4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-28 03:40:25 +08:00
onelife.real ea6d73f140 *** EFM32 branch ***
1. Upgrade Cortex driver library (CMSIS -> CMSIS & Device): version 2.3.2 -> 3.0.1 & 3.0.0
 - Remove "bsp/efm32/Libraries/CMSIS/Lib/ARM", "bsp/efm32/Libraries/CMSIS/Lib/G++" and "bsp/efm32/Libraries/CMSIS/SVD" to save space
2. Upgrade EFM32 driver libraries (efm32lib -> emlib): version 2.3.2 -> 3.0.0
 - Remove "bsp/efm32/Libraries/Device/EnergyMicro/EFM32LG" and "bsp/efm32/Libraries/Device/EnergyMicro/EFM32TG" to save space
3. Upgrade EFM32GG_DK3750 development kit driver library: version 1.2.2 -> 2.0.1
4. Upgrade EFM32_Gxxx_DK development kit driver library: version 1.7.3 -> 2.0.1
5. Add energy management unit driver and test code
6. Modify linker script and related code to compatible with new version of libraries
7. Change EFM32 branch version number to 1.0
8. Add photo frame demo application

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@2122 bbd45198-f89e-11dd-88c7-29a3b14d5316
2012-05-18 04:40:40 +00:00

1339 lines
53 KiB
C

/***************************************************************************//**
* @file
* @brief Low Energy Sensor (LESENSE) peripheral API
* @author Energy Micro AS
* @version 3.0.0
*******************************************************************************
* @section License
* <b>(C) Copyright 2012 Energy Micro AS, http://www.energymicro.com</b>
*******************************************************************************
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Energy Micro AS has no
* obligation to support this Software. Energy Micro AS is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Energy Micro AS will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#ifndef __EM_LESENSE_H
#define __EM_LESENSE_H
#include "em_part.h"
#if defined(LESENSE_COUNT) && (LESENSE_COUNT > 0)
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
/***************************************************************************//**
* @addtogroup EM_Library
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup LESENSE
* @{
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/** @endcond */
/*******************************************************************************
******************************** ENUMS ************************************
******************************************************************************/
/** Clock divisors for controlling the prescaling factor of the period
* counter.
* Note: these enumeration values are being used for different clock division
* related configuration parameters (hfPresc, lfPresc, pcPresc). */
typedef enum
{
lesenseClkDiv_1 = 0, /**< Divide clock by 1. */
lesenseClkDiv_2 = 1, /**< Divide clock by 2. */
lesenseClkDiv_4 = 2, /**< Divide clock by 4. */
lesenseClkDiv_8 = 3, /**< Divide clock by 8. */
lesenseClkDiv_16 = 4, /**< Divide clock by 16. */
lesenseClkDiv_32 = 5, /**< Divide clock by 32. */
lesenseClkDiv_64 = 6, /**< Divide clock by 64. */
lesenseClkDiv_128 = 7 /**< Divide clock by 128. */
} LESENSE_ClkPresc_TypeDef;
/** Scan modes. */
typedef enum
{
/** New scan is started each time the period counter overflows. */
lesenseScanStartPeriodic = LESENSE_CTRL_SCANMODE_PERIODIC,
/** Single scan is performed when LESENSE_ScanStart() is called. */
lesenseScanStartOneShot = LESENSE_CTRL_SCANMODE_ONESHOT,
/** New scan is triggered by pulse on PRS channel. */
lesenseScanStartPRS = LESENSE_CTRL_SCANMODE_PRS
} LESENSE_ScanMode_TypeDef;
/** PRS sources.
* Note: these enumeration values are being used for different PRS related
* configuration parameters. */
typedef enum
{
lesensePRSCh0 = 0, /**< PRS channel 0. */
lesensePRSCh1 = 1, /**< PRS channel 1. */
lesensePRSCh2 = 2, /**< PRS channel 2. */
lesensePRSCh3 = 3, /**< PRS channel 3. */
lesensePRSCh4 = 4, /**< PRS channel 4. */
lesensePRSCh5 = 5, /**< PRS channel 5. */
lesensePRSCh6 = 6, /**< PRS channel 6. */
lesensePRSCh7 = 7 /**< PRS channel 7. */
} LESENSE_PRSSel_TypeDef;
/** Locations of the alternate excitation function. */
typedef enum
{
/** Alternate excitation is mapped to the LES_ALTEX pins. */
lesenseAltExMapALTEX = LESENSE_CTRL_ALTEXMAP_ALTEX,
/** Alternate excitation is mapped to the pins of the other ACMP. */
lesenseAltExMapACMP = LESENSE_CTRL_ALTEXMAP_ACMP
} LESENSE_AltExMap_TypeDef;
/** Result buffer interrupt and DMA trigger levels. */
typedef enum
{
/** DMA and interrupt flags are set when result buffer is halffull. */
lesenseBufTrigHalf = LESENSE_CTRL_BUFIDL_HALFFULL,
/** DMA and interrupt flags set when result buffer is full. */
lesenseBufTrigFull = LESENSE_CTRL_BUFIDL_FULL
} LESENSE_BufTrigLevel_TypeDef;
/** Modes of operation for DMA wakeup from EM2. */
typedef enum
{
/** No DMA wakeup from EM2. */
lesenseDMAWakeUpDisable = LESENSE_CTRL_DMAWU_DISABLE,
/** DMA wakeup from EM2 when data is valid in the result buffer. */
lesenseDMAWakeUpBufValid = LESENSE_CTRL_DMAWU_BUFDATAV,
/** DMA wakeup from EM2 when the resultbuffer is full/halffull, depending on
* RESBIDL configuration in LESENSE_CTRL register (selected by
* resBufTrigLevel in LESENSE_ResBufTrigLevel_TypeDef descriptor structure). */
lesenseDMAWakeUpBufLevel = LESENSE_CTRL_DMAWU_BUFLEVEL
} LESENSE_DMAWakeUp_TypeDef;
/** Bias modes. */
typedef enum
{
/** Duty cycle bias module between low power and high accuracy mode. */
lesenseBiasModeDutyCycle = LESENSE_BIASCTRL_BIASMODE_DUTYCYCLE,
/** Bias module is always in high accuracy mode. */
lesenseBiasModeHighAcc = LESENSE_BIASCTRL_BIASMODE_HIGHACC,
/** Bias module is controlled by the EMU and not affected by LESENSE. */
lesenseBiasModeDontTouch = LESENSE_BIASCTRL_BIASMODE_DONTTOUCH
} LESENSE_BiasMode_TypeDef;
/** Scan configuration. */
typedef enum
{
/** The channel configuration registers (CHx_CONF) used are directly mapped to
* the channel number. */
