rt-thread-official/src/scheduler_mp.c

762 lines
24 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2006-03-17 Bernard the first version
* 2006-04-28 Bernard fix the scheduler algorthm
* 2006-04-30 Bernard add SCHEDULER_DEBUG
* 2006-05-27 Bernard fix the scheduler algorthm for same priority
* thread schedule
* 2006-06-04 Bernard rewrite the scheduler algorithm
* 2006-08-03 Bernard add hook support
* 2006-09-05 Bernard add 32 priority level support
* 2006-09-24 Bernard add rt_system_scheduler_start function
* 2009-09-16 Bernard fix _rt_scheduler_stack_check
* 2010-04-11 yi.qiu add module feature
* 2010-07-13 Bernard fix the maximal number of rt_scheduler_lock_nest
* issue found by kuronca
* 2010-12-13 Bernard add defunct list initialization even if not use heap.
* 2011-05-10 Bernard clean scheduler debug log.
* 2013-12-21 Grissiom add rt_critical_level
* 2018-11-22 Jesven remove the current task from ready queue
* add per cpu ready queue
* add _scheduler_get_highest_priority_thread to find highest priority task
* rt_schedule_insert_thread won't insert current task to ready queue
* in smp version, rt_hw_context_switch_interrupt maybe switch to
* new task directly
* 2022-01-07 Gabriel Moving __on_rt_xxxxx_hook to scheduler.c
* 2023-03-27 rose_man Split into scheduler upc and scheduler_mp.c
*/
#include <rtthread.h>
#include <rthw.h>
#define DBG_TAG "kernel.scheduler"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
rt_list_t rt_thread_priority_table[RT_THREAD_PRIORITY_MAX];
rt_uint32_t rt_thread_ready_priority_group;
#if RT_THREAD_PRIORITY_MAX > 32
/* Maximum priority level, 256 */
rt_uint8_t rt_thread_ready_table[32];
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
#ifndef __on_rt_scheduler_hook
#define __on_rt_scheduler_hook(from, to) __ON_HOOK_ARGS(rt_scheduler_hook, (from, to))
#endif
#ifndef __on_rt_scheduler_switch_hook
#define __on_rt_scheduler_switch_hook(tid) __ON_HOOK_ARGS(rt_scheduler_switch_hook, (tid))
#endif
#if defined(RT_USING_HOOK) && defined(RT_HOOK_USING_FUNC_PTR)
static void (*rt_scheduler_hook)(struct rt_thread *from, struct rt_thread *to);
static void (*rt_scheduler_switch_hook)(struct rt_thread *tid);
/**
* @addtogroup Hook
*/
/**@{*/
/**
* @brief This function will set a hook function, which will be invoked when thread
* switch happens.
*
* @param hook is the hook function.
*/
void rt_scheduler_sethook(void (*hook)(struct rt_thread *from, struct rt_thread *to))
{
rt_scheduler_hook = hook;
}
/**
* @brief This function will set a hook function, which will be invoked when context
* switch happens.
*
* @param hook is the hook function.
