mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-27 14:50:27 +08:00
ecf2d82159
* Synchronize the code of the rt mart branch to the master branch. * TTY device * Add lwP code from rt-smart * Add vnode in DFS, but DFS will be re-write for rt-smart * There are three libcpu for rt-smart: * arm/cortex-a, arm/aarch64 * riscv64 Co-authored-by: Rbb666 <zhangbingru@rt-thread.com> Co-authored-by: zhkag <zhkag@foxmail.com>
1549 lines
54 KiB
C
1549 lines
54 KiB
C
/*
|
||
* Copyright (C) 2001-2004 by David Brownell
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify it
|
||
* under the terms of the GNU General Public License as published by the
|
||
* Free Software Foundation; either version 2 of the License, or (at your
|
||
* option) any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful, but
|
||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
* for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, write to the Free Software Foundation,
|
||
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
*/
|
||
|
||
/* this file is part of ehci-hcd.c */
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
/*
|
||
* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
|
||
*
|
||
* Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
|
||
* entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
|
||
* buffers needed for the larger number). We use one QH per endpoint, queue
|
||
* multiple urbs (all three types) per endpoint. URBs may need several qtds.
|
||
*
|
||
* ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
|
||
* interrupts) needs careful scheduling. Performance improvements can be
|
||
* an ongoing challenge. That's in "ehci-sched.c".
|
||
*
|
||
* USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
|
||
* or otherwise through transaction translators (TTs) in USB 2.0 hubs using
|
||
* (b) special fields in qh entries or (c) split iso entries. TTs will
|
||
* buffer low/full speed data so the host collects it at high speed.
|
||
*/
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
/* fill a qtd, returning how much of the buffer we were able to queue up */
|
||
// 该函数用于填充qtd结构,并返回当前qtd所承载的数据长度,
|
||
// 每个qtd有5个pionter,每个pionter最大索引范围4k,因此,每个qtd最大索引5*4k
|
||
// 该函数填充pionter,把指针与要指向的物理地址关联起来
|
||
// #include "sunxi_hal_timer.h"
|
||
|
||
static int
|
||
qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
|
||
size_t len, int token, int maxpacket)
|
||
{
|
||
int i, count;
|
||
u64 addr = buf;
|
||
|
||
/* one buffer entry per 4K ... first might be short or unaligned */
|
||
qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
|
||
qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
|
||
count = 0x1000 - (buf & 0x0fff); /* rest of that page */
|
||
if (len < count) /* ... iff needed */
|
||
count = len;
|
||
else {
|
||
buf += 0x1000;
|
||
buf &= ~0x0fff;
|
||
|
||
/* per-qtd limit: from 16K to 20K (best alignment) */
|
||
for (i = 1; count < len && i < 5; i++) {
|
||
addr = buf;
|
||
qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
|
||
qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
|
||
(u32)(addr >> 32));
|
||
buf += 0x1000;
|
||
if ((count + 0x1000) < len)
|
||
count += 0x1000;
|
||
else
|
||
count = len;
|
||
}
|
||
|
||
/* short packets may only terminate transfers */
|
||
if (count != len)
|
||
count -= (count % maxpacket);
|
||
}
|
||
qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
|
||
qtd->length = count;
|
||
|
||
EHCI_DEBUG_PRINTF("qtd->hw_token = 0x%lx, qtd->length = 0x%x",
|
||
qtd->hw_token, qtd->length);
|
||
|
||
return count;
|
||
}
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
static inline void
|
||
qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
|
||
{
|
||
struct ehci_qh_hw *hw = qh->hw;
|
||
|
||
/* writes to an active overlay are unsafe */
|
||
//WARN_ON(qh->qh_state != QH_STATE_IDLE);
|
||
|
||
hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
||
hw->hw_alt_next = EHCI_LIST_END(ehci);
|
||
|
||
/* Except for control endpoints, we make hardware maintain data
|
||
* toggle (like OHCI) ... here (re)initialize the toggle in the QH,
|
||
* and set the pseudo-toggle in udev. Only usb_clear_halt() will
|
||
* ever clear it.
|
||
*/
|
||
if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
|
||
unsigned is_out, epnum;
|
||
|
||
is_out = qh->is_out;
|
||
epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
|
||
if (!usb_gettoggle(qh->ps.udev, epnum, is_out)) {
|
||
hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
|
||
usb_settoggle(qh->ps.udev, epnum, is_out, 1);
|
||
}
|
||
}
|
||
|
||
hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
|
||
}
|
||
|
||
/* if it weren't for a common silicon quirk (writing the dummy into the qh
|
||
* overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
|
||
* recovery (including urb dequeue) would need software changes to a QH...
