rt-thread-official/bsp/ht32/libraries/ht32_drivers/drv_spi.c

353 lines
9.8 KiB
C

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-04-08 QT-one first version
*/
#include <rtdbg.h>
#include "drv_spi.h"
#ifdef RT_USING_SPI
#if !defined(BSP_USING_SPI0) && !defined(BSP_USING_SPI1)
#error "Please define at least one BSP_USING_SPIx"
#endif
struct ht32_spi_config
{
HT_SPI_TypeDef *spi_x;
const char *spi_name;
IRQn_Type irq;
};
struct ht32_spi
{
struct ht32_spi_config *config;
struct rt_spi_bus spi_bus;
};
struct ht32_spi_cs
{
HT_GPIO_TypeDef *gpio_x;
uint32_t gpio_pin;
};
enum
{
#ifdef BSP_USING_SPI0
SPI0_INDEX,
#endif
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
};
static struct ht32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI0
{HT_SPI0, "spi0", SPI0_IRQn},
#endif
#ifdef BSP_USING_SPI1
{HT_SPI1, "spi1", SPI1_IRQn},
#endif
};
static struct ht32_spi spis[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
/* attach the spi device to spi bus, this function must be used after initialization */
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, HT_GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
{
CKCU_PeripClockConfig_TypeDef CKCUClock = {{0}};
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct ht32_spi_cs *cs_pin;
if ((cs_gpiox) == HT_GPIOA)
{
CKCUClock.Bit.PA = 1;
CKCU_PeripClockConfig(CKCUClock, ENABLE);
AFIO_GPxConfig(GPIO_PA, cs_gpio_pin, AFIO_FUN_GPIO);
}
else if ((cs_gpiox) == HT_GPIOB)
{
CKCUClock.Bit.PB = 1;
CKCU_PeripClockConfig(CKCUClock, ENABLE);
AFIO_GPxConfig(GPIO_PB, cs_gpio_pin, AFIO_FUN_GPIO);
}
#if defined(HT_GPIOC)
else if ((cs_gpiox) == HT_GPIOC)
{
CKCUClock.Bit.PC = 1;
CKCU_PeripClockConfig(CKCUClock, ENABLE);
AFIO_GPxConfig(GPIO_PC, cs_gpio_pin, AFIO_FUN_GPIO);
}
#endif
#if defined(HT_GPIOD)
else if ((cs_gpiox) == HT_GPIOD)
{
CKCUClock.Bit.PD = 1;
CKCU_PeripClockConfig(CKCUClock, ENABLE);
AFIO_GPxConfig(GPIO_PD, cs_gpio_pin, AFIO_FUN_GPIO);
}
#endif
#if defined(HT_GPIOE)
else if ((cs_gpiox) == HT_GPIOE)
{
CKCUClock.Bit.PE = 1;
CKCU_PeripClockConfig(CKCUClock, ENABLE);
AFIO_GPxConfig(GPIO_PE, cs_gpio_pin, AFIO_FUN_GPIO);
}
#endif
#if defined(HT_GPIOF)
else if ((cs_gpiox) == HT_GPIOF)
{
CKCUClock.Bit.PF = 1;
CKCU_PeripClockConfig(CKCUClock, ENABLE);
AFIO_GPxConfig(GPIO_PF, cs_gpio_pin, AFIO_FUN_GPIO);
}
#endif
GPIO_PullResistorConfig(cs_gpiox, cs_gpio_pin, GPIO_PR_DISABLE);
GPIO_WriteOutBits(cs_gpiox, cs_gpio_pin, SET);
GPIO_DirectionConfig(cs_gpiox, cs_gpio_pin, GPIO_DIR_OUT);
/* attach the device to spi bus */
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct ht32_spi_cs *)rt_malloc(sizeof(struct ht32_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->gpio_x = cs_gpiox;
cs_pin->gpio_pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_D("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
static rt_err_t ht32_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration)
{
struct rt_spi_bus *spi_bus = (struct rt_spi_bus *)device->bus;
struct ht32_spi *spi_instance = (struct ht32_spi *)spi_bus->parent.user_data;
SPI_InitTypeDef SPI_InitStructure;
CKCU_PeripClockConfig_TypeDef CKCUClock = {{0}};
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
#ifdef BSP_USING_SPI0
if (HT_SPI0 == spi_instance->config->spi_x)
{
CKCUClock.Bit.SPI0 = 1;
}
#endif
#ifdef BSP_USING_SPI1
if (HT_SPI1 == spi_instance->config->spi_x)
{
CKCUClock.Bit.SPI1 = 1;
}
#endif
CKCUClock.Bit.AFIO = 1;
CKCU_PeripClockConfig(CKCUClock, ENABLE);
ht32_spi_gpio_init(spi_instance->config->spi_x);
/* data_width */
if (configuration->data_width <= 8)
{
SPI_InitStructure.SPI_DataLength = SPI_DATALENGTH_8;
}
else if (configuration->data_width <= 16)
{
SPI_InitStructure.SPI_DataLength = SPI_DATALENGTH_16;
}
else
{
return RT_ERROR;
}
/* Set the polarity and phase of the SPI */
switch (configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
SPI_InitStructure.SPI_CPOL = SPI_CPOL_LOW;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_FIRST;
break;
case RT_SPI_MODE_1:
SPI_InitStructure.SPI_CPOL = SPI_CPOL_LOW;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_SECOND;
