flag & DATA_DIR_WRITE) || ((data_flag & DATA_DIR_READ) && (pkg->xfer_blks != 0))) {
rthw_sdio_transfer_by_dma(sdio, pkg);
}
rt_uint32_t status = 0;
if (rt_event_recv(&sdio->event, 0xFFFFFFFF & ~HW_SDIO_CON_DFLAG, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
rt_tick_from_millisecond(5000), &status) != RT_EOK)
{
LOG_E("wait completed timeout");
LOG_E("SDxCON=0x%X SDxCMD=0x%X\n", hw_sdio[SDxCON], hw_sdio[SDxCMD]);
cmd->err = -RT_ETIMEOUT;
}
if (data_flag & DATA_DIR_WRITE) {
if (((hw_sdio[SDxCON] & HW_SDIO_CON_CRCS) >> 17) != 2) {
LOG_E("Write CRC error!");
cmd->err = -RT_ERROR;
hw_sdio[SDxCPND] = HW_SDIO_CON_DFLAG;
}
}
} while(++pkg->xfer_blks != data->blks);
}
/* clear pkg */
sdio->pkg = RT_NULL;
}
/**
* @brief This function send sdio request.
* @param host rt_mmcsd_host
* @param req request
* @retval None
*/
static void rthw_sdio_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct sdio_pkg pkg;
struct rthw_sdio *sdio = host->private_data;
struct rt_mmcsd_data *data;
RTHW_SDIO_LOCK(sdio);
if (req->cmd != RT_NULL)
{
rt_memset(&pkg, 0, sizeof(pkg));
data = req->cmd->data;
pkg.cmd = req->cmd;
if (data != RT_NULL)
{
rt_uint32_t size = data->blks * data->blksize;
RT_ASSERT(size <= SDIO_BUFF_SIZE);
pkg.buff = data->buf;
if ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1))
{
pkg.buff = cache_buf;
if (data->flags & DATA_DIR_WRITE)
{
rt_memcpy(cache_buf, data->buf, size);
}
}
}
rthw_sdio_send_command(sdio, &pkg);
if ((data != RT_NULL) && (data->flags & DATA_DIR_READ) && ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1)))
{
rt_memcpy(data->buf, cache_buf, data->blksize * data->blks);
}
}
if (req->stop != RT_NULL)
{
rt_memset(&pkg, 0, sizeof(pkg));
pkg.cmd = req->stop;
rthw_sdio_send_command(sdio, &pkg);
}
RTHW_SDIO_UNLOCK(sdio);
mmcsd_req_complete(sdio->host);
}
/**
* @brief This function config sdio.
* @param host rt_mmcsd_host
* @param io_cfg rt_mmcsd_io_cfg
* @retval None
*/
static void rthw_sdio_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
rt_uint32_t clkcr, div, clk_src;
rt_uint32_t clk = io_cfg->clock;
struct rthw_sdio *sdio = host->private_data;
hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio;
clk_src = sdio->sdio_des.clk_get(sdio->sdio_des.hw_sdio);
if (clk_src < 240 * 1000)
{
LOG_E("The clock rate is too low! rata:%d", clk_src);
return;
}
if (clk > host->freq_max) clk = host->freq_max;
if (clk > clk_src)
{
// LOG_W("Setting rate(%d) is greater than clock source rate(%d).", clk, clk_src);
// clk = clk_src;
}
LOG_D("clk:%d width:%s%s%s power:%s%s%s",
clk,
io_cfg->bus_width == MMCSD_BUS_WIDTH_8 ? "8" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_4 ? "4" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_1 ? "1" : "",
io_cfg->power_mode == MMCSD_POWER_OFF ? "OFF" : "",
io_cfg->power_mode == MMCSD_POWER_UP ? "UP" : "",
io_cfg->power_mode == MMCSD_POWER_ON ? "ON" : ""
);
RTHW_SDIO_LOCK(sdio);
switch (io_cfg->power_mode)
{
case MMCSD_POWER_OFF:
hw_sdio[SDxCON] &= ~BIT(0);
break;
case MMCSD_POWER_UP:
sd_baud = 199;
hw_sdio[SDxCON] = 0;
rt_thread_mdelay(1);
hw_sdio[SDxCON] |= BIT(0); /* SD control enable */
hw_sdio[SDxBAUD] = sysclk_update_baud(sd_baud);
hw_sdio[SDxCON] |= BIT(3); /* Keep clock output */
hw_sdio[SDxCON] |= BIT(4);
hw_sdio[SDxCON] |= BIT(5); /* Data interrupt enable */
hal_mdelay(40);
break;
case MMCSD_POWER_ON:
if (clk == SDIO_MAX_FREQ) {
hw_sdio[SDxCON] &= ~BIT(3);
sd_baud = 3;
hw_sdio[SDxBAUD] = sysclk_update_baud(sd_baud);
}
break;
default:
LOG_W("unknown power_mode %d", io_cfg->power_mode);
break;
}
RTHW_SDIO_UNLOCK(sdio);
}
/**
* @brief This function update sdio interrupt.
* @param host rt_mmcsd_host
* @param enable
* @retval None
*/
void rthw_sdio_irq_update(struct rt_mmcsd_host *host, rt_int32_t enable)
{
struct rthw_sdio *sdio = host->private_data;
hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio;
if (enable)
{
LOG_D("enable sdio irq");
rt_hw_irq_enable(IRQ_SD_VECTOR);
}
else
{
LOG_D("disable sdio irq");
rt_hw_irq_disable(IRQ_SD_VECTOR);
}
}
/**
* @brief This function detect sdcard.
