4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-23 03:37:20 +08:00

5254 lines
176 KiB
C

//*****************************************************************************
//
// am_hal_iom.c
//! @file
//!
//! @brief Functions for interfacing with the IO Master module
//!
//! @addtogroup iom2 IO Master (SPI/I2C)
//! @ingroup apollo2hal
//! @{
//
//*****************************************************************************
//*****************************************************************************
//
// Copyright (c) 2017, Ambiq Micro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 1.2.11 of the AmbiqSuite Development Package.
//
//*****************************************************************************
#include <stdint.h>
#include <stdbool.h>
#include "am_mcu_apollo.h"
#ifdef __IAR_SYSTEMS_ICC__
#define AM_INSTR_CLZ(n) __CLZ(n)
#else
#define AM_INSTR_CLZ(n) __builtin_clz(n)
#endif
//! ASSERT(1) or Correct(0) invalid IOM R/W Thresholds.
#ifndef AM_ASSERT_INVALID_THRESHOLD
#define AM_ASSERT_INVALID_THRESHOLD (1)
#endif
//*****************************************************************************
//
// Forcing optimizations
//
// These pragmas must be enabled if we intend to use the IOM4 workaround with a
// delay higher than 18-bits in the first word.
//
//*****************************************************************************
//#ifdef __IAR_SYSTEMS_ICC__
//#pragma optimize=3 s
//#endif
//
//#ifdef __ARMCC_VERSION
//#pragma O3
//#endif
//
//#ifdef __GNUC__
//#pragma GCC optimize ("O3")
//#endif
//*****************************************************************************
//
// Forward declarations.
//
//*****************************************************************************
static void iom_workaround_loop(uint32_t ui32PadRegVal,
volatile uint32_t *pui32PadReg,
bool bRising);
static uint32_t
internal_am_hal_iom_spi_cmd_construct(uint32_t ui32Operation,
uint32_t ui32ChipSelect,
uint32_t ui32NumBytes,
uint32_t ui32Options);
static am_hal_iom_status_e
internal_iom_wait_i2c_scl_hi(uint32_t ui32Module);
//*****************************************************************************
//
// IOM Buffer states.
//
//*****************************************************************************
#define BUFFER_IDLE 0x0
#define BUFFER_SENDING 0x1
#define BUFFER_RECEIVING 0x2
//*****************************************************************************
//
// Global state variables
//
//*****************************************************************************
//
// Define a structure to map CE for IOM4 only.
//
typedef struct
{
uint8_t channel; // CE channel for SPI
uint8_t pad; // GPIO Pad
uint8_t funcsel; // FNCSEL value
} IOMPad_t;
// Define the mapping between SPI CEn, Pads, and FNCSEL values for all IOMs.
const IOMPad_t g_IOMPads[] =
{
{0, 29, 6}, {0, 34, 6}, {1, 18, 4}, {1, 37, 5}, {2, 41, 6},
{3, 17, 4}, {3, 45, 4}, {4, 10, 6}, {4, 46, 6}, {5, 9, 4},
{5, 47, 6}, {6, 35, 4}, {7, 38, 6}
};
typedef struct
{
uint8_t module; // IOM module
uint8_t pad; // GPIO Pad
uint8_t funcsel; // FNCSEL value
} I2CPad_t;
// Define the mapping between I2C SCL Pads, and FNCSEL values for all IOMs.
const I2CPad_t g_I2CPads[] =
{
{0, 5, 0},
{1, 8, 0},
{2, 0, 7},
{3, 42, 4},
{4, 39, 4},
{5, 48, 4},
{2, 27, 4},
};
// Defines for IOM 4 Workaround
#define WORKAROUND_IOM 4
#define WORKAROUND_IOM_MOSI_PIN 44
#define WORKAROUND_IOM_MOSI_CFG AM_HAL_PIN_44_M4MOSI
#define MAX_IOM_BITS 9
#define IOM_OVERHEAD_FACTOR 2
//*****************************************************************************
//
// Non-blocking buffer and buffer-management variables.
//
//*****************************************************************************
typedef struct
{
uint32_t ui32State;
uint32_t *pui32Data;
uint32_t ui32BytesLeft;
uint32_t ui32Options;
void (*pfnCallback)(void);
}
am_hal_iom_nb_buffer;
//
// Global State to keep track if there is an ongoing transaction
//
volatile bool g_bIomBusy[AM_REG_IOMSTR_NUM_MODULES + 1] = {0};
am_hal_iom_nb_buffer g_psIOMBuffers[AM_REG_IOMSTR_NUM_MODULES];
//
// Save error status from non-blocking calls
//
static am_hal_iom_status_e g_iom_error_status[AM_REG_IOMSTR_NUM_MODULES + 1];
//*****************************************************************************
//
// Computed timeout.
//
// The IOM may not always respond to events (e.g., CMDCMP). This is a
// timeout value in cycles to be used when waiting on status changes.
//*****************************************************************************
uint32_t ui32StatusTimeout[AM_REG_IOMSTR_NUM_MODULES];
//*****************************************************************************
//
// Queue management variables.
//
//*****************************************************************************
am_hal_queue_t g_psIOMQueue[AM_REG_IOMSTR_NUM_MODULES];
//*****************************************************************************
//
// Default queue flush function
//
//*****************************************************************************
am_hal_iom_queue_flush_t am_hal_iom_queue_flush = am_hal_iom_sleeping_queue_flush;
//*****************************************************************************
//
// Power management structure.
//
//*****************************************************************************
am_hal_iom_pwrsave_t am_hal_iom_pwrsave[AM_REG_IOMSTR_NUM_MODULES];
//*****************************************************************************
//
// I2C BitBang to IOM error mapping
//
//*****************************************************************************
const am_hal_iom_status_e i2c_bb_errmap[AM_HAL_I2C_BIT_BANG_STATUS_MAX] =
{
AM_HAL_IOM_SUCCESS, // AM_HAL_I2C_BIT_BANG_SUCCESS,
AM_HAL_IOM_ERR_I2C_NAK, // AM_HAL_I2C_BIT_BANG_ADDRESS_NAKED,
AM_HAL_IOM_ERR_I2C_NAK, // AM_HAL_I2C_BIT_BANG_DATA_NAKED,
AM_HAL_IOM_ERR_TIMEOUT, // AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT,
AM_HAL_IOM_ERR_TIMEOUT, // AM_HAL_I2C_BIT_BANG_DATA_TIMEOUT,
};
//*****************************************************************************
//
// Static helper functions
//
//*****************************************************************************
//*****************************************************************************
//
// Get the error interrupt staus
//
//*****************************************************************************
//
//! @brief Returns the error status based on interrupt bits
//!
//! @param ui32Module - IOM module
//! ui32Status - Currently accumulated error status
//!
//! The function looks at the supplied interrupt error status bits and the
//! the current INTSTAT and maps the same to the enum am_hal_iom_status_e.
//!
//! @return Returns the appropriate error status in the form of am_hal_iom_status_e
//!
//*****************************************************************************
static am_hal_iom_status_e
internal_iom_get_int_err(uint32_t ui32Module, uint32_t ui32IntStatus)
{
am_hal_iom_status_e ui32Status = AM_HAL_IOM_SUCCESS;
//
// Let's accumulate the errors
//
ui32IntStatus |= am_hal_iom_int_status_get(ui32Module, false);
if (ui32IntStatus & AM_HAL_IOM_INT_SWERR)
{
// Error in hardware command issued or illegal access by SW
ui32Status = AM_HAL_IOM_ERR_INVALID_OPER;
}
else if (ui32IntStatus & AM_HAL_IOM_INT_I2CARBERR)
{
// Loss of I2C multi-master arbitration
ui32Status = AM_HAL_IOM_ERR_I2C_ARB;
}
else if (ui32IntStatus & AM_HAL_IOM_INT_NAK)
{
// I2C NAK
ui32Status = AM_HAL_IOM_ERR_I2C_NAK;
}
return ui32Status;
}
//*****************************************************************************
// onebit()
//*****************************************************************************
//
// A power of 2?
// Return true if ui32Value has exactly 1 bit set, otherwise false.
//
static bool onebit(uint32_t ui32Value)
{
return ui32Value && !(ui32Value & (ui32Value - 1));
}
//*****************************************************************************
// compute_freq()
//*****************************************************************************
//
// Compute the interface frequency based on the given parameters
//
static uint32_t compute_freq(uint32_t ui32HFRCfreqHz,
uint32_t ui32Fsel, uint32_t ui32Div3,
uint32_t ui32DivEn, uint32_t ui32TotPer)
{
uint32_t ui32Denomfinal, ui32ClkFreq;
ui32Denomfinal = ((1 << (ui32Fsel - 1)) * (1 + ui32Div3 * 2) * (1 + ui32DivEn * (ui32TotPer)));
ui32ClkFreq = (ui32HFRCfreqHz) / ui32Denomfinal; // Compute the set frequency value
ui32ClkFreq += (((ui32HFRCfreqHz) % ui32Denomfinal) > (ui32Denomfinal / 2)) ? 1 : 0;
return ui32ClkFreq;
}
//*****************************************************************************
// iom_calc_gpio()
//
// Calculate the IOM4 GPIO to assert.
//
//*****************************************************************************
static uint32_t iom_calc_gpio(uint32_t ui32ChipSelect)
{
uint32_t index;
uint8_t ui8PadRegVal, ui8FncSelVal;
//
// Figure out which GPIO we are using for the IOM
//
for ( index = 0; index < (sizeof(g_IOMPads) / sizeof(IOMPad_t)); index++ )
{
//
// Is this one of the CEn that we are using?
//
if ( g_IOMPads[index].channel == ui32ChipSelect )
{
//
// Get the PAD register value
//
ui8PadRegVal = ((AM_REGVAL(AM_HAL_GPIO_PADREG(g_IOMPads[index].pad))) &
AM_HAL_GPIO_PADREG_M(g_IOMPads[index].pad)) >>
AM_HAL_GPIO_PADREG_S(g_IOMPads[index].pad);
//
// Get the FNCSEL field value
//
ui8FncSelVal = (ui8PadRegVal & 0x38) >> 3;
//
// Is the FNCSEL filed for this pad set to the expected value?
//
if ( ui8FncSelVal == g_IOMPads[index].funcsel )
{
// This is the GPIO we need to use.
return g_IOMPads[index].pad;
}
}
}
return 0xDEADBEEF;
}
//*****************************************************************************
//
// Checks to see if this processor is a Rev B0 device.
//
// This is needed for the B0 IOM workaround.
//
//*****************************************************************************
bool
isRevB0(void)
{
//
// Check to make sure the major rev is B and the minor rev is zero.
//
if ( (AM_REG(MCUCTRL, CHIPREV) & 0xFF) == AM_REG_MCUCTRL_CHIPREV_REVMAJ_B )
{
return true;
}
else
{
return false;
}
}
//*****************************************************************************
//
// Checks to see if this processor is a Rev B2 device.
//
// This is needed for the B2 I2C workaround.
//
//*****************************************************************************
static bool
isRevB2(void)
{
//
// Check to make sure the major rev is B and the minor rev is zero.
//
if ( (AM_REG(MCUCTRL, CHIPREV) & 0xFF) ==
(AM_REG_MCUCTRL_CHIPREV_REVMAJ_B | AM_REG_MCUCTRL_CHIPREV_REVMIN_REV2) )
{
return true;
}
else
{
return false;
}
}
//*****************************************************************************
//
// Checks and waits for the SCL line to be high
// This is to ensure clock hi time specs are not violated in case slave did
// clock stretching in previous transaction
//
//*****************************************************************************
static am_hal_iom_status_e
internal_iom_wait_i2c_scl_hi(uint32_t ui32Module)
{
uint32_t ui32IOMGPIO = 0xDEADBEEF;
volatile uint32_t *pui32SCLPadreg;
uint32_t ui32SCLPadregVal;
uint32_t index;
uint8_t ui8PadRegVal;
uint8_t ui8FncSelVal;
uint32_t waitStatus;
// Need to change the SCL pin as a GPIO and poll till it is set to hi
// For all the IOM's except for IOM2, there is a single designated pin for SCL
// IOM2 has two choices and we need to determine which one
//
// Figure out which GPIO we are using for the SCL
//
for ( index = 0; index < (sizeof(g_I2CPads) / sizeof(I2CPad_t)); index++ )
{
//
// Is this for the IOM that we are using?
//
if ( g_I2CPads[index].module == ui32Module )
{
//
// Get the PAD register value
//
ui8PadRegVal = ((AM_REGVAL(AM_HAL_GPIO_PADREG(g_I2CPads[index].pad))) &
AM_HAL_GPIO_PADREG_M(g_I2CPads[index].pad)) >>
AM_HAL_GPIO_PADREG_S(g_I2CPads[index].pad);
//
// Get the FNCSEL field value
//
ui8FncSelVal = (ui8PadRegVal & 0x38) >> 3;
//
// Is the FNCSEL filed for this pad set to the expected value?
//
if ( ui8FncSelVal == g_I2CPads[index].funcsel )
{
// This is the GPIO we need to use.
ui32IOMGPIO = g_I2CPads[index].pad;
break;
}
}
}
if (0xDEADBEEF == ui32IOMGPIO)
{
// SCL has not been configured
return AM_HAL_IOM_ERR_INVALID_CFG;
}
//
// Save the locations and values of the SCL pin configuration
// information.
//
pui32SCLPadreg = (volatile uint32_t *)AM_HAL_GPIO_PADREG(ui32IOMGPIO);
ui32SCLPadregVal = *pui32SCLPadreg;
//
// Temporarily configure the override pin as an input.
//
am_hal_gpio_pin_config(ui32IOMGPIO, AM_HAL_PIN_INPUT);
//
// Make sure SCL is high within standard timeout
//
waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
AM_HAL_GPIO_RD_REG(ui32IOMGPIO), AM_HAL_GPIO_RD_M(ui32IOMGPIO),
AM_HAL_GPIO_RD_M(ui32IOMGPIO));
//
// Write the GPIO PADKEY register
//
AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
// Revert back the original settings
*pui32SCLPadreg = ui32SCLPadregVal;
//
// Re-lock the GPIO PADKEY register
//
AM_REGn(GPIO, 0, PADKEY) = 0;
if (waitStatus != 1)
{
return AM_HAL_IOM_ERR_TIMEOUT;
}
return AM_HAL_IOM_SUCCESS;
}
//*****************************************************************************
//
//! @brief Returns the proper settings for the CLKCFG register.
//!
//! @param ui32FreqHz - The desired interface frequency in Hz.
//! ui32Phase - SPI phase (0 or 1). Can affect duty cycle.
//!
//! Given a desired serial interface clock frequency, this function computes
//! the appropriate settings for the various fields in the CLKCFG register
//! and returns the 32-bit value that should be written to that register.
//! The actual interface frequency may be slightly lower than the specified
//! frequency, but the actual frequency is also returned.
//!
//! @note A couple of criteria that this algorithm follow are:
//! 1. For power savings, choose the highest FSEL possible.
//! 2. For best duty cycle, use DIV3 when possible rather than DIVEN.
//!
//! An example of #1 is that both of the following CLKCFGs would result
//! in a frequency of 428,571 Hz: 0x0E071400 and 0x1C0E1300.