lesenseScanConfDirMap = LESENSE_CTRL_SCANCONF_DIRMAP,
/** The channel configuration registers used are CHx+8_CONF for channels 0-7
* and CHx-8_CONF for channels 8-15. */
lesenseScanConfInvMap = LESENSE_CTRL_SCANCONF_INVMAP,
/** The channel configuration registers used toggles between CHX_SCANCONF and
* CHX+8_SCANCONF when channel x triggers. */
lesenseScanConfToggle = LESENSE_CTRL_SCANCONF_TOGGLE,
/** The decoder state defines the channel configuration register (CHx_CONF) to
* be used. */
lesenseScanConfDecDef = LESENSE_CTRL_SCANCONF_DECDEF
} LESENSE_ScanConfSel_TypeDef;
/** DAC CHx data control configuration. */
typedef enum
{
/** DAC channel x data is defined by DAC_CHxDATA register.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACIfData = _LESENSE_PERCTRL_DACCH0DATA_DACDATA,
/** DAC channel x data is defined by ACMPTHRES in LESENSE_CHx_INTERACT.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseACMPThres = _LESENSE_PERCTRL_DACCH0DATA_ACMPTHRES
} LESENSE_ControlDACData_TypeDef;
/** DAC channel x conversion mode configuration. */
typedef enum
{
/** LESENSE doesn't control DAC channel x.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACConvModeDisable = _LESENSE_PERCTRL_DACCH0CONV_DISABLE,
/** DAC channel x is driven in continuous mode.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACConvModeContinuous = _LESENSE_PERCTRL_DACCH0CONV_CONTINUOUS,
/** DAC channel x is driven in sample hold mode.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACConvModeSampleHold = _LESENSE_PERCTRL_DACCH0CONV_SAMPLEHOLD,
/** DAC channel x is driven in sample off mode.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACConvModeSampleOff = _LESENSE_PERCTRL_DACCH0CONV_SAMPLEOFF
} LESENSE_ControlDACConv_TypeDef;
/** DAC channel x output mode configuration. */
typedef enum
{
/** DAC CHx output to pin and ACMP/ADC disabled.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACOutModeDisable = _LESENSE_PERCTRL_DACCH0OUT_DISABLE,
/** DAC CHx output to pin enabled, output to ADC and ACMP disabled.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACOutModePin = _LESENSE_PERCTRL_DACCH0OUT_PIN,
/** DAC CHx output to pin disabled, output to ADC and ACMP enabled.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACOutModeADCACMP = _LESENSE_PERCTRL_DACCH0OUT_ADCACMP,
/** DAC CHx output to pin, ADC, and ACMP enabled.
* Note: this value could be used for both DAC Ch0 and Ch1. */
lesenseDACOutModePinADCACMP = _LESENSE_PERCTRL_DACCH0OUT_PINADCACMP
} LESENSE_ControlDACOut_TypeDef;
/** DAC reference configuration. */
typedef enum
{
/** DAC uses VDD reference. */
lesenseDACRefVdd = LESENSE_PERCTRL_DACREF_VDD,
/** DAC uses bandgap reference. */
lesenseDACRefBandGap = LESENSE_PERCTRL_DACREF_BANDGAP
} LESENSE_DACRef_TypeDef;
/** ACMPx control configuration. */
typedef enum
{
/** LESENSE does not control the ACMPx.
* Note: this value could be used for both ACMP0 and ACMP1. */
lesenseACMPModeDisable = _LESENSE_PERCTRL_ACMP0MODE_DISABLE,
/** LESENSE controls the input mux of ACMPx.
* Note: this value could be used for both ACMP0 and ACMP1. */
lesenseACMPModeMux = _LESENSE_PERCTRL_ACMP0MODE_MUX,
/** LESENSE controls the input mux of and the threshold value of ACMPx.
* Note: this value could be used for both ACMP0 and ACMP1. */
lesenseACMPModeMuxThres = _LESENSE_PERCTRL_ACMP0MODE_MUXTHRES
} LESENSE_ControlACMP_TypeDef;
/** Warm up modes. ACMP and DAC duty cycle mode configuration. */
typedef enum
{
/** ACMPs and DACs are shut down when LESENSE is idle. */
lesenseWarmupModeNormal = LESENSE_PERCTRL_WARMUPMODE_NORMAL,
/** ACMPs are kept powered up when LESENSE is idle. */
lesenseWarmupModeACMP = LESENSE_PERCTRL_WARMUPMODE_KEEPACMPWARM,
/** The DAC is kept powered up when LESENSE is idle. */
lesenseWarmupModeDAC = LESENSE_PERCTRL_WARMUPMODE_KEEPDACWARM,
/** ACMPs and the DAC are kept powered up when LESENSE is idle. */
lesenseWarmupModeKeepWarm = LESENSE_PERCTRL_WARMUPMODE_KEEPACMPDACWARM
} LESENSE_WarmupMode_TypeDef;
/** Decoder input source configuration. */
typedef enum
{
/** The SENSORSTATE register is used as input to the decoder. */
lesenseDecInputSensorSt = LESENSE_DECCTRL_INPUT_SENSORSTATE,
/** PRS channels are used as input to the decoder. */
lesenseDecInputPRS = LESENSE_DECCTRL_INPUT_PRS
} LESENSE_DecInput_TypeDef;
/** Compare source selection for sensor sampling. */
typedef enum
{
/** Counter output will be used in comparison. */
lesenseSampleModeCounter = LESENSE_CH_INTERACT_SAMPLE_COUNTER,
/** ACMP output will be used in comparison. */
lesenseSampleModeACMP = LESENSE_CH_INTERACT_SAMPLE_ACMP
} LESENSE_ChSampleMode_TypeDef;
/** Interrupt generation setup for CHx interrupt flag. */
typedef enum
{
/** No interrupt is generated. */
lesenseSetIntNone = LESENSE_CH_INTERACT_SETIF_NONE,
/** Set interrupt flag if the sensor triggers. */
lesenseSetIntLevel = LESENSE_CH_INTERACT_SETIF_LEVEL,
/** Set interrupt flag on positive edge of the sensor state. */
lesenseSetIntPosEdge = LESENSE_CH_INTERACT_SETIF_POSEDGE,
/** Set interrupt flag on negative edge of the sensor state. */
lesenseSetIntNegEdge = LESENSE_CH_INTERACT_SETIF_NEGEDGE
} LESENSE_ChIntMode_TypeDef;
/** Channel pin mode for the excitation phase of the scan sequence. */
typedef enum
{
/** Channel pin is disabled. */
lesenseChPinExDis = LESENSE_CH_INTERACT_EXMODE_DISABLE,
/** Channel pin is configured as push-pull, driven HIGH. */
lesenseChPinExHigh = LESENSE_CH_INTERACT_EXMODE_HIGH,
/** Channel pin is configured as push-pull, driven LOW. */
lesenseChPinExLow = LESENSE_CH_INTERACT_EXMODE_LOW,
/** DAC output (only available on channel 0, 1, 2, 3, 12, 13, 14 and 15) */
lesenseChPinExDACOut = LESENSE_CH_INTERACT_EXMODE_DACOUT
} LESENSE_ChPinExMode_TypeDef;
/** Channel pin mode for the idle phase of the scan sequence. */
typedef enum
{
/** Channel pin is disabled in idle phase.
