4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-15 19:39:53 +08:00

320 lines
9.4 KiB
C

/*
* File : fsl_phy_fire.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-05-21 zylx first version
*/
#include "fsl_phy_fire.h"
#include <rtthread.h>
#define DBG_ENABLE
#define DBG_SECTION_NAME "[PHY]"
#define DBG_COLOR
#define DBG_LEVEL DBG_LOG
#include <rtdbg.h>
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
extern uint32_t ENET_GetInstance(ENET_Type *base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to enet clocks for each instance. */
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{
uint32_t bssReg;
uint32_t i;
uint32_t counter = PHY_TIMEOUT_COUNT;
uint32_t idReg = 0;
status_t result = kStatus_Success;
uint32_t instance = ENET_GetInstance(base);
uint32_t timeDelay;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Set SMI first. */
CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
ENET_SetSMI(base, srcClock_Hz, false);
/* Initialization after PHY stars to work. */
while ((idReg != PHY_CONTROL_ID1) && (counter != 0))
{
PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
counter --;
}
if (!counter)
{
return kStatus_Fail;
}
/* Reset PHY. */
counter = PHY_TIMEOUT_COUNT;
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (result == kStatus_Success)
{
for (i = 0x10000; i > 0; i--)
{
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &bssReg);
if (!(bssReg & PHY_BCTL_POWER_DOWN_MASK))
{
break;
}
}
if (i != 0)
{
/* Set the negotiation. */
result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
if (result == kStatus_Success)
{
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
(PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
if (result == kStatus_Success)
{
/* Check auto negotiation complete. */
while (counter --)
{
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
if (result == kStatus_Success)
{
if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0))
{
rt_thread_delay(1);
}
else
{
dbg_log(DBG_LOG, "auto negotiation complete success\n");
break;
}
}
}
if (!counter)
{
dbg_log(DBG_LOG, "auto negotiation complete falied\n");
return kStatus_PHY_AutoNegotiateFail;
}
}
}
}
}
return result;
}
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
uint32_t counter;
/* Clear the SMI interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI write command. */
ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
/* Wait for SMI complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
return kStatus_Success;
}
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
{
assert(dataPtr);
uint32_t counter;
/* Clear the MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI read command operation. */
ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
/* Wait for MII complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Get data from MII register. */
*dataPtr = ENET_ReadSMIData(base);
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
return kStatus_Success;
}
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable)
{
status_t result;
uint32_t data = 0;
/* Set the loop mode. */
if (enable)
{
if (mode == kPHY_LocalLoop)
{
if (speed == kPHY_Speed100M)
{
data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
else
{
data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, data);
}
else
{
/* First read the current status in control register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
}
}
}
else
{
/* Disable the loop mode. */
if (mode == kPHY_LocalLoop)
{
/* First read the current status in control register. */
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
if (result == kStatus_Success)
{
data &= ~PHY_BCTL_LOOP_MASK;
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
}
}
else
{
/* First read the current status in control one register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
}
}
}
return result;
}
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
{
assert(status);
status_t result = kStatus_Success;
uint32_t data;
/* Read the basic status register. */
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &data);
if (result == kStatus_Success)
{
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
{
/* link down. */
*status = false;
}
else
{
/* link up. */
*status = true;
}
}
return result;
}
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
{
assert(duplex);
status_t result = kStatus_Success;
uint32_t data, ctlReg;
/* Read the control two register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &ctlReg);
if (result == kStatus_Success)
{
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* Full duplex. */
*duplex = kPHY_FullDuplex;
}
else
{
/* Half duplex. */
*duplex = kPHY_HalfDuplex;
}
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* 100M speed. */
*speed = kPHY_Speed100M;
}
else
{
/* 10M speed. */
*speed = kPHY_Speed10M;
}
}
return result;
}