*/
void rt_scheduler_switch_sethook(void (*hook)(struct rt_thread *tid))
{
rt_scheduler_switch_hook = hook;
}
/**@}*/
#endif /* RT_USING_HOOK */
#ifdef RT_USING_OVERFLOW_CHECK
static void _scheduler_stack_check(struct rt_thread *thread)
{
RT_ASSERT(thread != RT_NULL);
#ifdef RT_USING_SMART
#ifndef ARCH_MM_MMU
struct rt_lwp *lwp = thread ? (struct rt_lwp *)thread->lwp : 0;
/* if stack pointer locate in user data section skip stack check. */
if (lwp && ((rt_uint32_t)thread->sp > (rt_uint32_t)lwp->data_entry &&
(rt_uint32_t)thread->sp <= (rt_uint32_t)lwp->data_entry + (rt_uint32_t)lwp->data_size))
{
return;
}
#endif /* not defined ARCH_MM_MMU */
#endif /* RT_USING_SMART */
#ifdef ARCH_CPU_STACK_GROWS_UPWARD
if (*((rt_uint8_t *)((rt_ubase_t)thread->stack_addr + thread->stack_size - 1)) != '#' ||
#else
if (*((rt_uint8_t *)thread->stack_addr) != '#' ||
#endif /* ARCH_CPU_STACK_GROWS_UPWARD */
(rt_ubase_t)thread->sp <= (rt_ubase_t)thread->stack_addr ||
(rt_ubase_t)thread->sp >
(rt_ubase_t)thread->stack_addr + (rt_ubase_t)thread->stack_size)
{
rt_base_t level;
rt_kprintf("thread:%s stack overflow\n", thread->parent.name);
level = rt_hw_interrupt_disable();
while (level);
}
#ifdef ARCH_CPU_STACK_GROWS_UPWARD
else if ((rt_ubase_t)thread->sp > ((rt_ubase_t)thread->stack_addr + thread->stack_size))
{
rt_kprintf("warning: %s stack is close to the top of stack address.\n",
thread->parent.name);
}
#else
else if ((rt_ubase_t)thread->sp <= ((rt_ubase_t)thread->stack_addr + 32))
{
rt_kprintf("warning: %s stack is close to end of stack address.\n",
thread->parent.name);
}
#endif /* ARCH_CPU_STACK_GROWS_UPWARD */
}
#endif /* RT_USING_OVERFLOW_CHECK */
/*
* get the highest priority thread in ready queue
*/
static struct rt_thread* _scheduler_get_highest_priority_thread(rt_ubase_t *highest_prio)
{
struct rt_thread *highest_priority_thread;
rt_ubase_t highest_ready_priority, local_highest_ready_priority;
struct rt_cpu* pcpu = rt_cpu_self();
#if RT_THREAD_PRIORITY_MAX > 32
rt_ubase_t number;
number = __rt_ffs(rt_thread_ready_priority_group) - 1;
highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1;
number = __rt_ffs(pcpu->priority_group) - 1;
local_highest_ready_priority = (number << 3) + __rt_ffs(pcpu->ready_table[number]) - 1;
#else
highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1;
local_highest_ready_priority = __rt_ffs(pcpu->priority_group) - 1;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
/* get highest ready priority thread */
if (highest_ready_priority < local_highest_ready_priority)
{
*highest_prio = highest_ready_priority;
highest_priority_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next,
struct rt_thread,
tlist);
}
else
{
*highest_prio = local_highest_ready_priority;
highest_priority_thread = rt_list_entry(pcpu->priority_table[local_highest_ready_priority].next,
struct rt_thread,
tlist);
}
return highest_priority_thread;
}
/**
* @brief This function will initialize the system scheduler.
*/
void rt_system_scheduler_init(void)
{
int cpu;
rt_base_t offset;
LOG_D("start scheduler: max priority 0x%02x",
RT_THREAD_PRIORITY_MAX);
for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++)
{
rt_list_init(&rt_thread_priority_table[offset]);
}
for (cpu = 0; cpu < RT_CPUS_NR; cpu++)
{
struct rt_cpu *pcpu = rt_cpu_index(cpu);
for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++)
{
rt_list_init(&pcpu->priority_table[offset]);
}
pcpu->irq_switch_flag = 0;
pcpu->current_priority = RT_THREAD_PRIORITY_MAX - 1;
pcpu->current_thread = RT_NULL;
pcpu->priority_group = 0;
#if RT_THREAD_PRIORITY_MAX > 32
rt_memset(pcpu->ready_table, 0, sizeof(pcpu->ready_table));
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
/* initialize ready priority group */
rt_thread_ready_priority_group = 0;
#if RT_THREAD_PRIORITY_MAX > 32
/* initialize ready table */
rt_memset(rt_thread_ready_table, 0, sizeof(rt_thread_ready_table));
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
/**
* @brief This function will startup the scheduler. It will select one thread
* with the highest priority level, then switch to it.