//! The former is chosen by the algorithm because it results in FSEL=4
//! while the latter is FSEL=3.
//!
//! An example of #2 is that both of the following CLKCFGs would result
//! in a frequency of 2,000,000 Hz: 0x02011400 and 0x00000C00.
//! The latter is chosen by the algorithm because it results in use of DIV3
//! rather than DIVEN.
//!
//! @return An unsigned 64-bit value.
//! The lower 32-bits represent the value to use to set CLKCFG.
//! The upper 32-bits represent the actual frequency (in Hz) that will result
//! from setting CLKCFG with the lower 32-bits.
//!
//! 0 (64 bits) = error. Note that the caller must check the entire 64 bits.
//! It is not an error if only the low 32-bits are 0 (this is a valid value).
//! But the entire 64 bits returning 0 is an error.
//!
//*****************************************************************************
static
uint64_t iom_get_interface_clock_cfg(uint32_t ui32FreqHz, uint32_t ui32Phase )
{
uint32_t ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer, ui32LowPer;
uint32_t ui32Denom, ui32v1, ui32Denomfinal, ui32ClkFreq, ui32ClkCfg;
uint32_t ui32HFRCfreqHz;
int32_t i32Div, i32N;
if ( ui32FreqHz == 0 )
{
return 0;
}
//
// Set the HFRC clock frequency.
//
ui32HFRCfreqHz = AM_HAL_CLKGEN_FREQ_MAX_HZ;
//
// Compute various parameters used for computing the optimal CLKCFG setting.
//
i32Div = (ui32HFRCfreqHz / ui32FreqHz) + ((ui32HFRCfreqHz % ui32FreqHz) ? 1 : 0); // Round up (ceiling)
//
// Compute N (count the number of LS zeros of Div) = ctz(Div) = log2(Div & (-Div))
//
i32N = 31 - AM_INSTR_CLZ((i32Div & (-i32Div)));
if ( i32N > 6 )
{
i32N = 6;
}
ui32Div3 = ( (ui32FreqHz < (ui32HFRCfreqHz / 16384)) ||
( ((ui32FreqHz >= (ui32HFRCfreqHz / 3)) &&
(ui32FreqHz <= ((ui32HFRCfreqHz / 2) - 1)) ) ) ) ? 1 : 0;
ui32Denom = ( 1 << i32N ) * ( 1 + (ui32Div3 * 2) );
ui32TotPer = i32Div / ui32Denom;
ui32TotPer += (i32Div % ui32Denom) ? 1 : 0;
ui32v1 = 31 - AM_INSTR_CLZ(ui32TotPer); // v1 = log2(TotPer)
ui32Fsel = (ui32v1 > 7) ? ui32v1 + i32N - 7 : i32N;
ui32Fsel++;
if ( ui32Fsel > 7 )
{
//
// This is an error, can't go that low.
//
return 0;
}
if ( ui32v1 > 7 )
{
ui32DivEn = ui32TotPer; // Save TotPer for the round up calculation
ui32TotPer = ui32TotPer>>(ui32v1-7);
ui32TotPer += ((ui32DivEn) % (1 << (ui32v1 - 7))) ? 1 : 0;
}
ui32DivEn = ( (ui32FreqHz >= (ui32HFRCfreqHz / 4)) ||
((1 << (ui32Fsel - 1)) == i32Div) ) ? 0 : 1;
if (ui32Phase == 1)
{
ui32LowPer = (ui32TotPer - 2) / 2; // Longer high phase
}
else
{
ui32LowPer = (ui32TotPer - 1) / 2; // Longer low phase
}
ui32ClkCfg = AM_REG_IOMSTR_CLKCFG_FSEL(ui32Fsel) |
AM_REG_IOMSTR_CLKCFG_DIV3(ui32Div3) |
AM_REG_IOMSTR_CLKCFG_DIVEN(ui32DivEn) |
AM_REG_IOMSTR_CLKCFG_LOWPER(ui32LowPer) |
AM_REG_IOMSTR_CLKCFG_TOTPER(ui32TotPer - 1);
//
// Now, compute the actual frequency, which will be returned.
//
ui32ClkFreq = compute_freq(ui32HFRCfreqHz, ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer - 1);
//
// Determine if the actual frequency is a power of 2 (MHz).
//
if ( (ui32ClkFreq % 250000) == 0 )
{
//
// If the actual clock frequency is a power of 2 ranging from 250KHz up,
// we can simplify the CLKCFG value using DIV3 (which also results in a
// better duty cycle).
//
ui32Denomfinal = ui32ClkFreq / (uint32_t)250000;
if ( onebit(ui32Denomfinal) )
{
//
// These configurations can be simplified by using DIV3. Configs
// using DIV3 have a 50% duty cycle, while those from DIVEN will
// have a 66/33 duty cycle.
//
ui32TotPer = ui32LowPer = ui32DivEn = 0;
ui32Div3 = 1;
//
// Now, compute the return values.
//
ui32ClkFreq = compute_freq(ui32HFRCfreqHz, ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer);
ui32ClkCfg = AM_REG_IOMSTR_CLKCFG_FSEL(ui32Fsel) |
AM_REG_IOMSTR_CLKCFG_DIV3(1) |
AM_REG_IOMSTR_CLKCFG_DIVEN(0) |
AM_REG_IOMSTR_CLKCFG_LOWPER(0) |
AM_REG_IOMSTR_CLKCFG_TOTPER(0);
}
}
return ( ((uint64_t)ui32ClkFreq) << 32) | (uint64_t)ui32ClkCfg;
} //iom_get_interface_clock_cfg()
//*****************************************************************************
//
//! @brief Clock setting for the I2C Clock Stretch Workaround
//!
//! This restricts the frequencies that can be used for I2C devices on
//!
//! @param ui32FreqHz - The desired interface frequency in Hz.
//!
//! @return None.
//
//*****************************************************************************
static
uint64_t iom_get_i2c_workaround_clock_cfg(uint32_t ui32FreqHz)
{
uint32_t ui32Fsel;
// Only allow certain SCL frequencies for clock stretching devices.
if (ui32FreqHz == AM_HAL_IOM_800KHZ)
{
ui32Fsel = 2;
}
else if (ui32FreqHz == AM_HAL_IOM_400KHZ)
{
ui32Fsel = 3;
}
else if (ui32FreqHz == AM_HAL_IOM_200KHZ)
{
ui32Fsel = 4;
}
else if (ui32FreqHz == AM_HAL_IOM_100KHZ)
{
ui32Fsel = 5;
}
else // Default is 100KHz.
{
ui32Fsel = 5;
}
// Return the resulting CLKCFG register settings.
return (AM_REG_IOMSTR_CLKCFG_FSEL(ui32Fsel) |
AM_REG_IOMSTR_CLKCFG_DIV3(0) |
AM_REG_IOMSTR_CLKCFG_DIVEN(1) |
AM_REG_IOMSTR_CLKCFG_LOWPER(14) |
AM_REG_IOMSTR_CLKCFG_TOTPER(29));
} // iom_get_i2c_workaround_clock_cfg
//*****************************************************************************
//
//! @brief Enable the IOM in the power control block.
//!
//! This function enables the desigated IOM module in the power control block.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_pwrctrl_enable(uint32_t ui32Module)
{
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
"Trying to enable an IOM module that doesn't exist.");
am_hal_pwrctrl_periph_enable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
}
//*****************************************************************************
//
//! @brief Disable the IOM in the power control block.
//!
//! This function disables the desigated IOM module in the power control block.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_pwrctrl_disable(uint32_t ui32Module)
{
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
"Trying to disable an IOM module that doesn't exist.");
am_hal_pwrctrl_periph_disable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
}
//*****************************************************************************
//
//! @brief Enables the IOM module
//!
//! @param ui32Module - The number of the IOM module to be enabled.
//!
//! This function enables the IOM module using the IFCEN bitfield in the
//! IOMSTR_CFG register.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_enable(uint32_t ui32Module)
{
if ( ui32Module < AM_REG_IOMSTR_NUM_MODULES )
{
AM_REGn(IOMSTR, ui32Module, CFG) |= AM_REG_IOMSTR_CFG_IFCEN(1);
g_bIomBusy[ui32Module] = false;
}
}
//*****************************************************************************
//
//! @brief Disables the IOM module.
//!
//! @param ui32Module - The number of the IOM module to be disabled.
//!
//! This function disables the IOM module using the IFCEN bitfield in the
//! IOMSTR_CFG register.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_disable(uint32_t ui32Module)
{
if ( ui32Module < AM_REG_IOMSTR_NUM_MODULES )
{
//
// Wait until the bus is idle.
//
am_hal_iom_poll_complete(ui32Module);
//
// Disable the interface.
//
AM_REGn(IOMSTR, ui32Module, CFG) &= ~(AM_REG_IOMSTR_CFG_IFCEN(1));
}
}
//*****************************************************************************
//
//! @brief Enable power to the selected IOM module.
//!
//! @param ui32Module - Module number for the IOM to be turned on.
//!
//! This function enables the power gate to the selected IOM module. It is
//! intended to be used along with am_hal_iom_power_off_save(). Used together,
//! these functions allow the caller to power IOM modules off to save
//! additional power without losing important configuration information.
//!
//! The am_hal_iom_power_off_save() function will save IOM configuration
//! register information to SRAM before powering off the selected IOM module.
//! This function will re-enable the IOM module, and restore those
//! configuration settings from SRAM.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_power_on_restore(uint32_t ui32Module)
{
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
"Trying to enable an IOM module that doesn't exist.");
//
// Make sure this restore is a companion to a previous save call.
//
if ( am_hal_iom_pwrsave[ui32Module].bValid == 0 )
{
return;
}
//
// Enable power to the selected IOM.
//
am_hal_pwrctrl_periph_enable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
//
// Restore the IOM configuration registers from the structure in SRAM.
//
AM_REGn(IOMSTR, ui32Module, FIFOTHR) = am_hal_iom_pwrsave[ui32Module].FIFOTHR;
AM_REGn(IOMSTR, ui32Module, CLKCFG) = am_hal_iom_pwrsave[ui32Module].CLKCFG;
AM_REGn(IOMSTR, ui32Module, CFG) = am_hal_iom_pwrsave[ui32Module].CFG;
AM_REGn(IOMSTR, ui32Module, INTEN) = am_hal_iom_pwrsave[ui32Module].INTEN;
//
// Indicates we have restored the configuration.
//
am_hal_iom_pwrsave[ui32Module].bValid = 0;
}
//*****************************************************************************
//
//! @brief Disable power to the selected IOM module.
//!
//! @param ui32Module - Module number for the IOM to be turned off.
//!
//! This function disables the power gate to the selected IOM module. It is
//! intended to be used along with am_hal_iom_power_on_restore(). Used together,
//! these functions allow the caller to power IOM modules off to save
//! additional power without losing important configuration information.
//!
//! The am_hal_iom_power_off_save() function will save IOM configuration
//! register information to SRAM before powering off the selected IOM module.
//! The am_hal_iom_power_on_restore() function will re-enable the IOM module
//! and restore those configuration settings from SRAM.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_power_off_save(uint32_t ui32Module)
{
am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
"Trying to disable an IOM module that doesn't exist.");
//
// Save the IOM configuration registers to the structure in SRAM.
//
am_hal_iom_pwrsave[ui32Module].FIFOTHR = AM_REGn(IOMSTR, ui32Module, FIFOTHR);
am_hal_iom_pwrsave[ui32Module].CLKCFG = AM_REGn(IOMSTR, ui32Module, CLKCFG);
am_hal_iom_pwrsave[ui32Module].CFG = AM_REGn(IOMSTR, ui32Module, CFG);
am_hal_iom_pwrsave[ui32Module].INTEN = AM_REGn(IOMSTR, ui32Module, INTEN);
//
// Indicates we have a valid saved configuration.
//
am_hal_iom_pwrsave[ui32Module].bValid = 1;
//
// Disable power to the selected IOM.
//
am_hal_pwrctrl_periph_disable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
}
//
//! Check and correct the IOM FIFO threshold.
//
#define MAX_RW_THRESHOLD (AM_HAL_IOM_MAX_FIFO_SIZE - 4)
#define MIN_RW_THRESHOLD (4)
#if (AM_ASSERT_INVALID_THRESHOLD == 0)
static uint8_t check_iom_threshold(const uint8_t iom_threshold)
{
uint8_t corrected_threshold = iom_threshold;
if ( corrected_threshold < MIN_RW_THRESHOLD )
{
corrected_threshold = MIN_RW_THRESHOLD;
}
if ( corrected_threshold > MAX_RW_THRESHOLD )
{
corrected_threshold = MAX_RW_THRESHOLD;
}
return corrected_threshold;
}
#endif
//*****************************************************************************
//
//! @brief Sets module-wide configuration options for the IOM module.
//!
//! @param ui32Module - The instance number for the module to be configured
//! (zero or one)
//!
//! @param psConfig - Pointer to an IOM configuration structure.
//!
//! This function is used to set the interface mode (SPI or I2C), clock
//! frequency, SPI format (when relevant), and FIFO read/write interrupt
//! thresholds for the IO master. For more information on specific
//! configuration options, please see the documentation for the configuration
//! structure.
//!
//! @note The IOM module should be disabled before configuring or
//! re-configuring. This function will not re-enable the module when it
//! completes. Call the am_hal_iom_enable function when the module is
//! configured and ready to use.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_config(uint32_t ui32Module, const am_hal_iom_config_t *psConfig)
{
uint32_t ui32Config, ui32ClkCfg;
//
// Start by checking the interface mode (I2C or SPI), and writing it to the
// configuration word.
//
ui32Config = psConfig->ui32InterfaceMode;
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
//
// Check the SPI format, and OR in the bits for SPHA (clock phase) and SPOL
// (polarity). These shouldn't have any effect in I2C mode, so it should be
// ok to write them without checking exactly which mode we're in.
//
if ( psConfig->bSPHA )
{
ui32Config |= AM_REG_IOMSTR_CFG_SPHA(1);
}
if ( psConfig->bSPOL )
{
ui32Config |= AM_REG_IOMSTR_CFG_SPOL(1);
}
// Set the STARTRD based on the interface speed
// For all I2C frequencies and SPI frequencies below 16 MHz, the STARTRD
// field should be set to 0 to minimize the potential of the IO transfer
// holding off a bus access to the FIFO. For SPI frequencies of 16 MHz
// or 24 MHz, the STARTRD field must be set to a value of 2 to insure
// enough time for the IO preread.
if ( psConfig->ui32ClockFrequency >= 16000000UL)
{
ui32Config |= AM_REG_IOMSTR_CFG_STARTRD(2);
}
//
// Write the resulting configuration word to the IO master CFG register for
// the module number we were provided.
//
AM_REGn(IOMSTR, ui32Module, CFG) = ui32Config;
//
// Write the FIFO write and read thresholds to the appropriate registers.