|
||
*/
|
||
static void
|
||
qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
{
|
||
struct ehci_qtd *qtd;
|
||
|
||
qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
|
||
|
||
/*
|
||
* first qtd may already be partially processed.
|
||
* If we come here during unlink, the QH overlay region
|
||
* might have reference to the just unlinked qtd. The
|
||
* qtd is updated in qh_completions(). Update the QH
|
||
* overlay here.
|
||
*/
|
||
if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
|
||
qh->hw->hw_qtd_next = qtd->hw_next;
|
||
if (qh->should_be_inactive)
|
||
ehci_warn("qh %p should be inactive!\n", qh);
|
||
} else {
|
||
qh_update(ehci, qh, qtd);
|
||
}
|
||
qh->should_be_inactive = 0;
|
||
}
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
|
||
|
||
//static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
|
||
static void ehci_clear_tt_buffer_complete(struct hc_gen_dev *hcd,
|
||
struct usb_host_virt_endpoint *ep)
|
||
{
|
||
struct ehci_hcd *ehci = hcd_to_ehci(hcd);
|
||
struct ehci_qh *qh = ep->hcpriv;
|
||
unsigned long flags;
|
||
|
||
flags = hal_spin_lock_irqsave(&ehci->lock);
|
||
qh->clearing_tt = 0;
|
||
if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
|
||
&& ehci->rh_state == EHCI_RH_RUNNING)
|
||
qh_link_async(ehci, qh);
|
||
hal_spin_unlock_irqrestore(&ehci->lock, flags);
|
||
}
|
||
|
||
//static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
|
||
// struct urb *urb, u32 token)
|
||
//{
|
||
//
|
||
// /* If an async split transaction gets an error or is unlinked,
|
||
// * the TT buffer may be left in an indeterminate state. We
|
||
// * have to clear the TT buffer.
|
||
// *
|
||
// * Note: this routine is never called for Isochronous transfers.
|
||
// */
|
||
// if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
|
||
////#ifdef CONFIG_DYNAMIC_DEBUG
|
||
//// struct usb_device *tt = urb->dev->tt->hub;
|
||
//// dev_dbg(&tt->dev,
|
||
//// "clear tt buffer port %d, a%d ep%d t%08x\n",
|
||
//// urb->dev->ttport, urb->dev->devnum,
|
||
//// usb_pipeendpoint(urb->pipe), token);
|
||
////#endif /* CONFIG_DYNAMIC_DEBUG */
|
||
// if (!ehci_is_TDI(ehci)
|
||
// || urb->dev->tt->hub !=
|
||
// ehci_to_hcd(ehci)->self.root_hub) {
|
||
// if (usb_hub_clear_tt_buffer(urb) == 0)
|
||
// qh->clearing_tt = 1;
|
||
// } else {
|
||
//
|
||
// /* REVISIT ARC-derived cores don't clear the root
|
||
// * hub TT buffer in this way...
|
||
// */
|
||
// }
|
||
// }
|
||
//}
|
||
|
||
static int qtd_copy_status (
|
||
struct ehci_hcd *ehci,
|
||
struct urb *urb,
|
||
size_t length,
|
||
u32 token
|
||
)
|
||
{
|
||
int status = -EINPROGRESS;
|
||
|
||
/* count IN/OUT bytes, not SETUP (even short packets) */
|
||
if (QTD_PID (token) != 2)
|
||
urb->actual_length += length - QTD_LENGTH (token);
|
||
|
||
/* don't modify error codes */
|
||
//if (unlikely(urb->unlinked))
|
||
// return status;
|
||
|
||
/* force cleanup after short read; not always an error */
|
||
//if (unlikely (IS_SHORT_READ (token)))
|
||
// status = -EREMOTEIO;
|
||
|
||
/* serious "can't proceed" faults reported by the hardware */
|
||
if (token & QTD_STS_HALT) {
|
||
if (token & QTD_STS_BABBLE) {
|
||
/* FIXME "must" disable babbling device's port too */
|
||
status = -EOVERFLOW;
|
||
/* CERR nonzero + halt --> stall */
|
||
} else if (QTD_CERR(token)) {
|
||
status = -EPIPE;
|
||
|
||
/* In theory, more than one of the following bits can be set
|
||
* since they are sticky and the transaction is retried.