* Note: this value could be used for all channels. */
lesenseChPinIdleDis = _LESENSE_IDLECONF_CH0_DISABLE,
/** Channel pin is configured as push-pull, driven HIGH in idle phase.
* Note: this value could be used for all channels. */
lesenseChPinIdleHigh = _LESENSE_IDLECONF_CH0_HIGH,
/** Channel pin is configured as push-pull, driven LOW in idle phase.
* Note: this value could be used for all channels. */
lesenseChPinIdleLow = _LESENSE_IDLECONF_CH0_LOW,
/** Channel pin is connected to DAC CH0 output in idle phase.
* Note: only applies to channel 0, 1, 2, 3. */
lesenseChPinIdleDACCh0 = _LESENSE_IDLECONF_CH0_DACCH0,
/** Channel pin is connected to DAC CH1 output in idle phase.
* Note: only applies to channel 12, 13, 14, 15. */
lesenseChPinIdleDACCh1 = _LESENSE_IDLECONF_CH12_DACCH1
} LESENSE_ChPinIdleMode_TypeDef;
/** Clock used for excitation and sample delay timing. */
typedef enum
{
/** LFACLK (LF clock) is used. */
lesenseClkLF = _LESENSE_CH_INTERACT_EXCLK_LFACLK,
/** AUXHFRCO (HF clock) is used. */
lesenseClkHF = _LESENSE_CH_INTERACT_EXCLK_AUXHFRCO
} LESENSE_ChClk_TypeDef;
/** Compare modes for counter comparison. */
typedef enum
{
/** Set interrupt flag if counter value is less than CTRTHRESHOLD, or if the
* ACMP output is 0. */
lesenseCompModeLess = LESENSE_CH_EVAL_COMP_LESS,
/** Set interrupt flag if counter value is greater than, or equal to
* CTRTHRESHOLD, or if the ACMP output is 1. */
lesenseCompModeGreaterOrEq = LESENSE_CH_EVAL_COMP_GE
} LESENSE_ChCompMode_TypeDef;
/** Idle phase configuration of alternate excitation channels. */
typedef enum
{
/** ALTEX output is disabled in idle phase.
* Note: this value could be used for all alternate excitation channels. */
lesenseAltExPinIdleDis = _LESENSE_ALTEXCONF_IDLECONF0_DISABLE,
/** ALTEX output is high in idle phase.
* Note: this value could be used for all alternate excitation channels. */
lesenseAltExPinIdleHigh = _LESENSE_ALTEXCONF_IDLECONF0_HIGH,
/** ALTEX output is low in idle phase.
* Note: this value could be used for all alternate excitation channels. */
lesenseAltExPinIdleLow = _LESENSE_ALTEXCONF_IDLECONF0_LOW
} LESENSE_AltExPinIdle_TypeDef;
/** Transition action modes. */
typedef enum
{
/** No PRS pulses generated (if PRSCOUNT == 0).
* Do not count (if PRSCOUNT == 1). */
lesenseTransActNone = LESENSE_ST_TCONFA_PRSACT_NONE,
/** Generate pulse on LESPRS0 (if PRSCOUNT == 0). */
lesenseTransActPRS0 = LESENSE_ST_TCONFA_PRSACT_PRS0,
/** Generate pulse on LESPRS1 (if PRSCOUNT == 0). */
lesenseTransActPRS1 = LESENSE_ST_TCONFA_PRSACT_PRS1,
/** Generate pulse on LESPRS0 and LESPRS1 (if PRSCOUNT == 0). */
lesenseTransActPRS01 = LESENSE_ST_TCONFA_PRSACT_PRS01,
/** Generate pulse on LESPRS2 (for both PRSCOUNT == 0 and PRSCOUNT == 1). */
lesenseTransActPRS2 = LESENSE_ST_TCONFA_PRSACT_PRS2,
/** Generate pulse on LESPRS0 and LESPRS2 (if PRSCOUNT == 0). */
lesenseTransActPRS02 = LESENSE_ST_TCONFA_PRSACT_PRS02,
/** Generate pulse on LESPRS1 and LESPRS2 (if PRSCOUNT == 0). */
lesenseTransActPRS12 = LESENSE_ST_TCONFA_PRSACT_PRS12,
/** Generate pulse on LESPRS0, LESPRS1 and LESPRS2 (if PRSCOUNT == 0). */
lesenseTransActPRS012 = LESENSE_ST_TCONFA_PRSACT_PRS012,
/** Count up (if PRSCOUNT == 1). */
lesenseTransActUp = LESENSE_ST_TCONFA_PRSACT_UP,
/** Count down (if PRSCOUNT == 1). */
lesenseTransActDown = LESENSE_ST_TCONFA_PRSACT_DOWN,
/** Count up and generate pulse on LESPRS2 (if PRSCOUNT == 1). */
lesenseTransActUpAndPRS2 = LESENSE_ST_TCONFA_PRSACT_UPANDPRS2,
/** Count down and generate pulse on LESPRS2 (if PRSCOUNT == 1). */
lesenseTransActDownAndPRS2 = LESENSE_ST_TCONFA_PRSACT_DOWNANDPRS2
} LESENSE_StTransAct_TypeDef;
/*******************************************************************************
******************************* STRUCTS ***********************************
******************************************************************************/
/** Core control (LESENSE_CTRL) descriptor structure. */
typedef struct
{
/** Select scan start mode to control how the scan start is being triggered.*/
LESENSE_ScanMode_TypeDef scanStart;
/** Select PRS source for scan start if scanMode is set to lesensePrsPulse. */
LESENSE_PRSSel_TypeDef prsSel;
/** Select scan configuration register usage strategy. */
LESENSE_ScanConfSel_TypeDef scanConfSel;
/** Set to true to invert ACMP0 output. */
bool invACMP0;