//
#if (AM_ASSERT_INVALID_THRESHOLD == 1)
am_hal_debug_assert_msg(
(psConfig->ui8WriteThreshold <= MAX_RW_THRESHOLD), "IOM write threshold too big.");
am_hal_debug_assert_msg(
(psConfig->ui8ReadThreshold <= MAX_RW_THRESHOLD), "IOM read threshold too big.");
am_hal_debug_assert_msg(
(psConfig->ui8WriteThreshold >= MIN_RW_THRESHOLD), "IOM write threshold too small.");
am_hal_debug_assert_msg(
(psConfig->ui8ReadThreshold >= MIN_RW_THRESHOLD), "IOM read threshold too small.");
AM_REGn(IOMSTR, ui32Module, FIFOTHR) =
(AM_REG_IOMSTR_FIFOTHR_FIFOWTHR(psConfig->ui8WriteThreshold) |
AM_REG_IOMSTR_FIFOTHR_FIFORTHR(psConfig->ui8ReadThreshold));
#elif (AM_ASSERT_INVALID_THRESHOLD == 0)
AM_REGn(IOMSTR, ui32Module, FIFOTHR) =
(AM_REG_IOMSTR_FIFOTHR_FIFOWTHR(check_iom_threshold(psConfig->ui8WriteThreshold)) |
AM_REG_IOMSTR_FIFOTHR_FIFORTHR(check_iom_threshold(psConfig->ui8ReadThreshold)));
#else
#error AM_ASSERT_INVALID_THRESHOLD must be 0 or 1.
#endif
// Apply I2C clock stretching workaround if B2 silicon and IOM 1,2,3, or 5
// Note: Only I2C clock speeds of AM_HAL_IOM_800KHZ, AM_HAL_IOM_400KHZ,
// AM_HAL_IOM_200KHZ, and AM_HAL_IOM_100KHZ are allowed. Other values will
// result in the default of AM_HAL_IOM_100KHZ.
if ((0 != ui32Module) && (4 != ui32Module) && (6 != ui32Module) &&
isRevB2() && (AM_HAL_IOM_I2CMODE == psConfig->ui32InterfaceMode))
{
// Set SPHA field to 1 on B2 silicon to enable the feature;
AM_REGn(IOMSTR, ui32Module, CFG) |= AM_REG_IOMSTR_CFG_SPHA_M;
ui32ClkCfg = iom_get_i2c_workaround_clock_cfg(psConfig->ui32ClockFrequency);
}
else
{
//
// An exception occurs in the LOWPER computation when setting an interface
// frequency (such as a divide by 5 frequency) which results in a 60/40
// duty cycle. The 60% cycle must occur in the appropriate half-period,
// as only one of the half-periods is active, depending on which phase
// is being selected.
// If SPHA=0 the low period must be 60%. If SPHA=1 high period must be 60%.
// Note that the predetermined frequency parameters use the formula
// lowper = (totper-1)/2, which results in a 60% low period.
//
ui32ClkCfg = iom_get_interface_clock_cfg(psConfig->ui32ClockFrequency,
psConfig->bSPHA );
}
if ( ui32ClkCfg )
{
AM_REGn(IOMSTR, ui32Module, CLKCFG) = (uint32_t)ui32ClkCfg;
}
//
// Compute the status timeout value.
//
ui32StatusTimeout[ui32Module] = MAX_IOM_BITS * AM_HAL_IOM_MAX_FIFO_SIZE *
IOM_OVERHEAD_FACTOR * (am_hal_clkgen_sysclk_get() / psConfig->ui32ClockFrequency);
}
//*****************************************************************************
//
//! @brief Returns the actual currently configured interface frequency in Hz.
//
//*****************************************************************************
uint32_t
am_hal_iom_frequency_get(uint32_t ui32ClkCfg)
{
uint32_t ui32Freq;
ui32Freq = compute_freq(AM_HAL_CLKGEN_FREQ_MAX_HZ,
(ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_FSEL_M) >> AM_REG_IOMSTR_CLKCFG_FSEL_S,
(ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_DIV3_M) >> AM_REG_IOMSTR_CLKCFG_DIV3_S,
(ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_DIVEN_M) >> AM_REG_IOMSTR_CLKCFG_DIVEN_S,
(ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_TOTPER_M)>> AM_REG_IOMSTR_CLKCFG_TOTPER_S);
return ui32Freq;
}
//*****************************************************************************
//
// Helper function for the B0 workaround.
//
//*****************************************************************************
static uint32_t
iom_get_workaround_fsel(uint32_t maxFreq)
{
uint32_t ui32Freq, ui32Fsel;
uint32_t ui32ClkCfg = AM_REGn(IOMSTR, 4, CLKCFG);
//
// Starting with the current clock configuration parameters, find a value
// of FSEL that will bring our total frequency down to or below maxFreq.
//
for ( ui32Fsel = 1; ui32Fsel < 8; ui32Fsel++ )
{
ui32Freq = compute_freq(AM_HAL_CLKGEN_FREQ_MAX_HZ, ui32Fsel,
AM_BFX(IOMSTR, CLKCFG, DIV3, ui32ClkCfg),
AM_BFX(IOMSTR, CLKCFG, DIVEN, ui32ClkCfg),
AM_BFX(IOMSTR, CLKCFG, TOTPER, ui32ClkCfg));
if ( ui32Freq <= maxFreq && ui32Freq != 0 )
{
//
// Return the new FSEL
//
return ui32Fsel;
}
}
//
// Couldn't find an appropriate frequency. This should be impossible
// because there should always be a value of FSEL that brings the final IOM
// frequency below 500 KHz.
//
am_hal_debug_assert_msg(false, "Could find a valid frequency. Should never get here.");
return maxFreq;
}
// Separating this piece of code in separate function to keep the impact of
// rest of the code to mimimal because of stack usage
static void
internal_iom_workaround_critical(uint32_t ui32Command,
volatile uint32_t *pui32CSPadreg,
uint32_t ui32CSPadregVal,
uint32_t ui32DelayTime,
uint32_t ui32ClkCfg,
uint32_t ui32LowClkCfg,
bool bRising)
{
uint32_t ui32Critical = 0;
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Start the write on the bus.
//
AM_REGn(IOMSTR, WORKAROUND_IOM, CMD) = ui32Command;
//
// Slow down the clock, and run the workaround loop. The workaround
// loop runs an edge-detector on MOSI, and triggers a falling edge on
// chip-enable on the first bit of our real data.
//
((void (*)(uint32_t)) 0x0800009d)(ui32DelayTime);
// Switch to Low Freq
AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32LowClkCfg;
iom_workaround_loop(ui32CSPadregVal, pui32CSPadreg, bRising);
//
// Restore the clock frequency and the normal MOSI pin function.
//
AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32ClkCfg;
am_hal_gpio_pin_config(WORKAROUND_IOM_MOSI_PIN, WORKAROUND_IOM_MOSI_CFG);
//
// End the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
}
//*****************************************************************************
//
//! @brief Workaround for an Apollo2 Rev B0 issue.
//!
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional SPI transfer options.
//!
//! Some Apollo2 Rev B0 devices have an issue where the first byte of a SPI
//! write transaction can have some of its bits changed from ones to zeroes. In
//! order to get around this issue, we artificially pad the SPI write data with
//! additional bytes, and manually control the CS pin for the beginning of the
//! SPI frame so that the receiving device will ignore the bytes of padding
//! that we added.
//!
//! This function acts as a helper function to higher-level spi APIs. It
//! performs the functions of am_hal_iom_fifo_write() and
//! am_hal_iom_spi_cmd_run() to get a SPI write started on the bus, including
//! all of the necessary workaround behavior.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_workaround_word_write(uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
uint32_t ui32TransferSize;
uint32_t ui32IOMGPIO = 0xDEADBEEF;
volatile uint32_t *pui32CSPadreg = 0;
uint32_t ui32CSPadregVal = 0;
uint32_t ui32ClkCfg = 0;
uint32_t ui32HiClkCfg, ui32LowClkCfg;
bool bRising = 0;
uint32_t ui32HiFreq = 0, ui32NormalFreq = 0;
uint32_t ui32DelayTime = 0;
uint32_t ui32LowFsel = 0;
uint32_t ui32HiFsel = 0;
uint32_t ui32FirstWord = 0;
uint32_t ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, WORKAROUND_IOM, CFG, FULLDUP)) ?
AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
uint32_t ui32Command;
//
// Make sure the transfer isn't too long for the hardware to support.
//
// Note: This is a little shorter than usual, since the workaround
// consumes an extra byte at the beginning of the transfer.
//
am_hal_debug_assert_msg(ui32NumBytes <= 4091, "SPI transfer too big.");
//
// Create a "dummy" word to add on to the beginning of the transfer
// that will guarantee a transition between the first word and the
// second on the bus.
//
// For raw transactions, this is straightforward. For transactions
// preceded by an offset, we'll add the offset in to the "dummy" word
// to preserve data alignment later.
//
// The workaround uses a critical section for precision
// To minimize the time in critical section, we raise the SPI frequency
// to the max possible for the initial preamble to be clocked out
// then we switch to a 'reasonably' slow frequency to be able to reliably
// catch the rising or falling edge by polling. Then we switch back to
// configured frequency
//
// We want to slow down the clock to help us count edges more
// accurately. Save it first, then slow it down. Also, we will
// pre-calculate a delay for when we need to restore the SPI settings.
//
ui32ClkCfg = AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG);
// Get the largest speed we can configure within our rated speed of 16MHz
ui32HiFsel = iom_get_workaround_fsel(16000000);
ui32HiClkCfg = ((ui32ClkCfg & (~AM_REG_IOMSTR_CLKCFG_FSEL_M)) |
AM_BFV(IOMSTR, CLKCFG, FSEL, ui32HiFsel));
// Switch to Hi Freq
// Need to make sure we wait long enough for the hi clock to be effective
// Delay 2 cycles based on previous frequency
ui32NormalFreq = am_hal_iom_frequency_get(ui32ClkCfg);
AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32HiClkCfg;
ui32DelayTime = ((2 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32NormalFreq * 3));
((void (*)(uint32_t)) 0x0800009d)(ui32DelayTime);
//
// Remember what frequency we'll be running at.during Hi Phase
//
ui32HiFreq = am_hal_iom_frequency_get(ui32HiClkCfg);
//
// Validate return value to prevent DIVBY0 errors.
//
am_hal_debug_assert_msg(ui32HiFreq > 0, "Invalid Hi Frequency for IOM.");
// Get a reasonably slow speed (~1MHz) we can safely poll for the transition
ui32LowFsel = iom_get_workaround_fsel(1000000);
ui32LowClkCfg = ((ui32ClkCfg & (~AM_REG_IOMSTR_CLKCFG_FSEL_M)) |
AM_BFV(IOMSTR, CLKCFG, FSEL, ui32LowFsel));
if ( ui32Options & AM_HAL_IOM_RAW )
{
//
// The transition we care for is on 33rd bit.
// Prepare to delay 27 bits past the start of the transaction
// before getting into polling - to leave some
// margin for compiler related variations
//
ui32DelayTime = ((27 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32HiFreq * 3));
if ( pui32Data[0] & 0x80 )
{
ui32FirstWord = 0x00000000;
bRising = true;
}
else
{
ui32FirstWord = 0xFFFFFF00;
bRising = false;
}
}
else
{
//
// The transition we care for is on 25th bit.
// Prepare to delay 19 bits past the start of the transaction
// before getting into polling - to leave some
// margin for compiler related variations
//
ui32DelayTime = ((19 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32HiFreq * 3));
ui32FirstWord = ((ui32Options & 0xFF00) << 16);
if ( ui32FirstWord & 0x80000000 )
{
bRising = true;
}
else
{
ui32FirstWord |= 0x00FFFF00;
bRising = false;
}
}
//
// Now that weve taken care of the offset byte, we can run the
// transaction in RAW mode.
//
ui32Options |= AM_HAL_IOM_RAW;
ui32NumBytes += 4;
//
// Figure out how many bytes we can write to the FIFO immediately.
//
ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
ui32MaxFifoSize);
am_hal_iom_fifo_write(WORKAROUND_IOM, &ui32FirstWord, 4);
am_hal_iom_fifo_write(WORKAROUND_IOM, pui32Data, ui32TransferSize - 4);
//
// Calculate the GPIO to be controlled until the initial shift is
// complete. Make sure we get a valid value.
//
ui32IOMGPIO = iom_calc_gpio(ui32ChipSelect);
am_hal_debug_assert(0xDEADBEEF != ui32IOMGPIO);
//
// Save the locations and values of the CS pin configuration
// information.
//
pui32CSPadreg = (volatile uint32_t *)AM_HAL_GPIO_PADREG(ui32IOMGPIO);
ui32CSPadregVal = *pui32CSPadreg;
//
// Switch CS to a GPIO.
//
am_hal_gpio_out_bit_set(ui32IOMGPIO);
am_hal_gpio_pin_config(ui32IOMGPIO, AM_HAL_GPIO_OUTPUT);
//
// Enable the input buffer on MOSI.
//
am_hal_gpio_pin_config(WORKAROUND_IOM_MOSI_PIN, WORKAROUND_IOM_MOSI_CFG | AM_HAL_PIN_DIR_INPUT);
//
// Write the GPIO PADKEY register to allow the workaround loop to
// reconfigure chip enable.
//
AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
// Preconstruct the command - to save on calculations inside critical section
ui32Command = internal_am_hal_iom_spi_cmd_construct(AM_HAL_IOM_WRITE,
ui32ChipSelect, ui32NumBytes, ui32Options);
internal_iom_workaround_critical(ui32Command,
pui32CSPadreg, ui32CSPadregVal,
ui32DelayTime, ui32ClkCfg,
ui32LowClkCfg, bRising);
//
// Re-lock the GPIO PADKEY register
//
AM_REGn(GPIO, 0, PADKEY) = 0;
//
// Update the pointer and data counter.
//
ui32NumBytes -= ui32TransferSize;
pui32Data += (ui32TransferSize - 4) >> 2;
}
//*****************************************************************************
//
//! @brief Implement an iterative spin loop.
//!
//! @param ui32Iterations - Number of iterations to delay.
//!
//! Use this function to implement a CPU busy waiting spin. For Apollo, this
//! delay can be used for timing purposes since for Apollo, each iteration will
//! take 3 cycles.
//!
//! @return None.
//
//*****************************************************************************
#if defined(__GNUC__)
static void __attribute__((naked))
iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
bool bRising)
{
//
// Check to see if this is a "rising edge" or "falling edge" detector.
//
__asm(" cbz r2, falling_edge");
//
// Read GPIO pin 44, and loop until it's HIGH.
//
__asm("rising_edge:");
__asm(" ldr r2, =0x40010084");
__asm("rising_check_mosi:");
__asm(" ldr r3, [r2]");
__asm(" ands r3, r3, #0x1000");
__asm(" beq rising_check_mosi");
//
// Write the PADREG Value to the PADREG register.
//
__asm(" str r0, [r1]");
__asm(" bx lr");
//
// Read GPIO pin 44, and loop until it's LOW.
//
__asm("falling_edge:");
__asm(" ldr r2, =0x40010084");
__asm("falling_check_mosi:");
__asm(" ldr r3, [r2]");
__asm(" ands r3, r3, #0x1000");
__asm(" bne falling_check_mosi");
//
// Write the PADREG Value to the PADREG register.