|
||
* Which to test first is rather arbitrary.
|
||
*/
|
||
} else if (token & QTD_STS_MMF) {
|
||
/* fs/ls interrupt xfer missed the complete-split */
|
||
status = -EPROTO;
|
||
} else if (token & QTD_STS_DBE) {
|
||
status = (QTD_PID (token) == 1) /* IN ? */
|
||
? -ENOSR /* hc couldn't read data */
|
||
: -ECOMM; /* hc couldn't write data */
|
||
} else if (token & QTD_STS_XACT) {
|
||
/* timeout, bad CRC, wrong PID, etc */
|
||
//ehci_dbg("devpath %s ep%d%s 3strikes\n",
|
||
// urb->dev->devpath,
|
||
// usb_pipeendpoint(urb->pipe),
|
||
// usb_pipein(urb->pipe) ? "in" : "out");
|
||
status = -EPROTO;
|
||
} else { /* unknown */
|
||
status = -EPROTO;
|
||
}
|
||
}
|
||
|
||
return status;
|
||
}
|
||
|
||
static void
|
||
ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
|
||
{
|
||
if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
|
||
/* ... update hc-wide periodic stats */
|
||
ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
|
||
}
|
||
|
||
if (unlikely(urb->unlinked)) {
|
||
COUNT(ehci->stats.unlink);
|
||
} else {
|
||
/* report non-error and short read status as zero */
|
||
if (status == -EINPROGRESS || status == -EREMOTEIO)
|
||
status = 0;
|
||
COUNT(ehci->stats.complete);
|
||
}
|
||
|
||
//#ifdef EHCI_URB_TRACE
|
||
// ehci_dbg (ehci,
|
||
// "%s %s urb %p ep%d%s status %d len %d/%d\n",
|
||
// __func__, urb->dev->devpath, urb,
|
||
// usb_pipeendpoint (urb->pipe),
|
||
// usb_pipein (urb->pipe) ? "in" : "out",
|
||
// status,
|
||
// urb->actual_length, urb->transfer_buffer_length);
|
||
//#endif
|
||
|
||
// usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
||
//usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
|
||
|
||
if (urb->status == -EINPROGRESS)
|
||
{
|
||
urb->status = status;
|
||
}
|
||
|
||
urb->hcpriv = NULL;
|
||
|
||
usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb);
|
||
}
|
||
|
||
static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
|
||
|
||
/*
|
||
* Process and free completed qtds for a qh, returning URBs to drivers.
|
||
* Chases up to qh->hw_current. Returns nonzero if the caller should
|
||
* unlink qh.
|
||
*/
|
||
// qh_completions()中通过对qh下链接的qtd进行逐个遍历,来判断传输的情况
|
||
static unsigned qh_completions(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
{
|
||
struct ehci_qtd *last, *end = qh->dummy;
|
||
struct list_head *entry, *tmp;
|
||
int last_status;
|
||
int stopped;
|
||
u8 state;
|
||
struct ehci_qh_hw *hw = qh->hw;
|
||
|
||
/* completions (or tasks on other cpus) must never clobber HALT
|
||
* till we've gone through and cleaned everything up, even when
|
||
* they add urbs to this qh's queue or mark them for unlinking.
|
||
*
|
||
* NOTE: unlinking expects to be done in queue order.
|
||
*
|
||
* It's a bug for qh->qh_state to be anything other than
|
||
* QH_STATE_IDLE, unless our caller is scan_async() or
|
||
* scan_intr().
|
||
*/
|
||
state = qh->qh_state;
|
||
qh->qh_state = QH_STATE_COMPLETING;
|
||
stopped = (state == QH_STATE_IDLE);
|
||
|
||
rescan:
|
||
last = NULL;
|
||
last_status = -EINPROGRESS;
|
||
qh->dequeue_during_giveback = 0;
|
||
|
||
/* remove de-activated QTDs from front of queue.
|
||
* after faults (including short reads), cleanup this urb
|
||
* then let the queue advance.
|
||
* if queue is stopped, handles unlinks.