/** Set to true to invert ACMP1 output. */
bool invACMP1;
/** Set to true to sample both ACMPs simultaneously. */
bool dualSample;
/** Set to true in order to to store SCANRES in RAM (accessible via RESDATA)
* after each scan. */
bool storeScanRes;
/** Set to true in order to always make LESENSE write to the result buffer,
* even if it is full. */
bool bufOverWr;
/** Select trigger conditions for interrupt and DMA. */
LESENSE_BufTrigLevel_TypeDef bufTrigLevel;
/** Configure trigger condition for DMA wakeup from EM2. */
LESENSE_DMAWakeUp_TypeDef wakeupOnDMA;
/** Select bias mode. */
LESENSE_BiasMode_TypeDef biasMode;
/** Set to true to keep LESENSE running in debug mode. */
bool debugRun;
} LESENSE_CoreCtrlDesc_TypeDef;
/** Default configuration for LESENSE_CtrlDesc_TypeDef structure. */
#define LESENSE_CORECTRL_DESC_DEFAULT \
{ \
lesenseScanStartPeriodic, /* Start new scan each time the period counter overflows. */ \
lesensePRSCh0, /* Default PRS channel is selected. */ \
lesenseScanConfDirMap, /* Direct mapping SCANCONF register usage strategy. */ \
false, /* Don't invert ACMP0 output. */ \
false, /* Don't invert ACMP1 output. */ \
false, /* Disable dual sampling. */ \
true, /* Store scan result after each scan. */ \
true, /* Overwrite result buffer register even if it is full. */ \
lesenseBufTrigHalf, /* Trigger interrupt and DMA request if result buffer is half full. */ \
lesenseDMAWakeUpDisable, /* Don't wake up on DMA from EM2. */ \
lesenseBiasModeDontTouch, /* Don't touch bias configuration. */ \
true /* Keep LESENSE running in debug mode. */ \
}
/** LESENSE timing control descriptor structure. */
typedef struct
{
/** Set the number of LFACLK cycles to delay sensor interaction on
* each channel. Valid range: 0-3 (2 bit). */
uint8_t startDelay;
} LESENSE_TimeCtrlDesc_TypeDef;
/** Default configuration for LESENSE_TimeCtrlDesc_TypeDef structure. */
#define LESENSE_TIMECTRL_DESC_DEFAULT 0U
/** LESENSE peripheral control descriptor structure. */
typedef struct
{
/** Configure DAC channel 0 data control. */
LESENSE_ControlDACData_TypeDef dacCh0Data;
/** Configure how LESENSE controls conversion on DAC channel 0. */
LESENSE_ControlDACConv_TypeDef dacCh0ConvMode;
/** Configure how LESENSE controls output on DAC channel 0. */
LESENSE_ControlDACOut_TypeDef dacCh0OutMode;
/** Configure DAC channel 1 data control. */
LESENSE_ControlDACData_TypeDef dacCh1Data;
/** Configure how LESENSE controls conversion on DAC channel 1. */
LESENSE_ControlDACConv_TypeDef dacCh1ConvMode;
/** Configure how LESENSE controls output on DAC channel 1. */
LESENSE_ControlDACOut_TypeDef dacCh1OutMode;
/** Configure the prescaling factor for the LESENSE - DAC interface.
* Valid range: 0-31 (5bit). */
uint8_t dacPresc;
/** Configure the DAC reference to be used. Set to #lesenseDACRefVdd to use
* VDD and set to #lesenseDACRefBandGap to use bandgap as reference. */
LESENSE_DACRef_TypeDef dacRef;
/** Configure how LESENSE controls ACMP 0. */
LESENSE_ControlACMP_TypeDef acmp0Mode;
/** Configure how LESENSE controls ACMP 1. */
LESENSE_ControlACMP_TypeDef acmp1Mode;
/** Configure how LESENSE controls ACMPs and the DAC in idle mode. */
LESENSE_WarmupMode_TypeDef warmupMode;
} LESENSE_PerCtrlDesc_TypeDef;
/** Default configuration for LESENSE_PerCtrl_TypeDef structure. */
#define LESENSE_PERCTRL_DESC_DEFAULT \
{ \
lesenseDACIfData, /**/ \
lesenseDACConvModeDisable, /**/ \
lesenseDACOutModeDisable, /**/ \
lesenseDACIfData, /**/ \
lesenseDACConvModeDisable, /**/ \
lesenseDACOutModeDisable, /**/ \
0U, /**/ \
lesenseDACRefVdd, /**/ \
lesenseACMPModeMuxThres, /**/ \
lesenseACMPModeMuxThres, /**/ \
lesenseWarmupModeKeepWarm, /**/ \
}
/** LESENSE decoder control descriptor structure. */
typedef struct
{
/** Select the input to the LESENSE decoder. */
LESENSE_DecInput_TypeDef decInput;
/** Initial state of the LESENSE decoder. */
uint32_t initState;
/** Set to enable the decoder to check the present state in addition
* to the states defined in DECCONF. */
bool chkState;
/** When set, a transition from state x in the decoder will set interrupt flag
* CHx. */
bool intMap;
/** Set to enable hysteresis in the decoder for suppressing changes on PRS
* channel 0. */
bool hystPRS0;
/** Set to enable hysteresis in the decoder for suppressing changes on PRS
* channel 1. */
bool hystPRS1;
/** Set to enable hysteresis in the decoder for suppressing changes on PRS