//
__asm(" str r0, [r1]");
__asm(" bx lr");
}
#elif defined(__CC_ARM)
__asm static void
iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
bool bRising)
{
//
// Check to see if this is a "rising edge" or "falling edge" detector.
//
cbz r2, falling_edge
//
// Read GPIO pin 44, and loop until it's HIGH.
//
rising_edge
ldr r2, =0x40010084
rising_check_mosi
ldr r3, [r2]
ands r3, r3, #0x1000
beq rising_check_mosi
//
// Write the PADREG Value to the PADREG register.
//
str r0, [r1]
bx lr
//
// Read GPIO pin 44, and loop until it's LOW.
//
falling_edge
ldr r2, =0x40010084
falling_check_mosi
ldr r3, [r2]
ands r3, r3, #0x1000
bne falling_check_mosi
//
// Write the PADREG Value to the PADREG register.
//
str r0, [r1]
bx lr
nop
}
#elif defined(__ICCARM__)
static void
iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
bool bRising)
{
//
// Check to see if this is a "rising edge" or "falling edge" detector.
//
asm(
" cbz r2, falling_edge\n"
//
// Read GPIO pin 44, and loop until it's HIGH.
//
"rising_edge:\n"
" mov32 r2, #0x40010084\n"
"rising_check_mosi:\n"
" ldr r3, [r2]\n"
" ands r3, r3, #0x1000\n"
" beq rising_check_mosi\n"
//
// Write the PADREG Value to the PADREG register.
//
" str r0, [r1]\n"
" bx lr\n"
//
// Read GPIO pin 44, and loop until it's LOW.
//
"falling_edge:\n"
" mov32 r2, #0x40010084\n"
"falling_check_mosi:\n"
" ldr r3, [r2]\n"
" ands r3, r3, #0x1000\n"
" bne falling_check_mosi\n"
//
// Write the PADREG Value to the PADREG register.
//
" str r0, [r1]\n"
" bx lr"
);
}
#endif
//*****************************************************************************
//
//! @brief Perform a simple write to the SPI interface.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional SPI transfer options.
//!
//! This function performs SPI writes to a selected SPI device.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui8Data array.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
am_hal_iom_status_e ui32Status;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Check to see if queues have been enabled. If they are, we'll actually
// switch to the queued interface.
//
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
{
//
// If the queue is on, go ahead and add this transaction to the queue.
//
ui32Status = am_hal_iom_queue_spi_write(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, 0);
if (ui32Status == AM_HAL_IOM_SUCCESS)
{
//
// Wait until the transaction actually clears.
//
am_hal_iom_queue_flush(ui32Module);
// g_iom_error_status gets set in the isr handling
ui32Status = g_iom_error_status[ui32Module];
}
//
// At this point, we've completed the transaction, and we can return.
//
}
else
{
//
// Otherwise, we'll just do a polled transaction.
//
ui32Status = am_hal_iom_spi_write_nq(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options);
}
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform simple SPI read operations.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32Data - Pointer to the array where received bytes should go.
//! @param ui32NumBytes - Number of bytes to read.
//! @param ui32Options - Additional SPI transfer options.
//!
//! This function performs simple SPI read operations. The caller is
//! responsible for ensuring that the receive buffer is large enough to hold
//! the requested amount of data.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This function will pack the individual bytes from the physical interface
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
//! the first \e ui32NumBytes bytes in this array will contain valid data.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
am_hal_iom_status_e ui32Status;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
// Reset the error status
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 4096)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Check to see if queues have been enabled. If they are, we'll actually
// switch to the queued interface.
//
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
{
//
// If the queue is on, go ahead and add this transaction to the queue.
//
ui32Status = am_hal_iom_queue_spi_read(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, 0);
if (ui32Status == AM_HAL_IOM_SUCCESS)
{
//
// Wait until the transaction actually clears.
//
am_hal_iom_queue_flush(ui32Module);
// g_iom_error_status gets set in the isr handling
ui32Status = g_iom_error_status[ui32Module];
}
//
// At this point, we've completed the transaction, and we can return.
//
}
else
{
//
// Otherwise, just perform a polled transaction.
//
ui32Status = am_hal_iom_spi_read_nq(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options);
}
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform a simple full-duplex transaction to the SPI interface.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32TxData - Pointer to the bytes that will be sent.
//! @param pui32RxData - Pointer to the bytes that will be received.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional SPI transfer options.
//!
//! This function performs SPI full-duplex operation to a selected SPI device.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32TxData array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui32TxData array.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_spi_fullduplex(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32TxData, uint32_t *pui32RxData,
uint32_t ui32NumBytes, uint32_t ui32Options)
{
am_hal_iom_status_e ui32Status;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Full-Duplex operation is only supported for Apollo2 B2 Silicon.
//
if (!isRevB2())
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_OPER;
return ui32Status;
}
//
// Check to see if queues have been enabled. If they are, we'll actually
// switch to the queued interface.
//
#if 0
// To be implemented!!!
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
{
//
// If the queue is on, go ahead and add this transaction to the queue.
//
ui32Status = am_hal_iom_queue_spi_write(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, 0);
if (ui32Status == AM_HAL_IOM_SUCCESS)
{
//
// Wait until the transaction actually clears.
//
am_hal_iom_queue_flush(ui32Module);
// g_iom_error_status gets set in the isr handling
ui32Status = g_iom_error_status[ui32Module];
}
//
// At this point, we've completed the transaction, and we can return.
//
}
else
{
#endif
//
// Otherwise, we'll just do a polled transaction.
//
ui32Status = am_hal_iom_spi_fullduplex_nq(ui32Module, ui32ChipSelect,
pui32TxData, pui32RxData,
ui32NumBytes, ui32Options);
#if 0
}
#endif
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform a simple write to the SPI interface (without queuing)
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional SPI transfer options.
//!
//! This function performs SPI writes to a selected SPI device.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui8Data array.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_spi_write_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
uint32_t ui32TransferSize;
uint32_t ui32SpaceInFifo;
uint32_t ui32IntConfig;
uint32_t ui32MaxFifoSize;
am_hal_iom_status_e ui32Status;
uint32_t waitStatus;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 4096)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
//
// Disable interrupts so that we don't get any undesired interrupts.
//
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
//
// If we're on a B0 part, and we're using IOM4, our first byte coule be
// corrupted, so we need to send a dummy word with chip-select held high to
// get that first byte out of the way.
//
// That operation is tricky and detailed, so we'll call a function to do it
// for us.
//
if ( WORKAROUND_IOM == ui32Module && isRevB0() )
{
am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options);
//
// The workaround function is going to a partial transfer for us, but
// we have to keep our own data-tracking variables updated. Here, we're
// subtracting 4 bytes from the effective transfer size to account for
// the 4 bytes of "dummy" word that we sent instead of the actual data.
//
ui32TransferSize = (ui32NumBytes <= (ui32MaxFifoSize - 4) ? ui32NumBytes :
(ui32MaxFifoSize - 4));
}
else
{
//
// Figure out how many bytes we can write to the FIFO immediately.
//
ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
ui32MaxFifoSize);
//
// write our first word to the fifo.
//
am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
//
// Start the write on the bus.
//
am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
ui32NumBytes, ui32Options);
}
//
// Update the pointer and data counter.
//
ui32NumBytes -= ui32TransferSize;
pui32Data += ui32TransferSize >> 2;
//
// Keep looping until we're out of bytes to send or command complete (error).
//
while ( ui32NumBytes && !AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP) )
{
//
// This will always return a multiple of four.
//
ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
if ( ui32NumBytes <= ui32SpaceInFifo )
{
//
// If the entire message will fit in the fifo, prepare to copy
// everything.
//
ui32TransferSize = ui32NumBytes;
}
else
{
//
// If only a portion of the message will fit in the fifo, prepare
// to copy the largest number of 4-byte blocks possible.
//
ui32TransferSize = ui32SpaceInFifo & ~(0x3);
}
//
// Write this chunk to the fifo.
//
am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
//
// Update the data pointer and bytes-left count.
//
ui32NumBytes -= ui32TransferSize;
pui32Data += ui32TransferSize >> 2;
}
//
// Make sure CMDCMP was raised with standard timeout
//
waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
if (waitStatus != 1)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
}
else
{
g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
}
//
// Re-enable IOM interrupts.
//
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform simple SPI read operations (without queuing).
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32Data - Pointer to the array where received bytes should go.
//! @param ui32NumBytes - Number of bytes to read.
//! @param ui32Options - Additional SPI transfer options.
//!
//! This function performs simple SPI read operations. The caller is
//! responsible for ensuring that the receive buffer is large enough to hold
//! the requested amount of data.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This function will pack the individual bytes from the physical interface
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
//! the first \e ui32NumBytes bytes in this array will contain valid data.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_spi_read_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
uint32_t ui32BytesInFifo;
uint32_t ui32IntConfig;
uint32_t bCmdCmp = false;
am_hal_iom_status_e ui32Status;
uint32_t waitStatus;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 4096)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Disable interrupts so that we don't get any undesired interrupts.
//
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
//
// Disable IOM interrupts as we'll be polling
//
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
//
// If we're on a B0 part, and we're using IOM4, our first byte coule be
// corrupted, so we need to send a dummy word with chip-select held high to
// get that first byte out of the way. This is only true for spi reads with
// OFFSET values.
//
// That operation is tricky and detailed, so we'll call a function to do it
// for us.
//
if ( (WORKAROUND_IOM == ui32Module) && !(ui32Options & AM_HAL_IOM_RAW) &&
isRevB0() )
{
am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data, 0,
ui32Options | AM_HAL_IOM_CS_LOW);
//
// The workaround will send our offset for us, so we can run a RAW
// command after.
//
ui32Options |= AM_HAL_IOM_RAW;
//
// Wait for the dummy word to go out over the bus.
//
// Make sure the command complete has also been raised
waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
if (waitStatus != 1)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
//
// Re-enable IOM interrupts.
//
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
return ui32Status;
}
// Clear CMDCMP status
AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
}
am_hal_iom_spi_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32ChipSelect,
ui32NumBytes, ui32Options);
//
// Start a loop to catch the Rx data.
//
while ( ui32NumBytes )
{
ui32BytesInFifo = am_hal_iom_fifo_full_slots(ui32Module);
if ( ui32BytesInFifo >= ui32NumBytes )
{
//
// If the fifo contains our entire message, just copy the whole
// thing out.
//
am_hal_iom_fifo_read(ui32Module, pui32Data, ui32NumBytes);
ui32NumBytes = 0;
}
else if ( ui32BytesInFifo >= 4 )
{
//
// If the fifo has at least one 32-bit word in it, copy whole
// words out.
//
am_hal_iom_fifo_read(ui32Module, pui32Data, ui32BytesInFifo & ~0x3);
ui32NumBytes -= ui32BytesInFifo & ~0x3;
pui32Data += ui32BytesInFifo >> 2;
}
if ( bCmdCmp == true )
{
//
// No more data expected. Get out of the loop
//
break;
}
bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
}
//
// Make sure CMDCMP was raised,
//
waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
if (waitStatus != 1)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
}
else
{
g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
}
//
// Re-enable IOM interrupts. Make sure CMDCMP is cleared
//
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform a simple full-duplex operation to the SPI interface (without queuing)
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param pui32Data - Pointer to the bytes that will be received.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional SPI transfer options.
//!
//! This function performs SPI full-duplex operation to a selected SPI device.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32TxData array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui32TxData array.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_spi_fullduplex_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32TxData, uint32_t *pui32RxData,
uint32_t ui32NumBytes, uint32_t ui32Options)
{
uint32_t ui32TransferSize;
uint32_t ui32SpaceInFifo;
uint32_t bCmdCmp = false;
uint32_t ui32IntConfig;
uint32_t ui32MaxFifoSize;
am_hal_iom_status_e ui32Status;
uint32_t waitStatus;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 4096)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Full-Duplex operation is only supported for Apollo2 B2 Silicon.
//
if (!isRevB2())
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_OPER;
return ui32Status;
}
//
// Put the IOM into Full-Duplex mode.
//
AM_REGn(IOMSTR, ui32Module, CFG) |= AM_REG_IOMSTR_CFG_FULLDUP_FULLDUP;
ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
//
// Disable interrupts so that we don't get any undesired interrupts.
//
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
//
// Figure out how many bytes we can write to the FIFO immediately.
//
ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
ui32MaxFifoSize);
//
// write up to the maximum FIFO size into the fifo.
//
am_hal_iom_fifo_write(ui32Module, pui32TxData, ui32TransferSize);
//
// Start the write on the bus.
//
am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
ui32NumBytes, ui32Options);
//
// Update the pointer and data counter.
//
pui32TxData += ui32TransferSize >> 2;
//
// Keep looping until we're out of bytes to receive or command complete (error).
//
while ( ui32NumBytes )
{
//
// Wait for FIFO to empty.
//
while (am_hal_iom_fifo_full_slots(ui32Module) > 0);
am_hal_iom_fifo_read(ui32Module, pui32RxData, ui32TransferSize);
ui32NumBytes -= ui32TransferSize;
pui32RxData += ui32TransferSize >> 2;
//
// Get the number of bytes that can be written (always a multiple of 4).
//
ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
if ( ui32NumBytes <= ui32SpaceInFifo )
{
//
// If the entire message will fit in the fifo, prepare to copy
// everything.
//
ui32TransferSize = ui32NumBytes;
}
else
{
//
// If only a portion of the message will fit in the fifo, prepare
// to copy the largest number of 4-byte blocks possible.
//
ui32TransferSize = ui32SpaceInFifo & ~(0x3);
}
//
// Write this chunk to the fifo.
//
am_hal_iom_fifo_write(ui32Module, pui32TxData, ui32TransferSize);
//
// Update the data pointer and bytes-left count.
//
pui32TxData += ui32TransferSize >> 2;
//
// Check for Command Complete condition.
if ( bCmdCmp == true )
{
//
// No more data expected. Get out of the loop
//
break;
}
bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
}
//
// Make sure CMDCMP was raised with standard timeout
//
waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
if (waitStatus != 1)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
}
else
{
g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
}
//
// Re-enable IOM interrupts.
//
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
//
// Take the IOM out of Full-Duplex mode.
//
AM_REGn(IOMSTR, ui32Module, CFG) &= ~AM_REG_IOMSTR_CFG_FULLDUP_FULLDUP;
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform a non-blocking write to the SPI interface.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional SPI transfer options.
//! @param pfnCallback - Function to call when the transaction completes.
//!
//! This function performs SPI writes to the selected SPI device.
//!
//! This function call is a non-blocking implementation. It will write as much
//! data to the FIFO as possible immediately, store a pointer to the remaining
//! data, start the transfer on the bus, and then immediately return. The
//! caller will need to make sure that \e am_hal_iom_int_service() is called
//! for IOM FIFO interrupt events and "command complete" interrupt events. The
//! \e am_hal_iom_int_service() function will refill the FIFO as necessary and
//! call the \e pfnCallback function when the transaction is finished.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui8Data array.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution. Note that
//! successful execution for non-blocking call only means the transaction was
//! successfully initiated. The status of the transaction is not known till the
//! callback is called on completion
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_spi_write_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback)
{
am_hal_iom_status_e ui32Status;
uint32_t ui32TransferSize;
uint32_t ui32MaxFifoSize;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status for non-blocking transfer
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 4096)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
//
// Need to mark IOM busy to avoid another transaction to be scheduled.