*/
void rt_system_scheduler_start(void)
{
struct rt_thread *to_thread;
rt_ubase_t highest_ready_priority;
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
to_thread->oncpu = rt_hw_cpu_id();
rt_schedule_remove_thread(to_thread);
to_thread->stat = RT_THREAD_RUNNING;
/* switch to new thread */
rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp, to_thread);
/* never come back */
}
/**
* @addtogroup Thread
* @cond
*/
/**@{*/
/**
* @brief This function will handle IPI interrupt and do a scheduling in system.
*
* @param vector is the number of IPI interrupt for system scheduling.
*
* @param param is not used, and can be set to RT_NULL.
*
* @note this function should be invoke or register as ISR in BSP.
*/
void rt_scheduler_ipi_handler(int vector, void *param)
{
rt_schedule();
}
/**
* @brief This function will perform one scheduling. It will select one thread
* with the highest priority level in global ready queue or local ready queue,
* then switch to it.
*/
void rt_schedule(void)
{
rt_base_t level;
struct rt_thread *to_thread;
struct rt_thread *current_thread;
struct rt_cpu *pcpu;
int cpu_id;
/* disable interrupt */
level = rt_hw_interrupt_disable();
cpu_id = rt_hw_cpu_id();
pcpu = rt_cpu_index(cpu_id);
current_thread = pcpu->current_thread;
/* whether do switch in interrupt */
if (pcpu->irq_nest)
{
pcpu->irq_switch_flag = 1;
rt_hw_interrupt_enable(level);
goto __exit;
}
#ifdef RT_USING_SIGNALS
if ((current_thread->stat & RT_THREAD_SUSPEND_MASK) == RT_THREAD_SUSPEND_MASK)
{
/* if current_thread signal is in pending */
if ((current_thread->stat & RT_THREAD_STAT_SIGNAL_MASK) & RT_THREAD_STAT_SIGNAL_PENDING)
{
#ifdef RT_USING_SMART
rt_thread_wakeup(current_thread);
#else
rt_thread_resume(current_thread);
#endif
}
}
#endif /* RT_USING_SIGNALS */
if (current_thread->scheduler_lock_nest == 1) /* whether lock scheduler */
{
rt_ubase_t highest_ready_priority;
if (rt_thread_ready_priority_group != 0 || pcpu->priority_group != 0)
{
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
current_thread->oncpu = RT_CPU_DETACHED;
if ((current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING)
{
if (current_thread->bind_cpu == RT_CPUS_NR || current_thread->bind_cpu == cpu_id)
{
if (current_thread->current_priority < highest_ready_priority)
{
to_thread = current_thread;
}
else if (current_thread->current_priority == highest_ready_priority && (current_thread->stat & RT_THREAD_STAT_YIELD_MASK) == 0)
{
to_thread = current_thread;
}
else
{
rt_schedule_insert_thread(current_thread);
}
}
else
{
rt_schedule_insert_thread(current_thread);
}
current_thread->stat &= ~RT_THREAD_STAT_YIELD_MASK;
}
to_thread->oncpu = cpu_id;
if (to_thread != current_thread)
{
/* if the destination thread is not the same as current thread */
pcpu->current_priority = (rt_uint8_t)highest_ready_priority;
RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (current_thread, to_thread));
rt_schedule_remove_thread(to_thread);
to_thread->stat = RT_THREAD_RUNNING | (to_thread->stat & ~RT_THREAD_STAT_MASK);
/* switch to new thread */
LOG_D("[%d]switch to priority#%d "
"thread:%.*s(sp:0x%08x), "
"from thread:%.*s(sp: 0x%08x)",
pcpu->irq_nest, highest_ready_priority,
RT_NAME_MAX, to_thread->parent.name, to_thread->sp,
RT_NAME_MAX, current_thread->parent.name, current_thread->sp);
#ifdef RT_USING_OVERFLOW_CHECK
_scheduler_stack_check(to_thread);
#endif /* RT_USING_OVERFLOW_CHECK */
RT_OBJECT_HOOK_CALL(rt_scheduler_switch_hook, (current_thread));