|
||
*/
|
||
// list_for_each_safe逐个的把qh上的qtd取出放在指针entry中,
|
||
// list_for_each_safe的特点是可以中途删除entry,通过指针tmp去找到下一个entry
|
||
//该语句实际上是一个for循环
|
||
list_for_each_safe (entry, tmp, &qh->qtd_list) {
|
||
struct ehci_qtd *qtd;
|
||
struct urb *urb;
|
||
u32 token = 0;
|
||
|
||
//printf("\n");
|
||
// 找到对应的qtd内存地址
|
||
qtd = list_entry(entry, struct ehci_qtd, qtd_list);
|
||
urb = qtd->urb;
|
||
|
||
/* clean up any state from previous QTD ...*/
|
||
//last初始值是NULL,第一次不执行,跳过if
|
||
// 当再一次执行到此处时,如果前一次的处理中有qtd是执行完传输的(包括传输出错),
|
||
// last此时就会指向了前一个qtd,并在if语句中的ehci_qtd_free()函数中把分配的qtd空间释放掉
|
||
if (last) {
|
||
// 一个qtd链表中的urb指针的指向都是相同的,除了最末这一个dummy qtd,
|
||
// 所以在遍历到最后的qtd时“last->urb != urb”满足
|
||
if (likely(last->urb != urb)) {
|
||
// ehci_urb_done()要做的一件事是回调urb->complete()函数指针,
|
||
// 从而使控制权回到USB device Driver中,这就是我们填充一个urb的回调函数的触发处
|
||
ehci_urb_done(ehci, last->urb, last_status);
|
||
last_status = -EINPROGRESS;
|
||
}
|
||
ehci_qtd_free (ehci, last);
|
||
// list_add_tail(&(last->qtd_list), &(ehci->wait_free_list));
|
||
// hal_log_info("\033[41m ADD : last = 0x%x \033[0m", last);
|
||
last = NULL;
|
||
}
|
||
|
||
/* ignore urbs submitted during completions we reported */
|
||
// 判断遍历到最后的dummy qtd,就跳出循环,表明整个qtd链表已被处理完了
|
||
if (qtd == end) {
|
||
break;
|
||
}
|
||
|
||
/* hardware copies qtd out of qh overlay */
|
||
//rmb ();
|
||
// HC在处理完一个qtd后,反映处理结果的值会回写到当前qtd的token字段中,
|
||
// HCD读取这个token的Status值后,可以获知HC的传输情况
|
||
hal_dcache_invalidate((unsigned long)&(((struct ehci_qtd *)(qtd->qtd_dma))->hw_token), sizeof(uint32_t));
|
||
token = hc32_to_cpu(ehci, qtd->hw_token);
|
||
EHCI_DEBUG_PRINTF("token = 0x%lx", token);
|
||
|
||
/* always clean up qtds the hc de-activated */
|
||
retry_xacterr:
|
||
if ((token & QTD_STS_ACTIVE) == 0) {
|
||
// 传输完成
|
||
|
||
/* Report Data Buffer Error: non-fatal but useful */
|
||
// 在EHCI SPEC里说,不被视作传输错误,会强制endpoint重发一次,所以代码也只是做了打印
|
||
if (token & QTD_STS_DBE)
|
||
{
|
||
EHCI_DEBUG_PRINTF("detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]",
|
||
urb,
|
||
usb_endpoint_num(&urb->ep->desc),
|
||
usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
|
||
urb->transfer_buffer_length,
|
||
qtd,
|
||
qh);
|
||
}
|
||
/* on STALL, error, and short reads this urb must
|
||
* complete and all its qtds must be recycled.
|
||
*/
|
||
if ((token & QTD_STS_HALT) != 0) {
|
||
// 表明当前qtd的传输出现了错误,而且与该endpoint的传输都被停掉
|
||
EHCI_DEBUG_PRINTF("error halt");
|
||
/* retry transaction errors until we
|
||
* reach the software xacterr limit
|
||
*/
|
||
// QTD_STS_XACT代表HC没有收到device发回的有效应答包
|
||
if ((token & QTD_STS_XACT) &&
|
||
QTD_CERR(token) == 0 &&
|
||
++qh->xacterrs < QH_XACTERR_MAX &&
|
||
!urb->unlinked) {
|
||
EHCI_DEBUG_PRINTF("detected XactErr len %zu/%zu retry %d",
|
||
qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
|
||
|
||
/* reset the token in the qtd and the
|
||
* qh overlay (which still contains
|
||
* the qtd) so that we pick up from
|
||
* where we left off
|
||
*/
|
||
// 出现这样的错误HCD的处理方式是,
|
||
// 由软件把Halted位清零,
|
||
// token[11:10] CERR位设为0x3,
|
||
// Active位置1再次使能该qtd,
|
||
// 让HC重新传输这个qtd
|
||
token &= ~QTD_STS_HALT;
|
||
token |= QTD_STS_ACTIVE |
|
||
(EHCI_TUNE_CERR << 10);
|
||
qtd->hw_token = cpu_to_hc32(ehci, token);
|
||
//wmb();
|
||
hw->hw_token = cpu_to_hc32(ehci, token);
|
||
|
||
hal_dcache_clean_invalidate((unsigned long)&(((struct ehci_qtd *)(qtd->qtd_dma))->hw_token), sizeof(uint32_t));
|
||
hal_dcache_clean_invalidate((unsigned long)&(((struct ehci_qh_hw *)(qh->qh_dma))->hw_token), sizeof(uint32_t));
|
||
|
||
// 重复以上动作,直到传输成功或超时为止
|
||
goto retry_xacterr;
|
||
}
|
||
stopped = 1;
|
||
qh->unlink_reason |= QH_UNLINK_HALTED;
|
||
|
||
/* magic dummy for some short reads; qh won't advance.