// This is to take care of a race condition in Queue mode, where the IDLE
// set is not a guarantee that the CMDCMP has been received
//
g_bIomBusy[ui32Module] = true;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
//
// Check to see if we need to do the workaround.
//
if ( WORKAROUND_IOM == ui32Module && isRevB0() )
{
//
// Figure out how many bytes we can write to the FIFO immediately,
// accounting for the extra word from the workaround.
//
ui32TransferSize = (ui32NumBytes <= (ui32MaxFifoSize - 4) ? ui32NumBytes :
(ui32MaxFifoSize - 4));
//
// Prepare the global IOM buffer structure.
//
g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
g_psIOMBuffers[ui32Module].pui32Data = pui32Data + (ui32TransferSize / 4);
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes - ui32TransferSize;
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
//
// Start the write on the bus using the workaround. This includes both
// the command write and the first fifo write, so we won't need to do
// either of those things manually.
//
am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options);
}
else
{
//
// Figure out how many bytes we can write to the FIFO immediately.
//
ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
ui32MaxFifoSize);
if ( am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize) > 0 )
{
//
// Prepare the global IOM buffer structure.
//
g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
//
// Update the pointer and the byte counter based on the portion of
// the transfer we just sent to the fifo.
//
g_psIOMBuffers[ui32Module].ui32BytesLeft -= ui32TransferSize;
g_psIOMBuffers[ui32Module].pui32Data += (ui32TransferSize / 4);
//
// Start the write on the bus.
//
am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
ui32NumBytes, ui32Options);
}
}
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform a non-blocking SPI read.
//!
//! @param ui32Module - Module number for the IOM.
//! @param ui32ChipSelect - Chip select number of the target device.
//! @param pui32Data - Pointer to the array where received bytes should go.
//! @param ui32NumBytes - Number of bytes to read.
//! @param ui32Options - Additional SPI transfer options.
//! @param pfnCallback - Function to call when the transaction completes.
//!
//! This function performs SPI reads to a selected SPI device.
//!
//! This function call is a non-blocking implementation. It will start the SPI
//! transaction on the bus and store a pointer for the destination for the read
//! data, but it will not wait for the SPI transaction to finish. The caller
//! will need to make sure that \e am_hal_iom_int_service() is called for IOM
//! FIFO interrupt events and "command complete" interrupt events. The \e
//! am_hal_iom_int_service() function will empty the FIFO as necessary,
//! transfer the data to the \e pui32Data buffer, and call the \e pfnCallback
//! function when the transaction is finished.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This function will pack the individual bytes from the physical interface
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
//! the first \e ui32NumBytes bytes in this array will contain valid data.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution. Note that
//! successful execution for non-blocking call only means the transaction was
//! successfully initiated. The status of the transaction is not known till the
//! callback is called on completion
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_spi_read_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback)
{
am_hal_iom_status_e ui32Status;
uint32_t ui32IntConfig;
uint32_t waitStatus;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 4096)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Need to mark IOM busy to avoid another transaction to be scheduled.
// This is to take care of a race condition in Queue mode, where the IDLE
// set is not a guarantee that the CMDCMP has been received
//
g_bIomBusy[ui32Module] = true;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
//
// If we're on a B0 part, and we're using IOM4, our first byte could be
// corrupted, so we need to send a dummy word with chip-select held high to
// get that first byte out of the way. This is only true for spi reads with
// OFFSET values.
//
// That operation is tricky and detailed, so we'll call a function to do it
// for us.
//
if ( (WORKAROUND_IOM == ui32Module) && !(ui32Options & AM_HAL_IOM_RAW) &&
isRevB0() )
{
//
// We might mess up the interrupt handler behavior if we allow this
// polled transaction to complete with interrupts enabled. We'll
// briefly turn them off here.
//
ui32IntConfig = AM_REGn(IOMSTR, 4, INTEN);
AM_REGn(IOMSTR, 4, INTEN) = 0;
am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
0, ui32Options | AM_HAL_IOM_CS_LOW);
//
// The workaround will send our offset for us, so we can run a RAW
// command after.
//
ui32Options |= AM_HAL_IOM_RAW;
//
// Wait for the dummy word to go out over the bus.
//
// Make sure the command complete has also been raised
waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
if (waitStatus != 1)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
return ui32Status;
}
//
// Re-mark IOM as busy
//
g_bIomBusy[ui32Module] = true;
//
// Re-enable IOM interrupts. Make sure CMDCMP is cleared
//
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, 4, INTEN) = ui32IntConfig;
}
//
// Prepare the global IOM buffer structure.
//
g_psIOMBuffers[ui32Module].ui32State = BUFFER_RECEIVING;
g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
//
// Start the read transaction on the bus.
//
am_hal_iom_spi_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32ChipSelect,
ui32NumBytes, ui32Options);
return ui32Status;
}
static uint32_t
internal_am_hal_iom_spi_cmd_construct(uint32_t ui32Operation,
uint32_t ui32ChipSelect,
uint32_t ui32NumBytes,
uint32_t ui32Options)
{
uint32_t ui32Command;
//
// Start building the command from the operation parameter.
//
ui32Command = ui32Operation;
//
// Set the transfer length (the length field is split, so this requires
// some swizzling).
//
ui32Command |= ((ui32NumBytes & 0xF00) << 15);
ui32Command |= (ui32NumBytes & 0xFF);
//
// Set the chip select number.
//
ui32Command |= ((ui32ChipSelect << 16) & 0x00070000);
//
// Finally, OR in the rest of the options. This mask should make sure that
// erroneous option values won't interfere with the other transfer
// parameters.
//
ui32Command |= ui32Options & 0x5C00FF00;
return ui32Command;
}
//*****************************************************************************
//
//! @brief Runs a SPI "command" through the IO master.
//!
//! @param ui32Operation - SPI action to be performed.
//!
//! @param psDevice - Structure containing information about the slave device.
//!
//! @param ui32NumBytes - Number of bytes to move (transmit or receive) with
//! this command.
//!
//! @param ui32Options - Additional SPI options to apply to this command.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_spi_cmd_run(uint32_t ui32Operation, uint32_t ui32Module,
uint32_t ui32ChipSelect, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
uint32_t ui32Command;
am_hal_debug_assert_msg(ui32NumBytes > 0,
"Trying to do a 0 byte transaction");
ui32Command = internal_am_hal_iom_spi_cmd_construct(ui32Operation,
ui32ChipSelect, ui32NumBytes, ui32Options);
//
// Write the complete command word to the IOM command register.
//
AM_REGn(IOMSTR, ui32Module, CMD) = ui32Command;
}
//*****************************************************************************
//
//! @brief Perform a simple write to the I2C interface (without queuing)
//!
//! @param ui32Module - Module number for the IOM.
//! @param ui32BusAddress - I2C address of the target device.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional I2C transfer options.
//!
//! This function performs I2C writes to a selected I2C device.
//!
//! This function call is a blocking implementation. It will write as much
//! data to the FIFO as possible immediately, and then refill the FIFO as data
//! is transmiitted.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui32Data array.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_i2c_write_nq(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
uint32_t ui32TransferSize;
uint32_t ui32SpaceInFifo;
uint32_t ui32IntConfig;
uint32_t ui32MaxFifoSize;
am_hal_iom_status_e ui32Status;
uint32_t waitStatus;
am_hal_i2c_bit_bang_enum_e i2cBBStatus;
//
// Validate parameters
//
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until any earlier transactions have completed.
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Redirect to the bit-bang interface if the module number matches the
// software I2C module.
//
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
{
if ( ui32Options & AM_HAL_IOM_RAW )
{
i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
(uint8_t *)pui32Data, 0, false,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
else
{
i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
(uint8_t *)pui32Data,
((ui32Options & 0xFF00) >> 8),
true,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
//
// Return. convert BB retCode to proper retCode here
//
g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 256)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
//
// Disable interrupts so that we don't get any undesired interrupts.
//
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
//
// Figure out how many bytes we can write to the FIFO immediately.
//
ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
ui32MaxFifoSize);
am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
//
// Start the write on the bus.
//
ui32Status = am_hal_iom_i2c_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32BusAddress,
ui32NumBytes, ui32Options);
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
g_iom_error_status[ui32Module] = ui32Status = ui32Status;
//
// Re-enable IOM interrupts.
//
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
return ui32Status;
}
//
// Update the pointer and data counter.
//
ui32NumBytes -= ui32TransferSize;
pui32Data += ui32TransferSize >> 2;
//
// Keep looping until we're out of bytes to send or command complete (error).
//
while ( ui32NumBytes && !AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP) )
{
//
// This will always return a multiple of four.
//
ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
if ( ui32NumBytes <= ui32SpaceInFifo )
{
//
// If the entire message will fit in the fifo, prepare to copy
// everything.
//
ui32TransferSize = ui32NumBytes;
}
else
{
//
// If only a portion of the message will fit in the fifo, prepare
// to copy the largest number of 4-byte blocks possible.
//
ui32TransferSize = ui32SpaceInFifo;
}
//
// Write this chunk to the fifo.
//
am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
//
// Update the data pointer and bytes-left count.
//
ui32NumBytes -= ui32TransferSize;
pui32Data += ui32TransferSize >> 2;
}
//
// Make sure CMDCMP was raised,
//
waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
if (waitStatus != 1)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
}
else
{
g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
}
//
// Re-enable IOM interrupts.
//
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform simple I2C read operations (without queuing).
//!
//! @param ui32Module - Module number for the IOM.
//! @param ui32BusAddress - I2C address of the target device.
//! @param pui32Data - Pointer to the array where received bytes should go.
//! @param ui32NumBytes - Number of bytes to read.
//! @param ui32Options - Additional I2C transfer options.
//!
//! This function performs an I2C read to a selected I2C device.
//!
//! This function call is a blocking implementation. It will read as much
//! data from the FIFO as possible immediately, and then re-read the FIFO as more
//! data is available.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This function will pack the individual bytes from the physical interface
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
//! the first \e ui32NumBytes bytes in this array will contain valid data.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_i2c_read_nq(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
uint32_t ui32BytesInFifo;
uint32_t ui32IntConfig;
uint32_t bCmdCmp = false;
am_hal_iom_status_e ui32Status;
uint32_t waitStatus;
am_hal_i2c_bit_bang_enum_e i2cBBStatus;
//
// Validate parameters
//
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Redirect to the bit-bang interface if the module number matches the
// software I2C module.
//
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
{
if ( ui32Options & AM_HAL_IOM_RAW )
{
i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
(uint8_t *)pui32Data, 0, false,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
else
{
i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
(uint8_t *)pui32Data,
((ui32Options & 0xFF00) >> 8),
true,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
//
// Return. convert i2c bb retCode
//
g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 256)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Disable interrupts so that we don't get any undesired interrupts.
//
ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
ui32Status = am_hal_iom_i2c_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32BusAddress,
ui32NumBytes, ui32Options);
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
g_iom_error_status[ui32Module] = ui32Status = ui32Status;
//
// Re-enable IOM interrupts.
//
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
return ui32Status;
}
//
// Start a loop to catch the Rx data.
//
while ( ui32NumBytes )
{
ui32BytesInFifo = am_hal_iom_fifo_full_slots(ui32Module);
if ( ui32BytesInFifo >= ui32NumBytes )
{
//
// If the fifo contains our entire message, just copy the whole
// thing out.
//
am_hal_iom_fifo_read(ui32Module, pui32Data, ui32NumBytes);
ui32NumBytes = 0;
}
else if ( ui32BytesInFifo >= 4 )
{
//
// If the fifo has at least one 32-bit word in it, copy whole
// words out.
//
am_hal_iom_fifo_read(ui32Module, pui32Data, ui32BytesInFifo & ~0x3);
ui32NumBytes -= ui32BytesInFifo & ~0x3;
pui32Data += ui32BytesInFifo >> 2;
}
if ( bCmdCmp == true )
{
// No more data expected - exit out of loop
break;
}
bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
}
//
// Make sure CMDCMP was raised,
//
waitStatus = am_hal_flash_delay_status_change(ui32StatusTimeout[ui32Module],
AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
if (waitStatus != 1)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_TIMEOUT;
}
else
{
g_iom_error_status[ui32Module] = ui32Status = internal_iom_get_int_err(ui32Module, 0);
}
//
// Re-enable IOM interrupts.
//
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform a simple write to the I2C interface.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32BusAddress - I2C bus address for this transaction.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional options
//!
//! Performs a write to the I2C interface using the provided parameters.
//!
//! See the "Command Options" section for parameters that may be ORed together
//! and used in the \b ui32Options parameter.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
am_hal_iom_status_e ui32Status;
am_hal_i2c_bit_bang_enum_e i2cBBStatus;
//
// Validate parameters
//
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Redirect to the bit-bang interface if the module number matches the
// software I2C module.
//
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
{
if ( ui32Options & AM_HAL_IOM_RAW )
{
i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
(uint8_t *)pui32Data, 0, false,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
else
{
i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
(uint8_t *)pui32Data,
((ui32Options & 0xFF00) >> 8),
true,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
//
// Return. convert i2c bb retCode
//
g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 256)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Check to see if queues have been enabled. If they are, we'll actually
// switch to the queued interface.
//
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
{
//
// If the queue is on, go ahead and add this transaction to the queue.
//
ui32Status = am_hal_iom_queue_i2c_write(ui32Module, ui32BusAddress, pui32Data,
ui32NumBytes, ui32Options, 0);
if (ui32Status == AM_HAL_IOM_SUCCESS)
{
//
// Wait until the transaction actually clears.
//
am_hal_iom_queue_flush(ui32Module);
// g_iom_error_status gets set in the isr handling
ui32Status = g_iom_error_status[ui32Module];
}
//
// At this point, we've completed the transaction, and we can return.
//
}
else
{
//
// Otherwise, we'll just do a polled transaction.
//
ui32Status = am_hal_iom_i2c_write_nq(ui32Module, ui32BusAddress, pui32Data,
ui32NumBytes, ui32Options);
}
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform simple I2C read operations.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32BusAddress - I2C bus address for this transaction.
//! @param pui32Data - Pointer to the array where received bytes should go.
//! @param ui32NumBytes - Number of bytes to read.
//! @param ui32Options - Additional I2C transfer options.
//!
//! This function performs simple I2C read operations. The caller is
//! responsible for ensuring that the receive buffer is large enough to hold
//! the requested amount of data. If \e bPolled is true, this function will
//! block until all of the requested data has been received and placed in the
//! user-supplied buffer. Otherwise, the function will execute the I2C read
//! command and return immediately. The user-supplied buffer will be filled
//! with the received I2C data as it comes in over the physical interface, and
//! the "command complete" interrupt bit will become active once the entire
//! message is available.
//!
//! See the "Command Options" section for parameters that may be ORed together
//! and used in the \b ui32Options parameter.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This function will pack the individual bytes from the physical interface
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
//! the first \e ui32NumBytes bytes in this array will contain valid data.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
am_hal_iom_status_e ui32Status;
am_hal_i2c_bit_bang_enum_e i2cBBStatus;
//
// Validate parameters
//
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Redirect to the bit-bang interface if the module number matches the
// software I2C module.