* channel 2. */
bool hystPRS2;
/** Set to enable hysteresis in the decoder for suppressing interrupt
* requests. */
bool hystIRQ;
/** Set to enable count mode on decoder PRS channels 0 and 1 to produce
* outputs which can be used by a PCNT to count up or down. */
bool prsCount;
/** Select PRS channel input for bit 0 of the LESENSE decoder. */
LESENSE_PRSSel_TypeDef prsChSel0;
/** Select PRS channel input for bit 1 of the LESENSE decoder. */
LESENSE_PRSSel_TypeDef prsChSel1;
/** Select PRS channel input for bit 2 of the LESENSE decoder. */
LESENSE_PRSSel_TypeDef prsChSel2;
/** Select PRS channel input for bit 3 of the LESENSE decoder. */
LESENSE_PRSSel_TypeDef prsChSel3;
} LESENSE_DecCtrlDesc_TypeDef;
/** Default configuration for LESENSE_PerCtrl_TypeDef structure. */
#define LESENSE_DECCTRL_DESC_DEFAULT \
{ \
lesenseDecInputSensorSt, /**/ \
0U, /**/ \
false, /**/ \
true, /**/ \
true, /**/ \
true, /**/ \
true, /**/ \
true, /**/ \
false, /**/ \
lesensePRSCh0, /**/ \
lesensePRSCh1, /**/ \
lesensePRSCh2, /**/ \
lesensePRSCh3, /**/ \
}
/** LESENSE module initialization structure. */
typedef struct
{
/** LESENSE core configuration parameters. */
LESENSE_CoreCtrlDesc_TypeDef coreCtrl;
/** LESENSE timing configuration parameters. */
LESENSE_TimeCtrlDesc_TypeDef timeCtrl;
/** LESENSE peripheral configuration parameters. */
LESENSE_PerCtrlDesc_TypeDef perCtrl;
/** LESENSE decoder configuration parameters. */
LESENSE_DecCtrlDesc_TypeDef decCtrl;
} LESENSE_Init_TypeDef;
/** Default configuration for LESENSE_Init_TypeDef structure. */
#define LESENSE_INIT_DEFAULT \
{ \
.coreCtrl = LESENSE_CORECTRL_DESC_DEFAULT, /* Default core control parameters. */ \
.timeCtrl = LESENSE_TIMECTRL_DESC_DEFAULT, /* Default time control parameters. */ \
.perCtrl = LESENSE_PERCTRL_DESC_DEFAULT, /* Default peripheral control parameters. */ \
.decCtrl = LESENSE_DECCTRL_DESC_DEFAULT /* Default decoder control parameters. */ \
}
/** Channel descriptor structure. */
typedef struct
{
/** Set to enable scan channel CHx. */
bool enaScanCh;
/** Set to enable CHx pin. */
bool enaPin;
/** Enable/disable channel interrupts after configuring all the sensor channel
* parameters. */
bool enaInt;
/** Configure channel pin mode for the excitation phase of the scan sequence.
* Note: OPAOUT is only available on channels 2, 3, 4, and 5. */
LESENSE_ChPinExMode_TypeDef chPinExMode;
/** Configure channel pin idle setup in LESENSE idle phase. */
LESENSE_ChPinIdleMode_TypeDef chPinIdleMode;
/** Set to use alternate excite pin for excitation. */
bool useAltEx;
/** Set to enable the result from this channel being shifted into the decoder
* register. */
bool shiftRes;
/** Set to invert the result bit stored in SCANRES register. */
bool invRes;
/** Set to store the counter value in RAM (accessible via RESDATA) and make
* the comparison result available in the SCANRES register. */
bool storeCntRes;
/** Select clock used for excitation timing. */
LESENSE_ChClk_TypeDef exClk;
/** Select clock used for sample delay timing. */
LESENSE_ChClk_TypeDef sampleClk;
/** Configure excitation time. Excitation will last exTime+1 excitation clock
* cycles. Valid range: 0-63 (6 bits). */
uint8_t exTime;
/** Configure sample delay. Sampling will occur after sampleDelay+1 sample
* clock cycles. Valid range: 0-127 (7 bits). */
uint8_t sampleDelay;
/** Configure measure delay. Sensor measuring is delayed for measDelay
* excitation clock cycles. Valid range: 0-127 (7 bits). */
uint8_t measDelay;
/** Configure ACMP threshold.
* If perCtrl.dacCh0Data or perCtrl.dacCh1Data is set to #lesenseDACIfData,
* acmpThres defines the 12-bit DAC data in the corresponding data register
* of the DAC interface (DACn_CH0DATA and DACn_CH1DATA).
* In this case, the valid range is: 0-4095 (12 bits).
* If perCtrl.dacCh0Data or perCtrl.dacCh1Data is set to #lesenseACMPThres,
* acmpThres defines the 6-bit Vdd scaling factor of ACMP negative input
* (VDDLEVEL in ACMP_INPUTSEL register).
* In this case, the valid range is: 0-63 (6 bits). */
uint16_t acmpThres;
/** Select if ACMP output or counter output should be used in comparison. */
LESENSE_ChSampleMode_TypeDef sampleMode;
/** Configure interrupt generation mode for CHx interrupt flag. */
LESENSE_ChIntMode_TypeDef intMode;
/** Configure decision threshold for counter comparison.