|
||
* that silicon quirk can kick in with this dummy too.
|
||
*
|
||
* other short reads won't stop the queue, including
|
||
* control transfers (status stage handles that) or
|
||
* most other single-qtd reads ... the queue stops if
|
||
* URB_SHORT_NOT_OK was set so the driver submitting
|
||
* the urbs could clean it up.
|
||
*/
|
||
} else if (IS_SHORT_READ (token)
|
||
&& !(qtd->hw_alt_next
|
||
& EHCI_LIST_END(ehci))) {
|
||
EHCI_DEBUG_PRINTF("short reads");
|
||
stopped = 1;
|
||
qh->unlink_reason |= QH_UNLINK_SHORT_READ;
|
||
}
|
||
|
||
/* stop scanning when we reach qtds the hc is using */
|
||
} else if (!stopped
|
||
&& ehci->rh_state >= EHCI_RH_RUNNING) {
|
||
EHCI_DEBUG_PRINTF("stop scanning");
|
||
break;
|
||
|
||
/* scan the whole queue for unlinks whenever it stops */
|
||
} else {
|
||
EHCI_DEBUG_PRINTF("stopped");
|
||
stopped = 1;
|
||
|
||
/* cancel everything if we halt, suspend, etc */
|
||
if (ehci->rh_state < EHCI_RH_RUNNING) {
|
||
last_status = -ESHUTDOWN;
|
||
qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
|
||
}
|
||
|
||
/* this qtd is active; skip it unless a previous qtd
|
||
* for its urb faulted, or its urb was canceled.
|
||
*/
|
||
else if (last_status == -EINPROGRESS && !urb->unlinked) {
|
||
// else if (last_status == -EINPROGRESS) {
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* If this was the active qtd when the qh was unlinked
|
||
* and the overlay's token is active, then the overlay
|
||
* hasn't been written back to the qtd yet so use its
|
||
* token instead of the qtd's. After the qtd is
|
||
* processed and removed, the overlay won't be valid
|
||
* any more.
|
||
*/
|
||
if (state == QH_STATE_IDLE &&
|
||
qh->qtd_list.next == &qtd->qtd_list &&
|
||
(hw->hw_token & ACTIVE_BIT(ehci))) {
|
||
token = hc32_to_cpu(ehci, hw->hw_token);
|
||
hw->hw_token &= ~ACTIVE_BIT(ehci);
|
||
qh->should_be_inactive = 1;
|
||
|
||
/* An unlink may leave an incomplete
|
||
* async transaction in the TT buffer.
|
||
* We have to clear it.
|
||
*/
|
||
//ehci_clear_tt_buffer(ehci, qh, urb, token);
|
||
}
|
||
}
|
||
|
||
/* unless we already know the urb's status, collect qtd status
|
||
* and update count of bytes transferred. in common short read
|
||
* cases with only one data qtd (including control transfers),
|
||
* queue processing won't halt. but with two or more qtds (for
|
||
* example, with a 32 KB transfer), when the first qtd gets a
|
||
* short read the second must be removed by hand.
|
||
*/
|
||
if (last_status == -EINPROGRESS) {
|
||
// 读取状态
|
||
last_status = qtd_copy_status(ehci, urb,
|
||
qtd->length, token);
|
||
if (last_status == -EREMOTEIO
|
||
&& (qtd->hw_alt_next
|
||
& EHCI_LIST_END(ehci))) {
|
||
last_status = -EINPROGRESS;
|
||
}
|
||
/* As part of low/full-speed endpoint-halt processing
|
||
* we must clear the TT buffer (11.17.5).