//
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
{
if ( ui32Options & AM_HAL_IOM_RAW )
{
i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
(uint8_t *)pui32Data, 0, false,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
else
{
i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
(uint8_t *)pui32Data,
((ui32Options & 0xFF00) >> 8),
true,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
//
// Return. convert i2c bb retCode
//
g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 256)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Check to see if queues have been enabled. If they are, we'll actually
// switch to the queued interface.
//
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
{
//
// If the queue is on, go ahead and add this transaction to the queue.
//
ui32Status = am_hal_iom_queue_i2c_read(ui32Module, ui32BusAddress, pui32Data,
ui32NumBytes, ui32Options, 0);
if (ui32Status == AM_HAL_IOM_SUCCESS)
{
//
// Wait until the transaction actually clears.
//
am_hal_iom_queue_flush(ui32Module);
// g_iom_error_status gets set in the isr handling
ui32Status = g_iom_error_status[ui32Module];
}
//
// At this point, we've completed the transaction, and we can return.
//
}
else
{
//
// Otherwise, just perform a polled transaction.
//
ui32Status = am_hal_iom_i2c_read_nq(ui32Module, ui32BusAddress, pui32Data,
ui32NumBytes, ui32Options);
}
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform a non-blocking write to the I2C interface.
//!
//! @param ui32Module - Module number for the IOM.
//! @param ui32BusAddress - I2C address of the target device.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional I2C transfer options.
//! @param pfnCallback - Function to call when the transaction completes.
//!
//! This function performs I2C writes to a selected I2C device.
//!
//! This function call is a non-blocking implementation. It will write as much
//! data to the FIFO as possible immediately, store a pointer to the remaining
//! data, start the transfer on the bus, and then immediately return. The
//! caller will need to make sure that \e am_hal_iom_int_service() is called
//! for IOM FIFO interrupt events and "command complete" interrupt events. The
//! \e am_hal_iom_int_service() function will refill the FIFO as necessary and
//! call the \e pfnCallback function when the transaction is finished.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui32Data array.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution. Note that
//! successful execution for non-blocking call only means the transaction was
//! successfully initiated. The status of the transaction is not known till the
//! callback is called on completion
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_i2c_write_nb(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback)
{
am_hal_iom_status_e ui32Status;
uint32_t ui32TransferSize;
uint32_t ui32MaxFifoSize;
am_hal_i2c_bit_bang_enum_e i2cBBStatus;
//
// Validate parameters
//
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Redirect to the bit-bang interface if the module number matches the
// software I2C module.
//
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
{
// Reset the error status for non-blocking transfer
g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if ( ui32Options & AM_HAL_IOM_RAW )
{
i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
(uint8_t *)pui32Data, 0, false,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
else
{
i2cBBStatus = am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
(uint8_t *)pui32Data,
((ui32Options & 0xFF00) >> 8),
true,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
//
// Return. convert i2c bb retCode
//
g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
//
// The I2C bit-bang interface is actually a blocking transfer, and it
// doesn't trigger the interrupt handler, so we have to call the
// callback function manually.
//
if ( pfnCallback )
{
pfnCallback();
}
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 256)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
//
// Figure out how many bytes we can write to the FIFO immediately.
//
ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
ui32MaxFifoSize);
// Need to mark IOM busy to avoid another transaction to be scheduled.
// This is to take care of a race condition in Queue mode, where the IDLE
// set is not a guarantee that the CMDCMP has been received
g_bIomBusy[ui32Module] = true;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
if ( am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize) > 0 )
{
//
// Prepare the global IOM buffer structure.
//
g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
//
// Update the pointer and the byte counter based on the portion of the
// transfer we just sent to the fifo.
//
g_psIOMBuffers[ui32Module].ui32BytesLeft -= ui32TransferSize;
g_psIOMBuffers[ui32Module].pui32Data += (ui32TransferSize / 4);
//
// Start the write on the bus.
//
ui32Status = am_hal_iom_i2c_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32BusAddress,
ui32NumBytes, ui32Options);
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
g_iom_error_status[ui32Module] = ui32Status;
}
}
return ui32Status;
}
//*****************************************************************************
//
//! @brief Perform a non-blocking I2C read.
//!
//! @param ui32Module - Module number for the IOM.
//! @param ui32ChipSelect - I2C address of the target device.
//! @param pui32Data - Pointer to the array where received bytes should go.
//! @param ui32NumBytes - Number of bytes to read.
//! @param ui32Options - Additional I2C transfer options.
//! @param pfnCallback - Function to call when the transaction completes.
//!
//! This function performs an I2C read to a selected I2C device.
//!
//! This function call is a non-blocking implementation. It will start the I2C
//! transaction on the bus and store a pointer for the destination for the read
//! data, but it will not wait for the I2C transaction to finish. The caller
//! will need to make sure that \e am_hal_iom_int_service() is called for IOM
//! FIFO interrupt events and "command complete" interrupt events. The \e
//! am_hal_iom_int_service() function will empty the FIFO as necessary,
//! transfer the data to the \e pui32Data buffer, and call the \e pfnCallback
//! function when the transaction is finished.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This function will pack the individual bytes from the physical interface
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
//! the first \e ui32NumBytes bytes in this array will contain valid data.
//!
//! @return returns AM_HAL_IOM_SUCCESS on successful execution. Note that
//! successful execution for non-blocking call only means the transaction was
//! successfully initiated. The status of the transaction is not known till the
//! callback is called on completion
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_i2c_read_nb(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options,
am_hal_iom_callback_t pfnCallback)
{
am_hal_iom_status_e ui32Status;
am_hal_i2c_bit_bang_enum_e i2cBBStatus;
//
// Validate parameters
//
if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
//
// Wait until the bus is idle
//
am_hal_iom_poll_complete(ui32Module);
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if (ui32NumBytes == 0)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Redirect to the bit-bang interface if the module number matches the
// software I2C module.
//
if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
{
// Reset the error status for non-blocking transfer
g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if ( ui32Options & AM_HAL_IOM_RAW )
{
i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
(uint8_t *)pui32Data, 0, false,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
else
{
i2cBBStatus = am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
(uint8_t *)pui32Data,
((ui32Options & 0xFF00) >> 8),
true,
(ui32Options & AM_HAL_IOM_NO_STOP));
}
//
// Return. convert i2c bb retCode
//
g_iom_error_status[ui32Module] = ui32Status = i2c_bb_errmap[i2cBBStatus];
//
// The I2C bit-bang interface is actually a blocking transfer, and it
// doesn't trigger the interrupt handler, so we have to call the
// callback function manually.
//
if ( pfnCallback )
{
pfnCallback();
}
return ui32Status;
}
//
// Make sure the transfer isn't too long for the hardware to support.
//
if (ui32NumBytes >= 256)
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
// Need to mark IOM busy to avoid another transaction to be scheduled.
// This is to take care of a race condition in Queue mode, where the IDLE
// set is not a guarantee that the CMDCMP has been received
//
g_bIomBusy[ui32Module] = true;
// Clear interrupts
AM_REGn(IOMSTR, ui32Module, INTCLR) = AM_HAL_IOM_INT_ALL;
//
// Prepare the global IOM buffer structure.
//
g_psIOMBuffers[ui32Module].ui32State = BUFFER_RECEIVING;
g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
//
// Start the read transaction on the bus.
//
ui32Status = am_hal_iom_i2c_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32BusAddress,
ui32NumBytes, ui32Options);
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
g_iom_error_status[ui32Module] = ui32Status;
}
return ui32Status;
}
//*****************************************************************************
//
//! @brief Runs a I2C "command" through the IO master.
//!
//! @param ui32Operation - I2C action to be performed. This should either be
//! AM_HAL_IOM_WRITE or AM_HAL_IOM_READ.
//! @param psDevice - Structure containing information about the slave device.
//! @param ui32NumBytes - Number of bytes to move (transmit or receive) with
//! this command.
//! @param ui32Options - Additional I2C options to apply to this command.
//!
//! This function may be used along with am_hal_iom_fifo_write and
//! am_hal_iom_fifo_read to perform more complex I2C reads and writes.
//! This function has additional logic to make sure SCL is high before a new
//! transaction is initiated.
//!
//! @return 0 on success
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_i2c_cmd_run(uint32_t ui32Operation, uint32_t ui32Module,
uint32_t ui32BusAddress, uint32_t ui32NumBytes,
uint32_t ui32Options)
{
uint32_t ui32Command;
am_hal_iom_status_e ui32Status = AM_HAL_IOM_SUCCESS;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
if (ui32NumBytes == 0)
{
return AM_HAL_IOM_ERR_INVALID_PARAM;
}
//
// Start building the command from the operation parameter.
//
ui32Command = ui32Operation;
//
// Set the transfer length.
//
ui32Command |= (ui32NumBytes & 0xFF);
//
// Set the chip select number.
//
ui32Command |= ((ui32BusAddress << 16) & 0x03FF0000);
//
// Finally, OR in the rest of the options. This mask should make sure that
// erroneous option values won't interfere with the other transfer
// parameters.
//
ui32Command |= (ui32Options & 0x5C00FF00);
//
// Wait for SCL to be high before initiating a new transaction
// This is to ensure clock hi time specs are not violated in case slave did
// clock stretching in previous transaction
//
ui32Status = internal_iom_wait_i2c_scl_hi(ui32Module);
if (ui32Status == AM_HAL_IOM_SUCCESS)
{
//
// Write the complete command word to the IOM command register.
//
AM_REGn(IOMSTR, ui32Module, CMD) = ui32Command;
}
return ui32Status;
}
//*****************************************************************************
//
//! @brief Sets the repeat count for the next IOM command.
//!
//! @param ui32Module is the IOM module number.
//! @param ui32CmdCount is the number of times the next command should be
//! executed.
//!
//! @note This function is not compatible with the am_hal_iom_spi_read/write()
//! or am_hal_iom_i2c_read/write() functions. Instead, you will need to use the
//! am_hal_iom_fifo_read/write() functions and the am_hal_iom_spi/i2c_cmd_run()
//! functions.
//!
//! Example usage:
//! @code
//!
//! //
//! // Create a buffer and add 3 bytes of data to it.
//! //
//! am_hal_iom_buffer(3) psBuffer;
//! psBuffer.bytes[0] = 's';
//! psBuffer.bytes[1] = 'p';
//! psBuffer.bytes[2] = 'i';
//!
//! //
//! // Send three different bytes to the same SPI register on a remote device.
//! //
//! am_hal_iom_fifo_write(ui32Module, psBuffer.words, 3);
//!
//! am_hal_command_repeat_set(ui32Module, 3);
//!
//! am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, psDevice, 1,
//! AM_HAL_IOM_OFFSET(0x5));
//!
//! //
//! // The sequence "0x5, 's', 0x5, 'p', 0x5, 'i'" should be written to the SPI
//! // bus.
//! //
//!
//! @endcode
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_command_repeat_set(uint32_t ui32Module, uint32_t ui32CmdCount)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
AM_REGn(IOMSTR, ui32Module, CMDRPT) = ui32CmdCount;
}
//*****************************************************************************
//
//! @brief Writes data to the IOM FIFO.
//!
//! @param ui32Module - Selects the IOM module to use (zero or one).
//! @param pui32Data - Pointer to an array of the data to be written.
//! @param ui32NumBytes - Number of BYTES to copy into the FIFO.
//!
//! This function copies data from the array \e pui32Data into the IOM FIFO.
//! This prepares the data to eventually be sent as SPI or I2C data by an IOM
//! "command".
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui8Data array.
//!
//! @note This function may be used to write partial or complete SPI or I2C
//! messages into the IOM FIFO. When writing partial messages to the FIFO, make
//! sure that the number of bytes written is a multiple of four. Only the last
//! 'part' of a message may consist of a number of bytes that is not a multiple
//! of four. If this rule is not followed, the IOM will not be able to send
//! these bytes correctly.
//!
//! @return Number of bytes actually written to the FIFO.
//
//*****************************************************************************
uint32_t
am_hal_iom_fifo_write(uint32_t ui32Module, uint32_t *pui32Data,
uint32_t ui32NumBytes)
{
uint32_t ui32Index;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return 0;
}
//
// Make sure we check the number of bytes we're writing to the FIFO.
//
am_hal_debug_assert_msg((am_hal_iom_fifo_empty_slots(ui32Module) >= ui32NumBytes),
"The fifo couldn't fit the requested number of bytes");
//
// Loop over the words in the array until we have the correct number of
// bytes.
//
for ( ui32Index = 0; (4 * ui32Index) < ui32NumBytes; ui32Index++ )
{
//
// Write the word to the FIFO.
//
AM_REGn(IOMSTR, ui32Module, FIFO) = pui32Data[ui32Index];
}
return ui32NumBytes;
}
//*****************************************************************************
//
//! @brief Reads data from the IOM FIFO.
//!
//! @param ui32Module - Selects the IOM module to use (zero or one).
//! @param pui32Data - Pointer to an array where the FIFO data will be copied.
//! @param ui32NumBytes - Number of bytes to copy into array.
//!
//! This function copies data from the IOM FIFO into the array \e pui32Data.
//! This is how input data from SPI or I2C transactions may be retrieved.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This function will pack the individual bytes from the physical interface
//! into 32-bit words, which are then placed into the \e pui32Data array. Only
//! the first \e ui32NumBytes bytes in this array will contain valid data.
//!
//! @return Number of bytes read from the fifo.
//
//*****************************************************************************
uint32_t
am_hal_iom_fifo_read(uint32_t ui32Module, uint32_t *pui32Data,
uint32_t ui32NumBytes)
{
am_hal_iom_buffer(4) sTempBuffer;
uint32_t i, j, ui32NumWords, ui32Leftovers;
uint8_t *pui8Data;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return 0;
}
//
// Make sure we check the number of bytes we're reading from the FIFO.
// This doesn't make sense for Full-Duplex operations.
//
if ( AM_REG_IOMSTR_CFG_FULLDUP_NORMAL == (AM_REGn(IOMSTR, ui32Module, CFG) & AM_REG_IOMSTR_CFG_FULLDUP_M) )
{
am_hal_debug_assert_msg((am_hal_iom_fifo_full_slots(ui32Module) >= ui32NumBytes),
"The fifo doesn't contain the requested number of bytes.");
}
//
// Figure out how many whole words we're reading from the fifo, and how
// many bytes will be left over when we're done.
//
ui32NumWords = ui32NumBytes / 4;
ui32Leftovers = ui32NumBytes - (ui32NumWords * 4);
//
// Copy out as many full words as we can.
//
for ( i = 0; i < ui32NumWords; i++ )
{
//
// Copy data out of the FIFO, one word at a time.
//
pui32Data[i] = AM_REGn(IOMSTR, ui32Module, FIFO);
}
//
// If there were leftovers, we'll copy them carefully. Pull the last word
// from the fifo (there should only be one) into a temporary buffer. Also,
// create an 8-bit pointer to help us copy the remaining bytes one at a
// time.