rt_hw_context_switch((rt_ubase_t)&current_thread->sp,
(rt_ubase_t)&to_thread->sp, to_thread);
}
}
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
#ifdef RT_USING_SIGNALS
/* check stat of thread for signal */
level = rt_hw_interrupt_disable();
if (current_thread->stat & RT_THREAD_STAT_SIGNAL_PENDING)
{
extern void rt_thread_handle_sig(rt_bool_t clean_state);
current_thread->stat &= ~RT_THREAD_STAT_SIGNAL_PENDING;
rt_hw_interrupt_enable(level);
/* check signal status */
rt_thread_handle_sig(RT_TRUE);
}
else
{
rt_hw_interrupt_enable(level);
}
#endif /* RT_USING_SIGNALS */
__exit:
return ;
}
/**
* @brief This function checks whether a scheduling is needed after an IRQ context switching. If yes,
* it will select one thread with the highest priority level, and then switch
* to it.
*/
void rt_scheduler_do_irq_switch(void *context)
{
int cpu_id;
rt_base_t level;
struct rt_cpu* pcpu;
struct rt_thread *to_thread;
struct rt_thread *current_thread;
level = rt_hw_interrupt_disable();
cpu_id = rt_hw_cpu_id();
pcpu = rt_cpu_index(cpu_id);
current_thread = pcpu->current_thread;
#ifdef RT_USING_SIGNALS
if ((current_thread->stat & RT_THREAD_SUSPEND_MASK) == RT_THREAD_SUSPEND_MASK)
{
/* if current_thread signal is in pending */
if ((current_thread->stat & RT_THREAD_STAT_SIGNAL_MASK) & RT_THREAD_STAT_SIGNAL_PENDING)
{
#ifdef RT_USING_SMART
rt_thread_wakeup(current_thread);
#else
rt_thread_resume(current_thread);
#endif
}
}
#endif /* RT_USING_SIGNALS */
if (pcpu->irq_switch_flag == 0)
{
rt_hw_interrupt_enable(level);
return;
}
if (current_thread->scheduler_lock_nest == 1 && pcpu->irq_nest == 0)
{
rt_ubase_t highest_ready_priority;
/* clear irq switch flag */
pcpu->irq_switch_flag = 0;
if (rt_thread_ready_priority_group != 0 || pcpu->priority_group != 0)
{
to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority);
current_thread->oncpu = RT_CPU_DETACHED;
if ((current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING)
{
if (current_thread->bind_cpu == RT_CPUS_NR || current_thread->bind_cpu == cpu_id)
{
if (current_thread->current_priority < highest_ready_priority)
{
to_thread = current_thread;
}
else if (current_thread->current_priority == highest_ready_priority && (current_thread->stat & RT_THREAD_STAT_YIELD_MASK) == 0)
{
to_thread = current_thread;
}
else
{
rt_schedule_insert_thread(current_thread);
}
}
else
{
rt_schedule_insert_thread(current_thread);
}
current_thread->stat &= ~RT_THREAD_STAT_YIELD_MASK;
}
to_thread->oncpu = cpu_id;
if (to_thread != current_thread)
{
/* if the destination thread is not the same as current thread */
pcpu->current_priority = (rt_uint8_t)highest_ready_priority;
RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (current_thread, to_thread));
rt_schedule_remove_thread(to_thread);
to_thread->stat = RT_THREAD_RUNNING | (to_thread->stat & ~RT_THREAD_STAT_MASK);
#ifdef RT_USING_OVERFLOW_CHECK
_scheduler_stack_check(to_thread);
#endif /* RT_USING_OVERFLOW_CHECK */
LOG_D("switch in interrupt");
RT_ASSERT(current_thread->cpus_lock_nest > 0);
current_thread->cpus_lock_nest--;
current_thread->scheduler_lock_nest--;
RT_OBJECT_HOOK_CALL(rt_scheduler_switch_hook, (current_thread));
rt_hw_context_switch_interrupt(context, (rt_ubase_t)&current_thread->sp,
(rt_ubase_t)&to_thread->sp, to_thread);
}
}
}
rt_hw_interrupt_enable(level);
}
/**
* @brief This function will insert a thread to the system ready queue. The state of
* thread will be set as READY and the thread will be removed from suspend queue.