|
||
*/
|
||
//if (unlikely(last_status != -EINPROGRESS &&
|
||
// last_status != -EREMOTEIO)) {
|
||
// /* The TT's in some hubs malfunction when they
|
||
// * receive this request following a STALL (they
|
||
// * stop sending isochronous packets). Since a
|
||
// * STALL can't leave the TT buffer in a busy
|
||
// * state (if you believe Figures 11-48 - 11-51
|
||
// * in the USB 2.0 spec), we won't clear the TT
|
||
// * buffer in this case. Strictly speaking this
|
||
// * is a violation of the spec.
|
||
// */
|
||
// if (last_status != -EPIPE)
|
||
// ehci_clear_tt_buffer(ehci, qh, urb,
|
||
// token);
|
||
//}
|
||
}
|
||
|
||
/* if we're removing something not at the queue head,
|
||
* patch the hardware queue pointer.
|
||
*/
|
||
//如果是qtd链表的首个元素,则qtd->qtd_list.prev == &qh->qtd_list
|
||
//如果不是首元素,则需要先解链再释放,如是首元素,则不必
|
||
if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
|
||
//找到上一个qtd的地址
|
||
last = list_entry (qtd->qtd_list.prev,
|
||
struct ehci_qtd, qtd_list);
|
||
//将上一个qtd的next与本qtd的next链接,即,将本qtd从链表中解链
|
||
last->hw_next = qtd->hw_next;
|
||
|
||
hal_dcache_clean_invalidate((unsigned long)&(((struct ehci_qtd *)(last->qtd_dma))->hw_next), sizeof(uint32_t));
|
||
hal_dcache_clean_invalidate((unsigned long)&(((struct ehci_qtd *)(qtd->qtd_dma))->hw_next), sizeof(uint32_t));
|
||
}
|
||
|
||
/* remove qtd; it's recycled after possible urb completion */
|
||
//释放
|
||
list_del (&qtd->qtd_list);
|
||
//记录到last里,下一次循环时真正回收qtd
|
||
last = qtd;
|
||
|
||
/* reinit the xacterr counter for the next qtd */
|
||
qh->xacterrs = 0;
|
||
}//end of list_for_each_safe(entry, tmp, &qh->qtd_list)
|
||
|
||
/* last urb's completion might still need calling */
|
||
// 如果指针last非空,那么一定是指向一个qtd链表队列的末尾处(非dummy qtd)
|
||
if (last != NULL) {
|
||
ehci_urb_done(ehci, last->urb, last_status);
|
||
ehci_qtd_free(ehci, last);
|
||
// list_add_tail(&(last->qtd_list), &(ehci->wait_free_list));
|
||
// hal_log_info("\033[41m ADD : last = 0x%x \033[0m", last);
|
||
}
|
||
|
||
/* Do we need to rescan for URBs dequeued during a giveback? */
|
||
if (unlikely(qh->dequeue_during_giveback)) {
|
||
/* If the QH is already unlinked, do the rescan now. */
|
||
if (state == QH_STATE_IDLE) {
|
||
EHCI_DEBUG_PRINTF("goto rescan");
|
||
goto rescan;
|
||
}
|
||
|
||
/* Otherwise the caller must unlink the QH. */
|
||
}
|
||
|
||
/* restore original state; caller must unlink or relink */
|
||
qh->qh_state = state;
|
||
|
||
/* be sure the hardware's done with the qh before refreshing
|
||
* it after fault cleanup, or recovering from silicon wrongly
|
||
* overlaying the dummy qtd (which reduces DMA chatter).
|
||
*
|
||
* We won't refresh a QH that's linked (after the HC
|
||
* stopped the queue). That avoids a race:
|
||
* - HC reads first part of QH;
|
||
* - CPU updates that first part and the token;
|
||
* - HC reads rest of that QH, including token
|
||
* Result: HC gets an inconsistent image, and then
|
||
* DMAs to/from the wrong memory (corrupting it).
|
||
*
|
||
* That should be rare for interrupt transfers,
|
||
* except maybe high bandwidth ...
|
||
*/
|
||
if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
|
||
qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
|
||
}
|
||
|
||
EHCI_DEBUG_PRINTF("qh->unlink_reason = %u\n", qh->unlink_reason);
|
||
/* Let the caller know if the QH needs to be unlinked. */
|
||
return qh->unlink_reason;
|
||
}
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
|
||
#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
|
||
// ... and packet size, for any kind of endpoint descriptor
|
||
#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
|
||
|
||
/*
|
||
* reverse of qh_urb_transaction: free a list of TDs.