//
// Note: If the data buffer we were given was truly a word pointer like the
// definition requests, we wouldn't need to do this. It's possible to call
// this function with a re-cast or packed pointer instead though. If that
// happens, we want to be careful not to overwrite any data that might be
// sitting just past the end of the destination array.
//
if ( ui32Leftovers )
{
sTempBuffer.words[0] = AM_REGn(IOMSTR, ui32Module, FIFO);
pui8Data = (uint8_t *) (&pui32Data[i]);
//
// If we had leftover bytes, copy them out one byte at a time.
//
for ( j = 0; j < ui32Leftovers; j++ )
{
pui8Data[j] = sTempBuffer.bytes[j];
}
}
return ui32NumBytes;
}
//*****************************************************************************
//
//! @brief Check amount of empty space in the IOM fifo.
//!
//! @param ui32Module - Module number of the IOM whose fifo should be checked.
//!
//! Returns the number of bytes that could be written to the IOM fifo without
//! causing an overflow.
//!
//! @return Amount of space available in the fifo (in bytes).
//
//*****************************************************************************
uint8_t
am_hal_iom_fifo_empty_slots(uint32_t ui32Module)
{
uint32_t ui32MaxFifoSize;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return 0;
}
ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ? AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
//
// Calculate the FIFO Remaining from the FIFO size. This will be different
// depending on whether the IOM is configured for half-duplex or
// full-duplex.
//
return (ui32MaxFifoSize - AM_BFRn(IOMSTR, ui32Module, FIFOPTR, FIFOSIZ)) & (~0x3);
}
//*****************************************************************************
//
//! @brief Check to see how much data is in the IOM fifo.
//!
//! @param ui32Module - Module number of the IOM whose fifo should be checked.
//!
//! Returns the number of bytes of data that are currently in the IOM fifo.
//!
//! @return Number of bytes in the fifo.
//
//*****************************************************************************
uint8_t
am_hal_iom_fifo_full_slots(uint32_t ui32Module)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return 0;
}
return AM_BFRn(IOMSTR, ui32Module, FIFOPTR, FIFOSIZ);
}
//*****************************************************************************
//
//! @brief Wait for the current IOM command to complete.
//!
//! @param ui32Module - The module number of the IOM to use.
//!
//! This function polls until the IOM bus becomes idle.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_poll_complete(uint32_t ui32Module)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
//
// Poll on the IDLE bit in the status register.
//
while ( g_bIomBusy[ui32Module] );
}
//*****************************************************************************
//
//! @brief Returns the contents of the IOM status register.
//!
//! @param ui32Module IOM instance to check the status of.
//!
//! This function is just a wrapper around the IOM status register.
//!
//! @return 32-bit contents of IOM status register.
//
//*****************************************************************************
uint32_t
am_hal_iom_status_get(uint32_t ui32Module)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return 0;
}
return AM_REGn(IOMSTR, ui32Module, STATUS);
}
//*****************************************************************************
//
//! @brief Returns current error state of the IOM.
//!
//! @param ui32Module IOM instance to check the status of.
//!
//! This function returns status indicating whether the IOM has incurred any
//! errors or not for previous operation.
//! This function can be called when the callback is invoked to determine the
//! status of the transaction just completed.
//! This function can also be called after a blocking call, though it would
//! return the same status as returned from the call itself
//! This function should not be called for an ongoing transaction, and the
//! result of such operation is indeterministic
//!
//! @return AM_HAL_IOM_SUCCESS if all is well.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_error_status_get(uint32_t ui32Module)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
//
// AM_HAL_IOM_ERR_INVALID_MODULE is defined as an unused interrupt bit.
//
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
return (g_iom_error_status[ui32Module]);
}
//*****************************************************************************
//
//! @brief Service interrupts from the IOM.
//!
//! @param ui32Status is the IOM interrupt status as returned from
//! am_hal_iom_int_status_get()
//!
//! This function performs the necessary operations to facilitate non-blocking
//! IOM writes and reads.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_iom_int_service(uint32_t ui32Module, uint32_t ui32Status)
{
am_hal_iom_nb_buffer *psBuffer;
uint32_t ui32NumBytes;
uint32_t ui32SpaceInFifo;
uint32_t thresh;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
//
// Find the buffer information for the chosen IOM module.
//
psBuffer = &g_psIOMBuffers[ui32Module];
// Keep accumulating any error indications
// This is to account for the case if the error indication comes before CMDCMP
g_iom_error_status[ui32Module] |= ui32Status;
//
// Figure out what type of interrupt this was.
//
if ( ui32Status & AM_HAL_IOM_INT_CMDCMP )
{
//
// Need to mark IOM Free
//
g_bIomBusy[ui32Module] = false;
//
// If we're not in the middle of a non-blocking call right now, there's
// nothing for this routine to do.
//
if ( psBuffer->ui32State == BUFFER_IDLE )
{
return;
}
//
// If a command just completed, we need to transfer all available data.
//
if ( psBuffer->ui32State == BUFFER_RECEIVING )
{
//
// If we were receiving, we need to copy any remaining data out of
// the IOM FIFO before calling the callback.
//
ui32NumBytes = am_hal_iom_fifo_full_slots(ui32Module);
am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data, ui32NumBytes);
}
//
// A command complete event also means that we've already transferred
// all of the data we need, so we can mark the data buffer as IDLE.
//
psBuffer->ui32State = BUFFER_IDLE;
g_iom_error_status[ui32Module] = internal_iom_get_int_err(ui32Module, g_iom_error_status[ui32Module]);
//
// If we have a callback, call it now.
//
if ( psBuffer->pfnCallback )
{
psBuffer->pfnCallback();
}
}
else if ( ui32Status & AM_HAL_IOM_INT_THR )
{
//
// If we're not in the middle of a non-blocking call right now, there's
// nothing for this routine to do.
//
if ( psBuffer->ui32State == BUFFER_IDLE )
{
return;
}
//
// If we received a threshold event in the middle of a command, we need
// to transfer data.
//
if ( psBuffer->ui32State == BUFFER_SENDING )
{
thresh = AM_BFRn(IOMSTR, ui32Module, FIFOTHR, FIFOWTHR);
do
{
ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
//
// Figure out how much data we can send.
//
if ( psBuffer->ui32BytesLeft <= ui32SpaceInFifo )
{
//
// If the whole transfer will fit in the fifo, send it all.
//
ui32NumBytes = psBuffer->ui32BytesLeft;
}
else
{
//
// If the transfer won't fit in the fifo completely, send as
// much as we can (rounded down to a multiple of four bytes).
//
ui32NumBytes = ui32SpaceInFifo;
}
//
// Perform the transfer.
//
am_hal_iom_fifo_write(ui32Module, psBuffer->pui32Data, ui32NumBytes);
// Clear any spurious THR interrupt that might have got raised
// while we were adding data to FIFO
AM_BFWn(IOMSTR, ui32Module, INTCLR, THR, 1);
//
// Update the pointer and the byte counter.
//
psBuffer->ui32BytesLeft -= ui32NumBytes;
psBuffer->pui32Data += (ui32NumBytes / 4);
if ( 0 == psBuffer->ui32BytesLeft )
{
//
// Done with this transaction
//
break;
}
} while ( am_hal_iom_fifo_full_slots(ui32Module) <= thresh );
}
else
{
thresh = AM_BFRn(IOMSTR, ui32Module, FIFOTHR, FIFORTHR);
while ( (ui32NumBytes = am_hal_iom_fifo_full_slots(ui32Module)) >= thresh )
{
//
// If we get here, we're in the middle of a read. Transfer as much
// data as possible out of the FIFO and into our buffer.
//
if ( ui32NumBytes == psBuffer->ui32BytesLeft )
{
//
// If the fifo contains our entire message, just copy the whole
// thing out.
//
am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data,
psBuffer->ui32BytesLeft);
break;
}
else if ( ui32NumBytes >= 4 )
{
//
// If the fifo has at least one 32-bit word in it, copy out the
// biggest block we can.
//
ui32NumBytes = (ui32NumBytes & (~0x3));
am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data, ui32NumBytes);
//
// Update the pointer and the byte counter.
//
psBuffer->ui32BytesLeft -= ui32NumBytes;
psBuffer->pui32Data += (ui32NumBytes / 4);
// Clear any spurious THR interrupt that might have got raised
// while we were reading the data from FIFO
AM_BFWn(IOMSTR, ui32Module, INTCLR, THR, 1);
}
}
}
}
}
//*****************************************************************************
//
//! @brief Initialize the IOM queue system.
//!
//! @param ui32Module - IOM module to be initialized for queue transfers.
//! @param psQueueMemory - Memory to be used for queueing IOM transfers.
//! @param ui32QueueMemSize - Size of the queue memory.
//!
//! This function prepares the selected IOM interface for use with the IOM
//! queue system. The IOM queue system allows the caller to start multiple IOM
//! transfers in a non-blocking way. In order to do this, the HAL requires some
//! amount of memory dedicated to keeping track of IOM transactions before they
//! can be sent to the hardware registers. This function tells the HAL what
//! memory it should use for this purpose. For more information on the IOM
//! queue interface, please see the documentation for
//! am_hal_iom_queue_spi_write().
//!
//! @note This function only needs to be called once (per module), but it must
//! be called before any other am_hal_iom_queue function.
//!
//! @note Each IOM module will need its own working space. If you intend to use
//! the queueing mechanism with more than one IOM module, you will need to
//! provide separate queue memory for each module.
//!
//! Example usage:
//!
//! @code
//!
//! //
//! // Declare an array to be used for IOM queue transactions. This array will
//! // be big enough to handle 32 IOM transactions.
//! //
//! am_hal_iom_queue_entry_t g_psQueueMemory[32];
//!
//! //
//! // Attach the IOM0 queue system to the memory we just allocated.
//! //
//! am_hal_iom_queue_init(0, g_psQueueMemory, sizeof(g_psQueueMemory));
//!
//! @endcode
//
//*****************************************************************************
void
am_hal_iom_queue_init(uint32_t ui32Module, am_hal_iom_queue_entry_t *psQueueMemory,
uint32_t ui32QueueMemSize)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
am_hal_queue_init(&g_psIOMQueue[ui32Module], psQueueMemory,
sizeof(am_hal_iom_queue_entry_t), ui32QueueMemSize);
}
//*****************************************************************************
//
//! @brief Check to see how many transactions are in the queue.
//!
//! @param ui32Module Module number for the queue to check
//!
//! This function will check to see how many transactions are in the IOM queue
//! for the selected IOM module.
//!
//! @return Number of transactions in the queue.
//
//*****************************************************************************
uint32_t
am_hal_iom_queue_length_get(uint32_t ui32Module)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return 0;
}
return am_hal_queue_data_left(&g_psIOMQueue[ui32Module]);
}
//*****************************************************************************
//
//! @brief Executes the next operation in the IOM queue.
//!
//! @param ui32ModuleNum - Module number for the IOM to use.
//!
//! This function checks the IOM queue to see if there are any remaining
//! transactions. If so, it will start the next available transaction in a
//! non-blocking way.
//!
//! @note This function is called automatically by am_hal_iom_queue_service().
//! You should not call this function standalone in a normal application.
//
//*****************************************************************************
void
am_hal_iom_queue_start_next_msg(uint32_t ui32Module)
{
am_hal_iom_queue_entry_t sIOMTransaction = {0};
uint32_t ui32ChipSelect;
uint32_t *pui32Data;
uint32_t ui32NumBytes;
uint32_t ui32Options;
am_hal_iom_callback_t pfnCallback;
am_hal_iom_status_e ui32Status = AM_HAL_IOM_SUCCESS;
uint32_t ui32Critical;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Try to get the next IOM operation from the queue.
//
if ( am_hal_queue_item_get(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) )
{
//
// Read the operation parameters
//
ui32ChipSelect = sIOMTransaction.ui32ChipSelect;
pui32Data = sIOMTransaction.pui32Data;
ui32NumBytes = sIOMTransaction.ui32NumBytes;
ui32Options = sIOMTransaction.ui32Options;
pfnCallback = sIOMTransaction.pfnCallback;
//
// Figure out if this was a SPI or I2C write or read, and call the
// appropriate non-blocking function.
//
switch ( sIOMTransaction.ui32Operation )
{
case AM_HAL_IOM_QUEUE_SPI_WRITE:
ui32Status = am_hal_iom_spi_write_nb(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, pfnCallback);
break;
case AM_HAL_IOM_QUEUE_SPI_READ:
ui32Status = am_hal_iom_spi_read_nb(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, pfnCallback);
break;
case AM_HAL_IOM_QUEUE_I2C_WRITE:
ui32Status = am_hal_iom_i2c_write_nb(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, pfnCallback);
break;
case AM_HAL_IOM_QUEUE_I2C_READ:
ui32Status = am_hal_iom_i2c_read_nb(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, pfnCallback);
break;
}
}
//
// Exit the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
// Preserve the error
g_iom_error_status[ui32Module] = ui32Status;
// Call the respective callback
pfnCallback();
}
}
//*****************************************************************************
//
//! @brief Send a SPI frame using the IOM queue.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip-select number for this transaction.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional SPI transfer options.
//!
//! This function performs SPI writes to a selected SPI device.
//!
//! This function call is a queued implementation. It will write as much
//! data to the FIFO as possible immediately, store a pointer to the remaining
//! data, start the transfer on the bus, and then immediately return. If the
//! FIFO is already in use, this function will save its arguments to the IOM
//! queue and execute the transaction when the FIFO becomes available.
//!
//! The caller will need to make sure that \e am_hal_iom_queue_service() is
//! called for IOM FIFO interrupt events and "command complete" interrupt
//! events. The \e am_hal_iom_queue_service() function will refill the FIFO as
//! necessary and call the \e pfnCallback function when the transaction is
//! finished.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui8Data array.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_queue_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
{
uint32_t ui32Critical;
am_hal_iom_status_e ui32Status;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if ( ui32NumBytes == 0 )
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Check to see if we need to use the queue. If the IOM is idle, and
// there's nothing in the queue already, we can go ahead and start the
// transaction in the physical IOM. Need to check for the g_bIomBusy to
// avoid a race condition where IDLE is set - but the command complete
// for previous transaction has not been processed yet
//
if ( (g_bIomBusy[ui32Module] == false) &&
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
{
//
// Send the packet.
//
ui32Status = am_hal_iom_spi_write_nb(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, pfnCallback);
}
else
{
//
// Otherwise, we'll build a transaction structure and add it to the queue.
//
am_hal_iom_queue_entry_t sIOMTransaction;
sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_SPI_WRITE;
sIOMTransaction.ui32Module = ui32Module;
sIOMTransaction.ui32ChipSelect = ui32ChipSelect;
sIOMTransaction.pui32Data = pui32Data;
sIOMTransaction.ui32NumBytes = ui32NumBytes;
sIOMTransaction.ui32Options = ui32Options;
sIOMTransaction.pfnCallback = pfnCallback;
//
// Make sure the item actually makes it into the queue
//
if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
{
//
// Didn't have enough memory.
//
ui32Status = AM_HAL_IOM_ERR_RESOURCE_ERR;
}
}
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
g_iom_error_status[ui32Module] = ui32Status;
}
//
// Exit the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
return ui32Status;
}
//*****************************************************************************
//
//! @brief Read a SPI frame using the IOM queue.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32ChipSelect - Chip select number for this transaction.
