rt-thread-official/components/drivers/sensors/sensor.c

450 lines
12 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-01-31 flybreak first version
*/
#include "sensor.h"
#define DBG_ENABLE
#define DBG_LEVEL DBG_INFO
#define DBG_SECTION_NAME "sensor"
#define DBG_COLOR
#include <rtdbg.h>
#include <string.h>
static char *const sensor_name_str[] =
{
"none",
"acce_", /* Accelerometer */
"gyro_", /* Gyroscope */
"mag_", /* Magnetometer */
"temp_", /* Temperature */
"humi_", /* Relative Humidity */
"baro_", /* Barometer */
"li_", /* Ambient light */
"pr_", /* Proximity */
"hr_", /* Heart Rate */
"tvoc_", /* TVOC Level */
"noi_", /* Noise Loudness */
"step_" /* Step sensor */
};
/* Sensor interrupt correlation function */
/*
* Sensor interrupt handler function
*/
void rt_sensor_cb(rt_sensor_t sen)
{
if (sen->parent.rx_indicate == RT_NULL)
{
return;
}
/* The buffer is not empty. Read the data in the buffer first */
if (sen->data_len > 0)
{
sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
}
else if (sen->config.mode == RT_SENSOR_MODE_INT)
{
/* The interrupt mode only produces one data at a time */
sen->parent.rx_indicate(&sen->parent, 1);
}
else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
{
sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
}
}
/* ISR for sensor interrupt */
static void irq_callback(void *args)
{
rt_sensor_t sensor = args;
rt_uint8_t i;
if (sensor->module)
{
/* Invoke a callback for all sensors in the module */
for (i = 0; i < sensor->module->sen_num; i++)
{
rt_sensor_cb(sensor->module->sen[i]);
}
}
else
{
rt_sensor_cb(sensor);
}
}
/* Sensor interrupt initialization function */
static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
{
if (sensor->config.irq_pin.pin == RT_PIN_NONE)
{
return -RT_EINVAL;
}
rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
{
rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
}
else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
{
rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
}
else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
{
rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
}
rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
LOG_I("interrupt init success");
return 0;
}
/* Sensor interrupt enable */
static void rt_sensor_irq_enable(rt_sensor_t sensor)
{
if (sensor->config.irq_pin.pin != RT_PIN_NONE)
{
rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
}
}
/* Sensor interrupt disable */
static void rt_sensor_irq_disable(rt_sensor_t sensor)
{
if (sensor->config.irq_pin.pin != RT_PIN_NONE)
{
rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
}
}
/* RT-Thread Device Interface */
static rt_err_t rt_sensor_init(rt_device_t dev)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
RT_ASSERT(dev != RT_NULL);
if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
{
/* Allocate memory for the sensor buffer */
sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
if (sensor->data_buf == RT_NULL)
{
return -RT_ENOMEM;
}
}
return RT_EOK;
}
static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
RT_ASSERT(dev != RT_NULL);
if (sensor->module)
{
/* take the module mutex */
rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
}
if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
{
/* If polling mode is supported, configure it to polling mode */
if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING) == RT_EOK)
{
sensor->config.mode = RT_SENSOR_MODE_POLLING;
}
}
else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* If interrupt mode is supported, configure it to interrupt mode */
if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
{
sensor->config.mode = RT_SENSOR_MODE_INT;
/* Initialization sensor interrupt */
rt_sensor_irq_init(sensor);
}
}
else if (oflag & RT_SENSOR_FLAG_FIFO && dev->flag & RT_SENSOR_FLAG_FIFO)
{
/* If fifo mode is supported, configure it to fifo mode */
if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
{
sensor->config.mode = RT_SENSOR_MODE_FIFO;
/* Initialization sensor interrupt */
rt_sensor_irq_init(sensor);
}
}
else
{
return -RT_EINVAL;
}
/* Configure power mode to normal mode */
if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
{
sensor->config.power = RT_SENSOR_POWER_NORMAL;
}
if (sensor->module)
{
/* release the module mutex */
rt_mutex_release(sensor->module->lock);
}
return RT_EOK;
}
static rt_err_t rt_sensor_close(rt_device_t dev)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
RT_ASSERT(dev != RT_NULL);
if (sensor->module)
{
rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
}
