4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-19 11:13:31 +08:00
linyuanbo_breo_server 3ef5278322 feat : 基于AT32,将各驱动移植整改待验证
1. 部分驱动已经整改,但未验证
2. 根据AT32整改目录结构
2021-08-19 08:19:02 +00:00

292 lines
7.2 KiB
C
Executable File

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-1-13 Leo first version
*/
#include <board.h>
#include "drv_pwm.h"
#ifdef RT_USING_PWM
#if !defined(BSP_USING_TIM1_CH1) && !defined(BSP_USING_TIM1_CH2) && \
!defined(BSP_USING_TIM1_CH3) && !defined(BSP_USING_TIM1_CH4) && \
!defined(BSP_USING_TIM2_CH1) && !defined(BSP_USING_TIM2_CH2) && \
!defined(BSP_USING_TIM2_CH3) && !defined(BSP_USING_TIM2_CH4) && \
!defined(BSP_USING_TIM3_CH1) && !defined(BSP_USING_TIM3_CH2) && \
!defined(BSP_USING_TIM3_CH3) && !defined(BSP_USING_TIM3_CH4)
#error "Please define at least one BSP_USING_TIMx_CHx"
#endif
#endif /* RT_USING_PWM */
#define DRV_DEBUG
#define LOG_TAG "drv.pwm"
#include <drv_log.h>
#define MAX_PERIOD 65535
struct rt_device_pwm pwm_device;
struct at32_pwm
{
struct rt_device_pwm pwm_device;
TMR_Type* tim_handle;
rt_uint8_t channel;
char *name;
};
static struct at32_pwm at32_pwm_obj[] =
{
#ifdef BSP_USING_TIM1_CH1
PWM1_CONFIG,
#endif
#ifdef BSP_USING_TIM1_CH2
PWM2_CONFIG,
#endif
#ifdef BSP_USING_TIM1_CH3
PWM3_CONFIG,
#endif
#ifdef BSP_USING_TIM1_CH4
PWM4_CONFIG,
#endif
#ifdef BSP_USING_TIM2_CH1
PWM5_CONFIG,
#endif
#ifdef BSP_USING_TIM2_CH2
PWM6_CONFIG,
#endif
#ifdef BSP_USING_TIM2_CH3
PWM7_CONFIG,
#endif
#ifdef BSP_USING_TIM2_CH4
PWM8_CONFIG,
#endif
#ifdef BSP_USING_TIM3_CH1
PWM9_CONFIG,
#endif
#ifdef BSP_USING_TIM3_CH2
PWM10_CONFIG,
#endif
#ifdef BSP_USING_TIM3_CH3
PWM11_CONFIG,
#endif
#ifdef BSP_USING_TIM3_CH4
PWM12_CONFIG,
#endif
};
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
static struct rt_pwm_ops drv_ops =
{
drv_pwm_control
};
static rt_err_t drv_pwm_enable(TMR_Type* TIMx, struct rt_pwm_configuration *configuration, rt_bool_t enable)
{
/* Get the value of channel */
rt_uint32_t channel = configuration->channel;
if (!enable)
{
if(channel == 1)
{
TIM_CCxCmd(TIMx, TIM_Channel_1, TIM_CCx_Disable);
}
else if(channel == 2)
{
TIM_CCxCmd(TIMx, TIM_Channel_2, TIM_CCx_Disable);
}
else if(channel == 3)
{
TIM_CCxCmd(TIMx, TIM_Channel_3, TIM_CCx_Disable);
}
else if(channel == 4)
{
TIM_CCxCmd(TIMx, TIM_Channel_4, TIM_CCx_Disable);
}
}
else
{
if(channel == 1)
{
TIM_CCxCmd(TIMx, TIM_Channel_1, TIM_CCx_Enable);
}
else if(channel == 2)
{
TIM_CCxCmd(TIMx, TIM_Channel_1, TIM_CCx_Enable);
}
else if(channel == 3)
{
TIM_CCxCmd(TIMx, TIM_Channel_1, TIM_CCx_Enable);
}
else if(channel == 4)
{
TIM_CCxCmd(TIMx, TIM_Channel_1, TIM_CCx_Enable);
}
}
/* TIMx enable counter */
TIM_Cmd(TIMx, ENABLE);
return RT_EOK;
}
static rt_err_t drv_pwm_get(TMR_Type* TIMx, struct rt_pwm_configuration *configuration)
{
RCC_ClockType RCC_Clockstruct;
rt_uint32_t ar, div, cc1, cc2, cc3, cc4;
rt_uint32_t channel = configuration->channel;
rt_uint64_t tim_clock;
ar = TIMx->AR;
div = TIMx->DIV;
cc1 = TIMx->CC1;
cc2 = TIMx->CC2;
cc3 = TIMx->CC3;
cc4 = TIMx->CC4;
RCC_GetClocksFreq(&RCC_Clockstruct);
tim_clock = RCC_Clockstruct.APB2CLK_Freq;