//! @param pui32Data - Pointer to the array where received bytes should go.
//! @param ui32NumBytes - Number of bytes to read.
//! @param ui32Options - Additional SPI transfer options.
//!
//! This function performs SPI reads to a selected SPI device.
//!
//! This function call is a queued implementation. It will write as much
//! data to the FIFO as possible immediately, store a pointer to the remaining
//! data, start the transfer on the bus, and then immediately return. If the
//! FIFO is already in use, this function will save its arguments to the IOM
//! queue and execute the transaction when the FIFO becomes available.
//!
//! The caller will need to make sure that \e am_hal_iom_queue_service() is
//! called for IOM FIFO interrupt events and "command complete" interrupt
//! events. The \e am_hal_iom_queue_service() function will empty the FIFO as
//! necessary and call the \e pfnCallback function when the transaction is
//! finished.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui8Data array.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_queue_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
{
uint32_t ui32Critical;
am_hal_iom_status_e ui32Status;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if ( ui32NumBytes == 0 )
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Check to see if we need to use the queue. If the IOM is idle, and
// there's nothing in the queue already, we can go ahead and start the
// transaction in the physical IOM. Need to check for the g_bIomBusy to
// avoid a race condition where IDLE is set - but the command complete
// for previous transaction has not been processed yet
//
if ( (g_bIomBusy[ui32Module] == false) &&
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
{
//
// Send the packet.
//
ui32Status = am_hal_iom_spi_read_nb(ui32Module, ui32ChipSelect, pui32Data,
ui32NumBytes, ui32Options, pfnCallback);
}
else
{
//
// Otherwise, we'll build a transaction structure and add it to the queue.
//
am_hal_iom_queue_entry_t sIOMTransaction;
sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_SPI_READ;
sIOMTransaction.ui32Module = ui32Module;
sIOMTransaction.ui32ChipSelect = ui32ChipSelect;
sIOMTransaction.pui32Data = pui32Data;
sIOMTransaction.ui32NumBytes = ui32NumBytes;
sIOMTransaction.ui32Options = ui32Options;
sIOMTransaction.pfnCallback = pfnCallback;
//
// Make sure the item actually makes it into the queue
//
if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
{
//
// Didn't have enough memory.
//
ui32Status = AM_HAL_IOM_ERR_RESOURCE_ERR;
}
}
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
g_iom_error_status[ui32Module] = ui32Status;
}
//
// Exit the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
return ui32Status;
}
//*****************************************************************************
//
//! @brief Send an I2C frame using the IOM queue.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32BusAddress - I2C address of the target device.
//! @param pui32Data - Pointer to the bytes that will be sent.
//! @param ui32NumBytes - Number of bytes to send.
//! @param ui32Options - Additional I2C transfer options.
//!
//! This function performs I2C writes to a selected I2C device.
//!
//! This function call is a queued implementation. It will write as much
//! data to the FIFO as possible immediately, store a pointer to the remaining
//! data, start the transfer on the bus, and then immediately return. If the
//! FIFO is already in use, this function will save its arguments to the IOM
//! queue and execute the transaction when the FIFO becomes available.
//!
//! The caller will need to make sure that \e am_hal_iom_queue_service() is
//! called for IOM FIFO interrupt events and "command complete" interrupt
//! events. The \e am_hal_iom_queue_service() function will refill the FIFO as
//! necessary and call the \e pfnCallback function when the transaction is
//! finished.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui8Data array.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_queue_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
{
am_hal_iom_status_e ui32Status;
uint32_t ui32Critical;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if ( ui32NumBytes == 0 )
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Check to see if we need to use the queue. If the IOM is idle, and
// there's nothing in the queue already, we can go ahead and start the
// transaction in the physical IOM. Need to check for the g_bIomBusy to
// avoid a race condition where IDLE is set - but the command complete
// for previous transaction has not been processed yet
//
if ( (g_bIomBusy[ui32Module] == false) &&
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
{
//
// Send the packet.
//
ui32Status = am_hal_iom_i2c_write_nb(ui32Module, ui32BusAddress, pui32Data,
ui32NumBytes, ui32Options, pfnCallback);
}
else
{
//
// Otherwise, we'll build a transaction structure and add it to the queue.
//
am_hal_iom_queue_entry_t sIOMTransaction;
sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_I2C_WRITE;
sIOMTransaction.ui32Module = ui32Module;
sIOMTransaction.ui32ChipSelect = ui32BusAddress;
sIOMTransaction.pui32Data = pui32Data;
sIOMTransaction.ui32NumBytes = ui32NumBytes;
sIOMTransaction.ui32Options = ui32Options;
sIOMTransaction.pfnCallback = pfnCallback;
//
// Make sure the item actually makes it into the queue
//
if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
{
//
// Didn't have enough memory.
//
ui32Status = AM_HAL_IOM_ERR_RESOURCE_ERR;
}
}
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
g_iom_error_status[ui32Module] = ui32Status;
}
//
// Exit the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
return ui32Status;
}
//*****************************************************************************
//
//! @brief Read a I2C frame using the IOM queue.
//!
//! @param ui32Module - Module number for the IOM
//! @param ui32BusAddress - I2C address of the target device.
//! @param pui32Data - Pointer to the array where received bytes should go.
//! @param ui32NumBytes - Number of bytes to read.
//! @param ui32Options - Additional I2C transfer options.
//!
//! This function performs I2C reads to a selected I2C device.
//!
//! This function call is a queued implementation. It will write as much
//! data to the FIFO as possible immediately, store a pointer to the remaining
//! data, start the transfer on the bus, and then immediately return. If the
//! FIFO is already in use, this function will save its arguments to the IOM
//! queue and execute the transaction when the FIFO becomes available.
//!
//! The caller will need to make sure that \e am_hal_iom_queue_service() is
//! called for IOM FIFO interrupt events and "command complete" interrupt
//! events. The \e am_hal_iom_queue_service() function will empty the FIFO as
//! necessary and call the \e pfnCallback function when the transaction is
//! finished.
//!
//! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
//! This means that you will need to byte-pack the \e pui32Data array with the
//! data you intend to send over the interface. One easy way to do this is to
//! declare the array as a 32-bit integer array, but use an 8-bit pointer to
//! put your actual data into the array. If there are not enough bytes in your
//! desired message to completely fill the last 32-bit word, you may pad that
//! last word with bytes of any value. The IOM hardware will only read the
//! first \e ui32NumBytes in the \e pui8Data array.
//
//*****************************************************************************
am_hal_iom_status_e
am_hal_iom_queue_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
uint32_t *pui32Data, uint32_t ui32NumBytes,
uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
{
uint32_t ui32Critical;
am_hal_iom_status_e ui32Status;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return AM_HAL_IOM_ERR_INVALID_MODULE;
}
// Reset the error status
ui32Status = g_iom_error_status[ui32Module] = AM_HAL_IOM_SUCCESS;
if ( ui32NumBytes == 0 )
{
g_iom_error_status[ui32Module] = ui32Status = AM_HAL_IOM_ERR_INVALID_PARAM;
return ui32Status;
}
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Check to see if we need to use the queue. If the IOM is idle, and
// there's nothing in the queue already, we can go ahead and start the
// transaction in the physical IOM. Need to check for the g_bIomBusy to
// avoid a race condition where IDLE is set - but the command complete
// for previous transaction has not been processed yet
//
if ( (g_bIomBusy[ui32Module] == false) &&
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
{
//
// Send the packet.
//
ui32Status = am_hal_iom_i2c_read_nb(ui32Module, ui32BusAddress, pui32Data,
ui32NumBytes, ui32Options, pfnCallback);
}
else
{
//
// Otherwise, we'll build a transaction structure and add it to the queue.
//
am_hal_iom_queue_entry_t sIOMTransaction;
sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_I2C_READ;
sIOMTransaction.ui32Module = ui32Module;
sIOMTransaction.ui32ChipSelect = ui32BusAddress;
sIOMTransaction.pui32Data = pui32Data;
sIOMTransaction.ui32NumBytes = ui32NumBytes;
sIOMTransaction.ui32Options = ui32Options;
sIOMTransaction.pfnCallback = pfnCallback;
//
// Make sure the item actually makes it into the queue
//
if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
{
//
// Didn't have enough memory.
//
ui32Status = AM_HAL_IOM_ERR_RESOURCE_ERR;
}
}
if (ui32Status != AM_HAL_IOM_SUCCESS)
{
g_iom_error_status[ui32Module] = ui32Status;
}
//
// Exit the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
return ui32Status;
}
//*****************************************************************************
//
//! @brief "Block" until the queue of IOM transactions is over.
//!
//! @param ui32Module - Module number for the IOM.
//!
//! This function will sleep the core block until the queue for the selected
//! IOM is empty. This is mainly useful for non-RTOS applications where the
//! caller needs to know that a certain IOM transaction is complete before
//! continuing with the main program flow.
//!
//! @note This function will put the core to sleep while it waits for the
//! queued IOM transactions to complete. This will save power, in most
//! situations, but it may not be the best option in all cases. \e Do \e not
//! call this function from interrupt context (the core may not wake up again).
//! \e Be \e careful using this function from an RTOS task (many RTOS
//! implementations use hardware interrupts to switch contexts, and most RTOS
//! implementations expect to control sleep behavior).
//
//*****************************************************************************
void
am_hal_iom_sleeping_queue_flush(uint32_t ui32Module)
{
bool bWaiting = true;
uint32_t ui32Critical;
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
//
// Loop forever waiting for the IOM to be idle and the queue to be empty.
//
while ( bWaiting )
{
//
// Start a critical section.
//
ui32Critical = am_hal_interrupt_master_disable();
//
// Check the queue and the IOM itself.
//
if ( (g_bIomBusy[ui32Module] == false) &&
am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
{
//
// If the queue is empty and the IOM is idle, we can go ahead and
// return.
//
bWaiting = false;
}
else
{
//
// Otherwise, we should sleep until the interface is actually free.
//
am_hal_sysctrl_sleep(AM_HAL_SYSCTRL_SLEEP_NORMAL);
}
//
// End the critical section.
//
am_hal_interrupt_master_set(ui32Critical);
}
}
//*****************************************************************************
//
//! @brief Service IOM transaction queue.
//!
//! @param ui32Module - Module number for the IOM to be used.
//! @param ui32Status - Interrupt status bits for the IOM module being used.
//!
//! This function handles the operation of FIFOs and the IOM queue during
//! queued IOM transactions. If you are using \e am_hal_iom_queue_spi_write()
//! or similar functions, you will need to call this function in your interrupt
//! handler.
//!
//! @note This interrupt service routine relies on the user to enable the IOM
//! interrupts for FIFO threshold and CMD complete.
//!
//! Example:
//!
//! @code
//! void
//! am_iomaster0_isr(void)
//! {
//! uint32_t ui32Status;
//!
//! //
//! // Check to see which interrupt caused us to enter the ISR.
//! //
//! ui32Status = am_hal_iom_int_status(0, true);
//!
//! //
//! // Clear the interrupts. This should be done before calling service routine
//! // as otherwise we may lose re-triggered interrupts
//! //
//! am_hal_iom_int_clear(ui32Status);
//!
//! //
//! // Fill or empty the FIFO, and either continue the current operation or
//! // start the next one in the queue. If there was a callback, it will be
//! // called here.
//! //
//! am_hal_iom_queue_service(0, ui32Status);
//! }
//! @endcode
//!
//! @return
//
//*****************************************************************************
void
am_hal_iom_queue_service(uint32_t ui32Module, uint32_t ui32Status)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
//
// Service the FIFOs in case this was a threshold interrupt.
//
am_hal_iom_int_service(ui32Module, ui32Status);
//
// If the last interrupt was a "command complete", then the IOM should be
// idle already or very soon. Make absolutely sure that the IOM is not in
// use, and then start the next transaction in the queue.
//
if ( ui32Status & AM_HAL_IOM_INT_CMDCMP )
{
if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
{
am_hal_iom_queue_start_next_msg(ui32Module);
}
}
}
//*****************************************************************************
//
//! @brief Enable selected IOM Interrupts.
//!
//! @param ui32Module - Module number.
//! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
//!
//! Use this function to enable the IOM interrupts.
//!
//! @return None
//
//*****************************************************************************
void
am_hal_iom_int_enable(uint32_t ui32Module, uint32_t ui32Interrupt)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
AM_REGn(IOMSTR, ui32Module, INTEN) |= ui32Interrupt;
}
//*****************************************************************************
//
//! @brief Return the enabled IOM Interrupts.
//!
//! @param ui32Module - Module number.
//!
//! Use this function to return all enabled IOM interrupts.
//!
//! @return all enabled IOM interrupts.
//
//*****************************************************************************
uint32_t
am_hal_iom_int_enable_get(uint32_t ui32Module)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return 0;
}
return AM_REGn(IOMSTR, ui32Module, INTEN);
}
//*****************************************************************************
//
//! @brief Disable selected IOM Interrupts.
//!
//! @param ui32Module - Module number.
//! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
//!
//! Use this function to disable the IOM interrupts.
//!
//! @return None
//
//*****************************************************************************
void
am_hal_iom_int_disable(uint32_t ui32Module, uint32_t ui32Interrupt)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
AM_REGn(IOMSTR, ui32Module, INTEN) &= ~ui32Interrupt;
}
//*****************************************************************************
//
//! @brief Clear selected IOM Interrupts.
//!
//! @param ui32Module - Module number.
//! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
//!
//! Use this function to clear the IOM interrupts.
//!
//! @return None
//
//*****************************************************************************
void
am_hal_iom_int_clear(uint32_t ui32Module, uint32_t ui32Interrupt)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
AM_REGn(IOMSTR, ui32Module, INTCLR) = ui32Interrupt;
}
//*****************************************************************************
//
//! @brief Set selected IOM Interrupts.
//!
//! @param ui32Module - Module number.
//! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
//!
//! Use this function to set the IOM interrupts.
//!
//! @return None
//
//*****************************************************************************
void
am_hal_iom_int_set(uint32_t ui32Module, uint32_t ui32Interrupt)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return;
}
AM_REGn(IOMSTR, ui32Module, INTSET) = ui32Interrupt;
}
//*****************************************************************************
//
//! @brief Return the IOM Interrupt status.
//!
//! @param ui32Module - Module number.
//! @param bEnabledOnly - return only the enabled interrupts.
//!
//! Use this function to get the IOM interrupt status.
//!
//! @return interrupt status
//
//*****************************************************************************
uint32_t
am_hal_iom_int_status_get(uint32_t ui32Module, bool bEnabledOnly)
{
//
// Validate parameters
//
if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
{
return 0;
}
if ( bEnabledOnly )
{
uint32_t u32RetVal = AM_REGn(IOMSTR, ui32Module, INTSTAT);
return u32RetVal & AM_REGn(IOMSTR, ui32Module, INTEN);
}
else
{
return AM_REGn(IOMSTR, ui32Module, INTSTAT);
}
}
//*****************************************************************************
//
// End Doxygen group.
//! @}
//
//*****************************************************************************