break;
case RT_SPI_MODE_2:
SPI_InitStructure.SPI_CPOL = SPI_CPOL_HIGH;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_FIRST;
break;
case RT_SPI_MODE_3:
SPI_InitStructure.SPI_CPOL = SPI_CPOL_HIGH;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_SECOND;
break;
}
/* Set the SPI as a master or slave */
SPI_InitStructure.SPI_Mode = (configuration->mode & RT_SPI_SLAVE) ? (SPI_SLAVE) : (SPI_MASTER);
/* Set the data high or low first */
SPI_InitStructure.SPI_FirstBit = (configuration->mode & RT_SPI_MSB) ? (SPI_FIRSTBIT_MSB) : (SPI_FIRSTBIT_LSB);
/* SEL uses software by default */
SPI_InitStructure.SPI_SELMode = SPI_SEL_SOFTWARE;
/* SEL effective level */
SPI_InitStructure.SPI_SELPolarity = (configuration->mode & RT_SPI_CS_HIGH) ? (SPI_SELPOLARITY_HIGH) : (SPI_SELPOLARITY_LOW);
/* Configure the SCK clock frequency of the SPI */
if (configuration->max_hz < 0xFFFF)
{
SPI_InitStructure.SPI_ClockPrescaler = ((configuration->max_hz) & 0xFFFF);
}
else
{
return RT_ERROR;
}
SPI_InitStructure.SPI_FIFO = SPI_FIFO_DISABLE;
SPI_InitStructure.SPI_RxFIFOTriggerLevel = 0;
SPI_InitStructure.SPI_TxFIFOTriggerLevel = 0;
SPI_Init(spi_instance->config->spi_x, &SPI_InitStructure);
#if (!LIBCFG_SPI_NO_MULTI_MASTER)
SPI_SELOutputCmd(spi_instance->config->spi_x, ENABLE);
#endif
SPI_Cmd(spi_instance->config->spi_x, ENABLE);
return RT_EOK;
}
static rt_ssize_t ht32_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
struct rt_spi_bus *ht32_spi_bus = (struct rt_spi_bus *)device->bus;
struct ht32_spi *spi_instance = (struct ht32_spi *)ht32_spi_bus->parent.user_data;
struct rt_spi_configuration *config = &device->config;
struct ht32_spi_cs *ht32_spi_cs = device->parent.user_data;
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
/* take cs */
if (message->cs_take)
{
GPIO_ClearOutBits(ht32_spi_cs->gpio_x, ht32_spi_cs->gpio_pin);
LOG_D("spi take cs\n");
}
if (config->data_width <= 8)
{
const rt_uint8_t *send_ptr = message->send_buf;
rt_uint8_t *recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
LOG_D("spi poll transfer start: %d\n", size);
while (size--)
{
rt_uint8_t data = 0xFF;
if (send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* wait until the transmit buffer is empty */
while (SPI_GetFlagStatus(spi_instance->config->spi_x, SPI_FLAG_TXE) == RESET);
/* send the byte */
SPI_SendData(spi_instance->config->spi_x, data);
/* wait until a data is received */
while (SPI_GetFlagStatus(spi_instance->config->spi_x, SPI_INT_RXBNE) == RESET);
/* get the received data */
data = SPI_ReceiveData(spi_instance->config->spi_x);
if (recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
LOG_D("spi poll transfer finsh\n");
}
else if (config->data_width <= 16)
{
const rt_uint16_t *send_ptr = message->send_buf;
rt_uint16_t *recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
while (size--)
{
rt_uint16_t data = 0xFF;
if (send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* wait until the transmit buffer is empty */
while (SPI_GetFlagStatus(spi_instance->config->spi_x, SPI_FLAG_TXE) == RESET);
/* send the byte */
SPI_SendData(spi_instance->config->spi_x, data);
/* wait until a data is received */
while (SPI_GetFlagStatus(spi_instance->config->spi_x, SPI_INT_RXBNE) == RESET);
/* get the received data */
data = SPI_ReceiveData(spi_instance->config->spi_x);
if (recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
/* release cs */
if (message->cs_release)
{
GPIO_SetOutBits(ht32_spi_cs->gpio_x, ht32_spi_cs->gpio_pin);
LOG_D("spi release cs\n");
}
return message->length;
}
static struct rt_spi_ops ht32_spi_ops =
{
.configure = ht32_configure,
.xfer = ht32_xfer
};
int rt_hw_spi_init(void)
{
int i;
rt_err_t result;
rt_size_t obj_num = sizeof(spis) / sizeof(struct ht32_spi);
for (i = 0; i < obj_num; i++)
{
spis[i].config = &spi_config[i];
spis[i].spi_bus.parent.user_data = (void *)&spis[i];
result = rt_spi_bus_register(&spis[i].spi_bus, spis[i].config->spi_name, &ht32_spi_ops);
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* RT_USING_SPI */