*
* @param thread is the thread to be inserted.
*
* @note Please do not invoke this function in user application.
*/
void rt_schedule_insert_thread(struct rt_thread *thread)
{
int cpu_id;
int bind_cpu;
rt_uint32_t cpu_mask;
rt_base_t level;
RT_ASSERT(thread != RT_NULL);
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* it should be RUNNING thread */
if (thread->oncpu != RT_CPU_DETACHED)
{
thread->stat = RT_THREAD_RUNNING | (thread->stat & ~RT_THREAD_STAT_MASK);
goto __exit;
}
/* READY thread, insert to ready queue */
thread->stat = RT_THREAD_READY | (thread->stat & ~RT_THREAD_STAT_MASK);
cpu_id = rt_hw_cpu_id();
bind_cpu = thread->bind_cpu ;
/* insert thread to ready list */
if (bind_cpu == RT_CPUS_NR)
{
#if RT_THREAD_PRIORITY_MAX > 32
rt_thread_ready_table[thread->number] |= thread->high_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
rt_thread_ready_priority_group |= thread->number_mask;
/* there is no time slices left(YIELD), inserting thread before ready list*/
if((thread->stat & RT_THREAD_STAT_YIELD_MASK) != 0)
{
rt_list_insert_before(&(rt_thread_priority_table[thread->current_priority]),
&(thread->tlist));
}
/* there are some time slices left, inserting thread after ready list to schedule it firstly at next time*/
else
{
rt_list_insert_after(&(rt_thread_priority_table[thread->current_priority]),
&(thread->tlist));
}
cpu_mask = RT_CPU_MASK ^ (1 << cpu_id);
rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask);
}
else
{
struct rt_cpu *pcpu = rt_cpu_index(bind_cpu);
#if RT_THREAD_PRIORITY_MAX > 32
pcpu->ready_table[thread->number] |= thread->high_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
pcpu->priority_group |= thread->number_mask;
/* there is no time slices left(YIELD), inserting thread before ready list*/
if((thread->stat & RT_THREAD_STAT_YIELD_MASK) != 0)
{
rt_list_insert_before(&(rt_cpu_index(bind_cpu)->priority_table[thread->current_priority]),
&(thread->tlist));
}
/* there are some time slices left, inserting thread after ready list to schedule it firstly at next time*/
else
{
rt_list_insert_after(&(rt_cpu_index(bind_cpu)->priority_table[thread->current_priority]),
&(thread->tlist));
}
if (cpu_id != bind_cpu)
{
cpu_mask = 1 << bind_cpu;
rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask);
}
}
LOG_D("insert thread[%.*s], the priority: %d",
RT_NAME_MAX, thread->parent.name, thread->current_priority);
__exit:
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
/**
* @brief This function will remove a thread from system ready queue.
*
* @param thread is the thread to be removed.
*
* @note Please do not invoke this function in user application.