* @param host rt_mmcsd_host
* @retval 0x01
*/
static rt_int32_t rthw_sd_detect(struct rt_mmcsd_host *host)
{
LOG_D("try to detect device");
return 0x01;
}
/**
* @brief This function interrupt process function.
* @param host rt_mmcsd_host
* @retval None
*/
RT_SECTION(".irq.sdio")
void rthw_sdio_irq_process(struct rt_mmcsd_host *host)
{
int complete = 0;
struct rthw_sdio *sdio = host->private_data;
hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio;
rt_uint32_t intstatus = hw_sdio[SDxCON];
/* clear flag */
if (intstatus & HW_SDIO_CON_CFLAG) {
complete = 1;
hw_sdio[SDxCPND] = HW_SDIO_CON_CFLAG;
}
if (intstatus & HW_SDIO_CON_DFLAG) {
complete = 1;
hw_sdio[SDxCPND] = HW_SDIO_CON_DFLAG;
}
if (complete)
{
rt_event_send(&sdio->event, intstatus);
}
}
static const struct rt_mmcsd_host_ops ab32_sdio_ops =
{
rthw_sdio_request,
rthw_sdio_iocfg,
rthw_sd_detect,
rthw_sdio_irq_update,
};
/**
* @brief This function create mmcsd host.
* @param sdio_des ab32_sdio_des
* @retval rt_mmcsd_host
*/
struct rt_mmcsd_host *sdio_host_create(struct ab32_sdio_des *sdio_des)
{
struct rt_mmcsd_host *host;
struct rthw_sdio *sdio = RT_NULL;
if ((sdio_des == RT_NULL) || (sdio_des->txconfig == RT_NULL) || (sdio_des->rxconfig == RT_NULL))
{
LOG_E("L:%d F:%s %s %s %s",
(sdio_des == RT_NULL ? "sdio_des is NULL" : ""),
(sdio_des ? (sdio_des->txconfig ? "txconfig is NULL" : "") : ""),
(sdio_des ? (sdio_des->rxconfig ? "rxconfig is NULL" : "") : "")
);
return RT_NULL;
}
sdio = rt_malloc(sizeof(struct rthw_sdio));
if (sdio == RT_NULL)
{
LOG_E("L:%d F:%s malloc rthw_sdio fail");
return RT_NULL;
}
rt_memset(sdio, 0, sizeof(struct rthw_sdio));
host = mmcsd_alloc_host();
if (host == RT_NULL)
{
LOG_E("L:%d F:%s mmcsd alloc host fail");
rt_free(sdio);
return RT_NULL;
}
rt_memcpy(&sdio->sdio_des, sdio_des, sizeof(struct ab32_sdio_des));
sdio->sdio_des.hw_sdio = (sdio_des->hw_sdio == RT_NULL ? SDMMC0_BASE : sdio_des->hw_sdio);
sdio->sdio_des.clk_get = (sdio_des->clk_get == RT_NULL ? ab32_sdio_clk_get : sdio_des->clk_get);
rt_event_init(&sdio->event, "sdio", RT_IPC_FLAG_FIFO);
rt_mutex_init(&sdio->mutex, "sdio", RT_IPC_FLAG_PRIO);
/* set host defautl attributes */
host->ops = &ab32_sdio_ops;
host->freq_min = 240 * 1000;
host->freq_max = SDIO_MAX_FREQ;
host->valid_ocr = 0X00FFFF80;/* The voltage range supported is 1.65v-3.6v */
#ifndef SDIO_USING_1_BIT
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#else
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#endif
host->max_seg_size = SDIO_BUFF_SIZE;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = 512;
/* link up host and sdio */
sdio->host = host;
host->private_data = sdio;
rthw_sdio_irq_update(host, 1);
/* ready to change */
mmcsd_change(host);
return host;
}
static rt_err_t _dma_txconfig(rt_uint32_t *src, int Size)
{
hal_sfr_t sdiox = sdio_config->instance;
sdiox[SDxDMAADR] = DMA_ADR(src);
sdiox[SDxDMACNT] = BIT(18) | BIT(17) | BIT(16) | Size;
return RT_EOK;
}
static rt_err_t _dma_rxconfig(rt_uint32_t *dst, int Size)
{
hal_sfr_t sdiox = sdio_config->instance;
sdiox[SDxDMAADR] = DMA_ADR(dst);
sdiox[SDxDMACNT] = (Size);
return RT_EOK;
}
RT_SECTION(".irq.sdio")
void sdio_isr(int vector, void *param)
{
/* enter interrupt */
rt_interrupt_enter();
/* Process All SDIO Interrupt Sources */
rthw_sdio_irq_process(host);
/* leave interrupt */
rt_interrupt_leave();
}
int rt_hw_sdio_init(void)
{
struct ab32_sdio_des sdio_des = {0};
struct sd_handle hsd = {0};
rt_uint8_t param = 0;
hsd.instance = SDMMC0_BASE;
hal_rcu_periph_clk_enable(RCU_SD0);
hal_sd_mspinit(&hsd);
rt_hw_interrupt_install(IRQ_SD_VECTOR, sdio_isr, &param, "sd_isr");
sdio_des.clk_get = ab32_sdio_clk_get;
sdio_des.hw_sdio = SDMMC0_BASE;
sdio_des.rxconfig = _dma_rxconfig;
sdio_des.txconfig = _dma_txconfig;
host = sdio_host_create(&sdio_des);
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
void ab32_mmcsd_change(void)
{
mmcsd_change(host);
}
#endif // 0