/* Configure power mode to power down mode */
if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
{
sensor->config.power = RT_SENSOR_POWER_DOWN;
}
/* Sensor disable interrupt */
rt_sensor_irq_disable(sensor);
if (sensor->module)
{
rt_mutex_release(sensor->module->lock);
}
return RT_EOK;
}
static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
rt_size_t result = 0;
RT_ASSERT(dev != RT_NULL);
if (buf == NULL || len == 0)
{
return 0;
}
if (sensor->module)
{
rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
}
/* The buffer is not empty. Read the data in the buffer first */
if (sensor->data_len > 0)
{
if (len > sensor->data_len / sizeof(struct rt_sensor_data))
{
len = sensor->data_len / sizeof(struct rt_sensor_data);
}
rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
/* Clear the buffer */
sensor->data_len = 0;
result = len;
}
else
{
/* If the buffer is empty read the data */
result = sensor->ops->fetch_data(sensor, buf, len);
}
if (sensor->module)
{
rt_mutex_release(sensor->module->lock);
}
return result;
}
static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
rt_err_t result = RT_EOK;
RT_ASSERT(dev != RT_NULL);
if (sensor->module)
{
rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
}
switch (cmd)
{
case RT_SENSOR_CTRL_GET_ID:
if (args)
{
sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args);
}
break;
case RT_SENSOR_CTRL_GET_INFO:
if (args)
{
rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
}
break;
case RT_SENSOR_CTRL_SET_RANGE:
/* Configuration measurement range */
result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
if (result == RT_EOK)
{
sensor->config.range = (rt_int32_t)args;
LOG_D("set range %d", sensor->config.range);
}
break;
case RT_SENSOR_CTRL_SET_ODR:
/* Configuration data output rate */
result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args);
if (result == RT_EOK)
{
sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
LOG_D("set odr %d", sensor->config.odr);
}
break;
case RT_SENSOR_CTRL_SET_MODE:
/* Configuration sensor work mode */
result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, args);
if (result == RT_EOK)
{
sensor->config.mode = (rt_uint32_t)args & 0xFF;
LOG_D("set work mode code:", sensor->config.mode);
if (sensor->config.mode == RT_SENSOR_MODE_POLLING)
{
rt_sensor_irq_disable(sensor);
}
else if (sensor->config.mode == RT_SENSOR_MODE_INT || sensor->config.mode == RT_SENSOR_MODE_FIFO)
{
rt_sensor_irq_enable(sensor);
}
}
break;
case RT_SENSOR_CTRL_SET_POWER:
/* Configuration sensor power mode */
result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args);
if (result == RT_EOK)
{
sensor->config.power = (rt_uint32_t)args & 0xFF;
LOG_D("set power mode code:", sensor->config.power);
}
break;
case RT_SENSOR_CTRL_SELF_TEST:
/* Device self-test */
result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
break;
default:
return -RT_ERROR;
}
if (sensor->module)
{
rt_mutex_release(sensor->module->lock);
}
return result;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops rt_sensor_ops =
{
rt_sensor_init,
rt_sensor_open,
rt_sensor_close,
rt_sensor_read,
RT_NULL,
rt_sensor_control
};
#endif
/*
* sensor register
*/
int rt_hw_sensor_register(rt_sensor_t sensor,
const char *name,
rt_uint32_t flag,
void *data)
{
rt_int8_t result;
rt_device_t device;
RT_ASSERT(sensor != RT_NULL);
char *sensor_name = RT_NULL, *device_name = RT_NULL;
/* Add a type name for the sensor device */
sensor_name = sensor_name_str[sensor->info.type];
device_name = rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
if (device_name == RT_NULL)
{
LOG_E("device_name calloc failed!");
return -RT_ERROR;
}
rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
strcat(device_name, name);
if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
{
/* Create a mutex lock for the module */
sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
if (sensor->module->lock == RT_NULL)
{
rt_free(device_name);
return -RT_ERROR;
}
}
device = &sensor->parent;
#ifdef RT_USING_DEVICE_OPS
device->ops = &rt_sensor_ops;
#else
device->init = rt_sensor_init;
device->open = rt_sensor_open;
device->close = rt_sensor_close;
device->read = rt_sensor_read;
device->write = RT_NULL;
device->control = rt_sensor_control;
#endif
device->type = RT_Device_Class_Sensor;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->user_data = data;
result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
if (result != RT_EOK)
{
LOG_E("rt_sensor register err code: %d", result);
return result;
}
LOG_I("rt_sensor init success");
return RT_EOK;
}