* Valid range: 0-65535 (16 bits). */
uint16_t cntThres;
/** Select mode for counter comparison. */
LESENSE_ChCompMode_TypeDef compMode;
} LESENSE_ChDesc_TypeDef;
/** Configuration structure for all scan channels. */
typedef struct
{
/** Channel descriptor for all 16 channels. */
LESENSE_ChDesc_TypeDef Ch[16];
} LESENSE_ChAll_TypeDef;
/** Default configuration for scan channel. */
#define LESENSE_CH_CONF_DEFAULT \
{ \
true, /* Enable scan channel. */ \
true, /* Enable the assigned pin on scan channel. */ \
true, /* Enable interrupts on channel. */ \
lesenseChPinExHigh, /* Channel pin is high during the excitation period. */ \
lesenseChPinIdleLow, /* Channel pin is low during the idle period. */ \
false, /* Don't use alternate excitation pins for excitation. */ \
false, /* Disabled to shift results from this channel to the decoder register. */ \
false, /* Disabled to invert the scan result bit. */ \
false, /* Disabled to store counter value in the result buffer. */ \
lesenseClkLF, /* Use the LF clock for excitation timing. */ \
lesenseClkLF, /* Use the LF clock for sample timing. */ \
0x03U, /* Excitation time is set to 3(+1) excitation clock cycles. */ \
0x09U, /* Sample delay is set to 9(+1) sample clock cycles. */ \
0x06U, /* Measure delay is set to 6 excitation clock cycles.*/ \
0x00U, /* ACMP threshold has been set to 0. */ \
lesenseSampleModeACMP, /* ACMP output will be used in comparison. */ \
lesenseSetIntNone, /* No interrupt is generated by the channel. */ \
0xFFU, /* Counter threshold has bee set to 0xFF. */ \
lesenseCompModeLess /* Compare mode has been set to trigger interrupt on "less". */ \
}
/** Default configuration for all sensor channels. */
#define LESENSE_SCAN_CONF_DEFAULT \
{ \
{ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 0. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 1. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 2. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 3. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 4. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 5. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 6. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 7. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 8. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 9. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 10. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 11. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 12. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 13. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 14. */ \
LESENSE_CH_CONF_DEFAULT, /* Scan channel 15. */ \
} \
}
/** Alternate excitation descriptor structure. */
typedef struct
{
/** Configure alternate excitation pins. If set, the corresponding alternate
* excitation pin is enabled. */
bool enablePin;
/** Configure idle phase setup of alternate excitation pins. */
LESENSE_AltExPinIdle_TypeDef idleConf;
/** Configure how to control the external alternate excitation pins. Only
* applies if altExMap has been set to lesenseAltExMapALTEX.
* If true, the excitation happens on the corresponding alternate excitation
* pin during the excitation periods of all enabled channels.
* If false, the excitation happens on the corresponding alternate excitation
* pin ONLY during the excitation period of the corresponding channel. */
bool alwaysEx;
} LESENSE_AltExDesc_TypeDef;
/** Configuration structure for alternate excitation. */
typedef struct
{
/** Select alternate excitation mapping. */
LESENSE_AltExMap_TypeDef altExMap;
/** Alternate excitation channel descriptors. */
LESENSE_AltExDesc_TypeDef AltEx[8];
} LESENSE_ConfAltEx_TypeDef;
/** Default configuration for alternate excitation channel. */
#define LESENSE_ALTEX_CH_CONF_DEFAULT \
{ \
true, /* Alternate excitation enabled.*/ \
lesenseAltExIdleDis, /* Alternate excitation pin is disabled in idle. */ \
false /* Excite only for corresponding channel. */ \
}
/** Default configuration for all alternate excitation channels. */
#define LESENSE_ALTEX_CONF_DEFAULT \
{ \
lesenseAltExMapACMP, \
{ \
LESENSE_ALTEX_CH_CONF_DEFAULT, /* Alternate excitation channel 0. */ \
LESENSE_ALTEX_CH_CONF_DEFAULT, /* Alternate excitation channel 1. */ \
LESENSE_ALTEX_CH_CONF_DEFAULT, /* Alternate excitation channel 2. */ \
LESENSE_ALTEX_CH_CONF_DEFAULT, /* Alternate excitation channel 3. */ \
LESENSE_ALTEX_CH_CONF_DEFAULT, /* Alternate excitation channel 4. */ \
LESENSE_ALTEX_CH_CONF_DEFAULT, /* Alternate excitation channel 5. */ \
LESENSE_ALTEX_CH_CONF_DEFAULT, /* Alternate excitation channel 6. */ \
LESENSE_ALTEX_CH_CONF_DEFAULT /* Alternate excitation channel 7. */ \
} \
}
/** Decoder state condition descriptor structure. */
typedef struct
{
/** Configure compare value. State transition is triggered when sensor state
* equals to this value. Valid range: 0-15 (4 bits). */
uint8_t compVal;
/** Configure compare mask. Set bit X to exclude sensor X from evaluation.
* Note: decoder can handle sensor inputs from up to 4 sensors, therefore
* this mask is 4 bit long. */
uint8_t compMask;
/** Configure index of state to be entered if the sensor state equals to
* compVal. Valid range: 0-15 (4 bits). */
uint8_t nextState;
/** Configure which PRS action to perform when sensor state equals to
* compVal. */
LESENSE_StTransAct_TypeDef prsAct;
/** If enabled, interrupt flag is set when sensor state equals to compVal. */
bool setInt;
} LESENSE_DecStCond_TypeDef;
/** Default configuration for decoder state condition. */
#define LESENSE_ST_CONF_DEFAULT \
{ \
0x0FU, /* Compare value set to 0x0F. */ \
0x00U, /* All decoder inputs masked. */ \
0U, /* Next state is state 0. */ \
lesenseTransActNone, /* No PRS action performed on compare match. */ \
false /* No interrupt triggered on compare match. */ \
}
/** Decoder state x configuration structure. */
typedef struct
{
/** If enabled, the state descriptor pair in the next location will also be
* evaluated. */
bool chainDesc;
/** State condition descriptor A (high level descriptor of
* LESENSE_STx_DECCONFA). */
LESENSE_DecStCond_TypeDef confA;
/** State condition descriptor B (high level descriptor of
* LESENSE_STx_DECCONFB). */
LESENSE_DecStCond_TypeDef confB;
} LESENSE_DecStDesc_TypeDef;
/** Configuration structure for the decoder. */
typedef struct
{
/** Descriptor of the 16 decoder states. */
LESENSE_DecStDesc_TypeDef St[16];
} LESENSE_DecStAll_TypeDef;
/** Default configuration for all decoder states. */
#define LESENSE_DECODER_CONF_DEFAULT \
{ /* chain | Descriptor A | Descriptor B */ \
{ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 0. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 1. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 2. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 3. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 4. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 5. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 6. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 7. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 8. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 9. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 10. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 11. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 12. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 13. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT }, /* Decoder state 14. */ \
{ false, LESENSE_ST_CONF_DEFAULT, LESENSE_ST_CONF_DEFAULT } /* Decoder state 15. */ \
} \
}
/*******************************************************************************
***************************** PROTOTYPES **********************************
******************************************************************************/
void LESENSE_Init(LESENSE_Init_TypeDef const *init, bool const reqReset);
void LESENSE_Reset(void);
uint32_t LESENSE_ScanFreqSet(uint32_t refFreq, uint32_t const scanFreq);
void LESENSE_ScanModeSet(LESENSE_ScanMode_TypeDef const scanMode,
bool const start);
void LESENSE_StartDelaySet(uint8_t const startDelay);
void LESENSE_ClkDivSet(LESENSE_ChClk_TypeDef const clk,
LESENSE_ClkPresc_TypeDef const clkDiv);
void LESENSE_ChannelAllConfig(LESENSE_ChAll_TypeDef const *confChAll);
void LESENSE_ChannelConfig(LESENSE_ChDesc_TypeDef const *confCh,
uint32_t const chIdx);
void LESENSE_ChannelEnable(uint8_t const chIdx,
bool const enaScanCh,
bool const enaPin);
void LESENSE_ChannelEnableMask(uint16_t chMask, uint16_t pinMask);
void LESENSE_ChannelTimingSet(uint8_t const chIdx,
uint8_t const exTime,
uint8_t const sampleDelay,
uint8_t const measDelay);
void LESENSE_ChannelThresSet(uint8_t const chIdx,
uint16_t const acmpThres,
uint16_t const cntThres);
void LESENSE_AltExConfig(LESENSE_ConfAltEx_TypeDef const *confAltEx);
void LESENSE_DecoderStateAllConfig(LESENSE_DecStAll_TypeDef const *confDecStAll);
void LESENSE_DecoderStateConfig(LESENSE_DecStDesc_TypeDef const *confDecSt,
uint32_t const decSt);
void LESENSE_DecoderStateSet(uint32_t decSt);
uint32_t LESENSE_DecoderStateGet(void);
__STATIC_INLINE void LESENSE_ScanStart(void);
__STATIC_INLINE void LESENSE_ScanStop(void);
__STATIC_INLINE void LESENSE_DecoderStart(void);
__STATIC_INLINE void LESENSE_DecoderStop(void);
__STATIC_INLINE void LESENSE_ResultBufferClear(void);
__STATIC_INLINE uint32_t LESENSE_StatusGet(void);
__STATIC_INLINE void LESENSE_StatusWait(uint32_t flag);
__STATIC_INLINE uint32_t LESENSE_ChannelActiveGet(void);
__STATIC_INLINE uint32_t LESENSE_ScanResultGet(void);
__STATIC_INLINE uint32_t LESENSE_ScanResultDataGet(void);
__STATIC_INLINE uint32_t LESENSE_ScanResultDataBufferGet(uint32_t idx);
__STATIC_INLINE uint32_t LESENSE_SensorStateGet(void);
__STATIC_INLINE void LESENSE_RAMPowerDown(void);
__STATIC_INLINE void LESENSE_IntClear(uint32_t flags);
__STATIC_INLINE void LESENSE_IntEnable(uint32_t flags);
__STATIC_INLINE void LESENSE_IntDisable(uint32_t flags);
__STATIC_INLINE void LESENSE_IntSet(uint32_t flags);
__STATIC_INLINE uint32_t LESENSE_IntGet(void);
__STATIC_INLINE uint32_t LESENSE_IntGetEnabled(void);
/***************************************************************************//**
* @brief
* Start scanning of sensors.
******************************************************************************/
__STATIC_INLINE void LESENSE_ScanStart(void)
{
/* Start scanning of sensors */
LESENSE->CMD = LESENSE_CMD_START;
}
/***************************************************************************//**
* @brief
* Stop scanning of sensors.
*
* @note
* If issued during a scan, the command takes effect after scan completion.
******************************************************************************/
__STATIC_INLINE void LESENSE_ScanStop(void)
{
/* Stop scanning of sensors */
LESENSE->CMD = LESENSE_CMD_STOP;
}
/***************************************************************************//**
* @brief
* Start LESENSE decoder.
******************************************************************************/
__STATIC_INLINE void LESENSE_DecoderStart(void)
{
/* Start decoder */
LESENSE->CMD = LESENSE_CMD_DECODE;
}
/***************************************************************************//**
* @brief
* Stop LESENSE decoder.
*
* @details
* This function disables the LESENSE decoder by setting the command to the
* LESENSE_DECCTRL register.
******************************************************************************/
__STATIC_INLINE void LESENSE_DecoderStop(void)
{
/* Stop the decoder */
LESENSE->DECCTRL |= LESENSE_DECCTRL_DISABLE;
}
/***************************************************************************//**
* @brief
* Clear result buffer.
******************************************************************************/
__STATIC_INLINE void LESENSE_ResultBufferClear(void)
{
LESENSE->CMD = LESENSE_CMD_CLEARBUF;
}
/***************************************************************************//**
* @brief
* Get the current status of LESENSE.
*
* @return
* This function returns the value of LESENSE_STATUS register that
* contains the OR combination of the following status bits:
* @li LESENSE_STATUS_RESV - Result data valid. Set when data is available
* in the result buffer. Cleared when the buffer is empty.
* @li LESENSE_STATUS_RESFULL - Result buffer full. Set when the result
* buffer is full.
* @li LESENSE_STATUS_RUNNING - LESENSE is active.
* @li LESENSE_STATUS_SCANACTIVE - LESENSE is currently interfacing sensors.
******************************************************************************/
__STATIC_INLINE uint32_t LESENSE_StatusGet(void)
{
return LESENSE->STATUS;
}
/***************************************************************************//**
* @brief
* Wait until the status of LESENSE is equal to what requested.
*
* @details
* This function is polling the LESENSE_STATUS register and waits until the
* requested combination of flags are set.
*
* @param[in] flag
* The OR combination of the following status bits:
* @li LESENSE_STATUS_BUFDATAV - Result data valid. Set when data is available
* in the result buffer. Cleared when the buffer is empty.
* @li LESENSE_STATUS_BUFHALFFULL - Result buffer half full. Set when the
* result buffer is half full.
* @li LESENSE_STATUS_BUFFULL - Result buffer full. Set when the result
* buffer is full.
* @li LESENSE_STATUS_RUNNING - LESENSE is active.
* @li LESENSE_STATUS_SCANACTIVE - LESENSE is currently interfacing sensors.
* @li LESENSE_STATUS_DACACTIVE - The DAC interface is currently active.
******************************************************************************/
__STATIC_INLINE void LESENSE_StatusWait(uint32_t flag)
{
while (!(LESENSE->STATUS & flag))
;
}
/***************************************************************************//**
* @brief
* Get the currently active channel index.