|
||
* used for cleanup after errors, before HC sees an URB's TDs.
|
||
*/
|
||
static void qtd_list_free (
|
||
struct ehci_hcd *ehci,
|
||
struct urb *urb,
|
||
struct list_head *qtd_list
|
||
) {
|
||
struct list_head *entry, *temp;
|
||
|
||
list_for_each_safe (entry, temp, qtd_list) {
|
||
struct ehci_qtd *qtd;
|
||
|
||
qtd = list_entry (entry, struct ehci_qtd, qtd_list);
|
||
list_del (&qtd->qtd_list);
|
||
ehci_qtd_free (ehci, qtd);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* create a list of filled qtds for this URB; won't link into qh.
|
||
* 为URB创建并填充qtd列表,但是并未加到qh中
|
||
* 一次USB的传输请求是由usb_submit_urb()提交下来的,要传输相关的数据、地址等信息都放在URB中
|
||
* qh_urb_transaction()函数就是对URB携带的信息整合到EHCI能识别的数据结构中,即构造相应的qTD
|
||
*/
|
||
static struct list_head *
|
||
qh_urb_transaction (
|
||
struct ehci_hcd *ehci,
|
||
struct urb *urb,
|
||
struct list_head *head,
|
||
gfp_t flags
|
||
) {
|
||
struct ehci_qtd *qtd, *qtd_prev;
|
||
dma_addr_t buf;
|
||
int len, this_sg_len, maxpacket;
|
||
int is_input;
|
||
u32 token;
|
||
int i = 0;
|
||
//struct scatterlist *sg;
|
||
|
||
/*
|
||
* URBs map to sequences of QTDs: one logical transaction
|
||
*/
|
||
qtd = ehci_qtd_alloc (ehci, flags);
|
||
if (!qtd)
|
||
return NULL;
|
||
list_add_tail (&qtd->qtd_list, head);
|
||
qtd->urb = urb;
|
||
|
||
token = QTD_STS_ACTIVE;//使能该qtd
|
||
token |= (EHCI_TUNE_CERR << 10);
|
||
/* for split transactions, SplitXState initialized to zero */
|
||
|
||
len = urb->transfer_buffer_length;
|
||
is_input = usb_pipein (urb->pipe);
|
||
if (usb_pipecontrol (urb->pipe)) {
|
||
/* SETUP pid */
|
||
// 在此处将urb对应的数据包地址信息分配到qtd的pointer中,并返回长度
|
||
qtd_fill(ehci, qtd, urb->setup_dma,
|
||
sizeof (struct usb_ctrlrequest),
|
||
token | (2 /* "setup" */ << 8), 8);
|
||
|
||
/* ... and always at least one more pid */
|
||
token ^= QTD_TOGGLE;
|
||
//用qtd_prev指向填充过的qtd,再申请一个空的qtd
|
||
qtd_prev = qtd;
|
||
qtd = ehci_qtd_alloc (ehci, flags);
|
||
if (!qtd)
|
||
goto cleanup;
|
||
qtd->urb = urb;
|
||
|
||
// 将新的qtd联入队列
|
||
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
||
list_add_tail (&qtd->qtd_list, head);
|
||
|
||
/* for zero length DATA stages, STATUS is always IN */
|
||
// 为0说明是仅用于control的命令传输,没有数据
|
||
if (len == 0)
|
||
token |= (1 /* "in" */ << 8);
|
||
}
|
||
|
||
/*
|
||
* data transfer stage: buffer setup
|
||
*/
|
||
//i = urb->num_mapped_sgs;
|
||
//if (len > 0 && i > 0) {
|
||
// sg = urb->sg;
|
||
// buf = sg_dma_address(sg);
|
||
|
||
// /* urb->transfer_buffer_length may be smaller than the
|
||
// * size of the scatterlist (or vice versa)
|
||
// */
|
||
// this_sg_len = min_t(int, sg_dma_len(sg), len);
|
||
//} else {
|
||
//sg = NULL;
|
||
buf = urb->transfer_dma;
|
||
this_sg_len = len;
|
||
//}
|
||
|
||
if (is_input)
|
||
token |= (1 /* "in" */ << 8);
|
||
/* else it's already initted to "out" pid (0 << 8) */
|
||
|
||
maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
|
||
|
||
/*
|
||
* buffer gets wrapped in one or more qtds;
|
||
* last one may be "short" (including zero len)
|
||
* and may serve as a control status ack
|
||
*/
|
||
for (;;) {
|
||
int this_qtd_len;
|
||
|
||
this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
|
||
maxpacket);
|
||
this_sg_len -= this_qtd_len;
|
||
len -= this_qtd_len;
|
||
buf += this_qtd_len;
|
||
|
||
/*
|
||
* short reads advance to a "magic" dummy instead of the next
|
||
* qtd ... that forces the queue to stop, for manual cleanup.