/* Convert nanosecond to frequency and duty cycle. */
tim_clock /= 1000000UL;
configuration->period = (ar + 1) * (div + 1) * 1000UL / tim_clock;
if(channel == 1)
configuration->pulse = (cc1 + 1) * (div + 1) * 1000UL / tim_clock;
if(channel == 2)
configuration->pulse = (cc2 + 1) * (div+ 1) * 1000UL / tim_clock;
if(channel == 3)
configuration->pulse = (cc3 + 1) * (div + 1) * 1000UL / tim_clock;
if(channel == 4)
configuration->pulse = (cc4 + 1) * (div + 1) * 1000UL / tim_clock;
return RT_EOK;
}
static rt_err_t drv_pwm_set(TMR_Type* TIMx, struct rt_pwm_configuration *configuration)
{
TIM_TimerBaseInitType TIM_TIMeBaseStructure;
TIM_OCInitType TIM_OCInitStructure;
rt_uint32_t period, pulse;
rt_uint64_t psc;
/* Get the channel number */
rt_uint32_t channel = configuration->channel;
/* Init timer pin and enable clock */
at32_msp_tmr_init(TIMx);
/* Convert nanosecond to frequency and duty cycle. */
period = (unsigned long long)configuration->period ;
psc = period / MAX_PERIOD + 1;
period = period / psc;
/* TIMe base configuration */
TIM_TimeBaseStructInit(&TIM_TIMeBaseStructure);
TIM_TIMeBaseStructure.TIM_Period = period;
TIM_TIMeBaseStructure.TIM_DIV = psc - 1;
TIM_TIMeBaseStructure.TIM_ClockDivision = 0;
TIM_TIMeBaseStructure.TIM_CounterMode = TIM_CounterDIR_Up;
TIM_TimeBaseInit(TIMx, &TIM_TIMeBaseStructure);
pulse = (unsigned long long)configuration->pulse;
/* PWM1 Mode configuration: Channel1 */
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = pulse;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
if(channel == 1)
{
TIM_OC1Init(TIMx, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIMx, TIM_OCPreload_Enable);
}
else if(channel == 2)
{
TIM_OC2Init(TIMx, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIMx, TIM_OCPreload_Enable);
}
else if(channel == 3)
{
TIM_OC3Init(TIMx, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIMx, TIM_OCPreload_Enable);
}
else if(channel == 4)
{
TIM_OC4Init(TIMx, &TIM_OCInitStructure);
TIM_OC4PreloadConfig(TIMx, TIM_OCPreload_Enable);
}
TIM_ARPreloadConfig(TIMx, ENABLE);
#if defined (SOC_SERIES_AT32F415)
if(TIMx == TIM1)
#else
if(TIMx == TIM1 || TIMx == TIM8)
#endif
{
TIM_CtrlPWMOutputs(TIMx,ENABLE);
}
return RT_EOK;
}
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
TIM_Type *TIMx = (TIM_Type *)device->parent.user_data;
switch (cmd)
{
case PWM_CMD_ENABLE:
return drv_pwm_enable(TIMx, configuration, RT_TRUE);
case PWM_CMD_DISABLE:
return drv_pwm_enable(TIMx, configuration, RT_FALSE);
case PWM_CMD_SET:
return drv_pwm_set(TIMx, configuration);
case PWM_CMD_GET:
return drv_pwm_get(TIMx, configuration);
default:
return RT_EINVAL;
}
}
static int rt_hw_pwm_init(void)
{
int i = 0;
int result = RT_EOK;
for(i = 0; i < sizeof(at32_pwm_obj) / sizeof(at32_pwm_obj[0]); i++)
{
if(rt_device_pwm_register(&at32_pwm_obj[i].pwm_device, at32_pwm_obj[i].name, &drv_ops, at32_pwm_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", at32_pwm_obj[i].name);
}
else
{
LOG_D("%s register failed", at32_pwm_obj[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_pwm_init);