*/
void rt_schedule_remove_thread(struct rt_thread *thread)
{
rt_base_t level;
RT_ASSERT(thread != RT_NULL);
/* disable interrupt */
level = rt_hw_interrupt_disable();
LOG_D("remove thread[%.*s], the priority: %d",
RT_NAME_MAX, thread->parent.name,
thread->current_priority);
/* remove thread from ready list */
rt_list_remove(&(thread->tlist));
if (thread->bind_cpu == RT_CPUS_NR)
{
if (rt_list_isempty(&(rt_thread_priority_table[thread->current_priority])))
{
#if RT_THREAD_PRIORITY_MAX > 32
rt_thread_ready_table[thread->number] &= ~thread->high_mask;
if (rt_thread_ready_table[thread->number] == 0)
{
rt_thread_ready_priority_group &= ~thread->number_mask;
}
#else
rt_thread_ready_priority_group &= ~thread->number_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
}
else
{
struct rt_cpu *pcpu = rt_cpu_index(thread->bind_cpu);
if (rt_list_isempty(&(pcpu->priority_table[thread->current_priority])))
{
#if RT_THREAD_PRIORITY_MAX > 32
pcpu->ready_table[thread->number] &= ~thread->high_mask;
if (pcpu->ready_table[thread->number] == 0)
{
pcpu->priority_group &= ~thread->number_mask;
}
#else
pcpu->priority_group &= ~thread->number_mask;
#endif /* RT_THREAD_PRIORITY_MAX > 32 */
}
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
/**
* @brief This function will lock the thread scheduler.
*/
void rt_enter_critical(void)
{
rt_base_t level;
struct rt_thread *current_thread;
/* disable interrupt */
level = rt_hw_local_irq_disable();
current_thread = rt_cpu_self()->current_thread;
if (!current_thread)
{
rt_hw_local_irq_enable(level);
return;
}
/*
* the maximal number of nest is RT_UINT16_MAX, which is big
* enough and does not check here
*/
{
rt_uint16_t lock_nest = current_thread->cpus_lock_nest;
current_thread->cpus_lock_nest++;
RT_ASSERT(current_thread->cpus_lock_nest != 0);
if (lock_nest == 0)
{
current_thread->scheduler_lock_nest ++;
rt_hw_spin_lock(&_cpus_lock);
}
}
/* critical for local cpu */
current_thread->critical_lock_nest ++;
/* lock scheduler for local cpu */
current_thread->scheduler_lock_nest ++;
/* enable interrupt */
rt_hw_local_irq_enable(level);
}
RTM_EXPORT(rt_enter_critical);
/**
* @brief This function will unlock the thread scheduler.
*/
void rt_exit_critical(void)
{
rt_base_t level;
struct rt_thread *current_thread;
/* disable interrupt */
level = rt_hw_local_irq_disable();
current_thread = rt_cpu_self()->current_thread;
if (!current_thread)
{
rt_hw_local_irq_enable(level);
return;
}
current_thread->scheduler_lock_nest --;
current_thread->critical_lock_nest --;
RT_ASSERT(current_thread->cpus_lock_nest > 0);
current_thread->cpus_lock_nest--;
if (current_thread->cpus_lock_nest == 0)
{
current_thread->scheduler_lock_nest --;
rt_hw_spin_unlock(&_cpus_lock);
}
if (current_thread->scheduler_lock_nest <= 0)
{
current_thread->scheduler_lock_nest = 0;
/* enable interrupt */
rt_hw_local_irq_enable(level);
rt_schedule();
}
else
{
/* enable interrupt */
rt_hw_local_irq_enable(level);
}
}
RTM_EXPORT(rt_exit_critical);
/**
* @brief Get the scheduler lock level.
*
* @return the level of the scheduler lock. 0 means unlocked.
*/
rt_uint16_t rt_critical_level(void)
{
struct rt_thread *current_thread = rt_cpu_self()->current_thread;
return current_thread->critical_lock_nest;
}
RTM_EXPORT(rt_critical_level);
/**@}*/
/**@endcond*/