*
* @return
* This function returns the value of LESENSE_CHINDEX register that
* contains the index of the currently active channel (0-15).
******************************************************************************/
__STATIC_INLINE uint32_t LESENSE_ChannelActiveGet(void)
{
return LESENSE->CURCH;
}
/***************************************************************************//**
* @brief
* Get the latest scan comparison result (1 bit / channel).
*
* @return
* This function returns the value of LESENSE_SCANRES register that
* contains the comparison result of the last scan on all channels.
* Bit x is set if a comparison triggered on channel x, which means that the
* LESENSE counter met the comparison criteria set in LESENSE_CHx_EVAL by
* COMPMODE and CNTTHRES.
******************************************************************************/
__STATIC_INLINE uint32_t LESENSE_ScanResultGet(void)
{
return LESENSE->SCANRES;
}
/***************************************************************************//**
* @brief
* Get the oldest unread data from the result buffer.
*
* @note
* Make sure that the STORERES bit is set in LESENSE_CHx_EVAL, or
* STRSCANRES bit is set in LESENSE_CTRL, otherwise this function will return
* undefined value.
*
* @return
* This function returns the value of LESENSE_RESDATA register that
* contains the oldest unread counter result from the result buffer.
******************************************************************************/
__STATIC_INLINE uint32_t LESENSE_ScanResultDataGet(void)
{
return LESENSE->BUFDATA;
}
/***************************************************************************//**
* @brief
* Get data from the result data buffer.
*
* @note
* Make sure that the STORERES bit is set in LESENSE_CHx_EVAL, or
* STRSCANRES bit is set in LESENSE_CTRL, otherwise this function will return
* undefined value.
*
* @param[in]
* Result data buffer index. Valid range: 0-15.
*
* @return
* This function returns the selected word from the result data buffer.
******************************************************************************/
__STATIC_INLINE uint32_t LESENSE_ScanResultDataBufferGet(uint32_t idx)
{
/* Note: masking is needed to avoid over-indexing! */
return LESENSE->BUF[idx & 0x0FU].DATA;
}
/***************************************************************************//**
* @brief
* Get the current state of the LESENSE sensor.
*
* @return
* This function returns the value of LESENSE_SENSORSTATE register that
* represents the current state of the LESENSE sensor.
******************************************************************************/
__STATIC_INLINE uint32_t LESENSE_SensorStateGet(void)
{
return LESENSE->SENSORSTATE;
}
/***************************************************************************//**
* @brief
* Shut off power to the LESENSE RAM, disables LESENSE.
*
* @details
* This function shuts off the LESENSE RAM in order to decrease the leakage
* current of EFM32 if LESENSE is not used in your application.
*
* @note
* Warning! Once the LESENSE RAM is powered down, it cannot be powered up
* again.
******************************************************************************/
__STATIC_INLINE void LESENSE_RAMPowerDown(void)
{
/* Power down LESENSE RAM */
LESENSE->POWERDOWN = LESENSE_POWERDOWN_RAM;
}
/***************************************************************************//**
* @brief
* Clear one or more pending LESENSE interrupts.
*
* @param[in] flags
* Pending LESENSE interrupt sources to clear. Use a set of interrupt flags
* OR-ed together to clear multiple interrupt sources of the LESENSE module
* (LESENSE_IF_nnn).
******************************************************************************/
__STATIC_INLINE void LESENSE_IntClear(uint32_t flags)
{
LESENSE->IFC = flags;
}
/***************************************************************************//**
* @brief
* Enable one or more LESENSE interrupts.
*
* @param[in] flags
* LESENSE interrupt sources to enable. Use a set of interrupt flags OR-ed
* together to enable multiple interrupt sources of the LESENSE module
* (LESENSE_IF_nnn).
******************************************************************************/
__STATIC_INLINE void LESENSE_IntEnable(uint32_t flags)
{
LESENSE->IEN |= flags;
}
/***************************************************************************//**
* @brief
* Disable one or more LESENSE interrupts.
*
* @param[in] flags
* LESENSE interrupt sources to disable. Use a set of interrupt flags OR-ed
* together to disable multiple interrupt sources of the LESENSE module
* (LESENSE_IF_nnn).
******************************************************************************/
__STATIC_INLINE void LESENSE_IntDisable(uint32_t flags)
{
LESENSE->IEN &= ~(flags);
}
/***************************************************************************//**
* @brief
* Set one or more pending LESENSE interrupts from SW.
*
* @param[in] flags
* LESENSE interrupt sources to set to pending. Use a set of interrupt
* flags OR-ed together to set multiple interrupt sources of the LESENSE
* module (LESENSE_IFS_nnn).
******************************************************************************/
__STATIC_INLINE void LESENSE_IntSet(uint32_t flags)
{
LESENSE->IFS = flags;
}
/***************************************************************************//**
* @brief
* Get pending LESENSE interrupt flags.
*
* @note
* The event bits are not cleared by the use of this function.
*
* @return
* Pending LESENSE interrupt sources. The OR combination of valid interrupt
* flags of the LESENSE module (LESENSE_IF_nnn).
******************************************************************************/
__STATIC_INLINE uint32_t LESENSE_IntGet(void)
{
return LESENSE->IF;
}
/***************************************************************************//**
* @brief
* Get enabled and pending LESENSE interrupt flags.
*
* @details
* Useful for handling more interrupt sources in the same interrupt handler.
*
* @note
* The event bits are not cleared by the use of this function.
*
* @return
* Pending and enabled LESENSE interrupt sources.
* The return value is the bitwise AND combination of
* - the OR combination of enabled interrupt sources in LESENSE_IEN_nnn
* register (LESENSE_IEN_nnn) and
* - the OR combination of valid interrupt flags of the LESENSE module
* (LESENSE_IF_nnn).
******************************************************************************/
__STATIC_INLINE uint32_t LESENSE_IntGetEnabled(void)
{
uint32_t tmp;
/* Store LESENSE->IEN in temporary variable in order to define explicit order
* of volatile accesses. */
tmp = LESENSE->IEN;
/* Bitwise AND of pending and enabled interrupts */
return LESENSE->IF & tmp;
}
/** @} (end addtogroup LESENSE) */
/** @} (end addtogroup EM_Library) */
#ifdef __cplusplus
}
#endif
#endif /* defined(LESENSE_COUNT) && (LESENSE_COUNT > 0) */
#endif /* __EM_LESENSE_H */