|
||
* (this will usually be overridden later.)
|
||
*/
|
||
if (is_input)
|
||
qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
|
||
|
||
/* qh makes control packets use qtd toggle; maybe switch it */
|
||
if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
|
||
token ^= QTD_TOGGLE;
|
||
|
||
if (this_sg_len <= 0) {
|
||
if (--i <= 0 || len <= 0)
|
||
break;
|
||
// sg = sg_next(sg);
|
||
// buf = sg_dma_address(sg);
|
||
// this_sg_len = min_t(int, sg_dma_len(sg), len);
|
||
}
|
||
|
||
qtd_prev = qtd;
|
||
qtd = ehci_qtd_alloc (ehci, flags);
|
||
if (!qtd)
|
||
goto cleanup;
|
||
qtd->urb = urb;
|
||
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
||
list_add_tail (&qtd->qtd_list, head);
|
||
}
|
||
|
||
/*
|
||
* unless the caller requires manual cleanup after short reads,
|
||
* have the alt_next mechanism keep the queue running after the
|
||
* last data qtd (the only one, for control and most other cases).
|
||
*/
|
||
if ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
|
||
|| usb_pipecontrol (urb->pipe))
|
||
qtd->hw_alt_next = EHCI_LIST_END(ehci);
|
||
|
||
/*
|
||
* control requests may need a terminating data "status" ack;
|
||
* other OUT ones may need a terminating short packet
|
||
* (zero length).
|
||
*/
|
||
// 对urb中transfer_buffer_length非零,即涉及数据传输,且传输类型为Control或者是传输方向为OUT,就增加一个qtd作为结束,
|
||
// 该qtd要传输的数据长度为零。并把最后一个qtd的token中IOC位置1,表示在完成qtd的传输后,在下一个中断周期产生一个中断
|
||
if (urb->transfer_buffer_length != 0) {
|
||
int one_more = 0;
|
||
|
||
if (usb_pipecontrol (urb->pipe)) {
|
||
one_more = 1;
|
||
token ^= 0x0100; /* "in" <--> "out" */
|
||
token |= QTD_TOGGLE; /* force DATA1 */
|
||
//printf("[%s %d] token = 0x%lx\n", __func__, __LINE__, token);
|
||
} else if (usb_pipeout(urb->pipe)
|
||
&& (urb->transfer_flags & URB_ZERO_PACKET)
|
||
&& !(urb->transfer_buffer_length % maxpacket)) {
|
||
one_more = 1;
|
||
}
|
||
if (one_more) {
|
||
qtd_prev = qtd;
|
||
qtd = ehci_qtd_alloc (ehci, flags);
|
||
if (!qtd)
|
||
goto cleanup;
|
||
qtd->urb = urb;
|
||
qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
|
||
list_add_tail (&qtd->qtd_list, head);
|
||
|
||
/* never any data in such packets */
|
||
qtd_fill(ehci, qtd, 0, 0, token, 0);
|
||
}
|
||
}
|
||
|
||
/* by default, enable interrupt on urb completion */
|
||
if (!(urb->transfer_flags & URB_NO_INTERRUPT))
|
||
qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
|
||
return head;
|
||
|
||
cleanup:
|
||
qtd_list_free (ehci, urb, head);
|
||
return NULL;
|
||
}
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
// Would be best to create all qh's from config descriptors,
|
||
// when each interface/altsetting is established. Unlink
|
||
// any previous qh and cancel its urbs first; endpoints are
|
||
// implicitly reset then (data toggle too).
|
||
// That'd mean updating how usbcore talks to HCDs. (2.7?)
|
||
|
||
|
||
/*
|
||
* Each QH holds a qtd list; a QH is used for everything except iso.
|
||
*
|
||
* For interrupt urbs, the scheduler must set the microframe scheduling
|
||
* mask(s) each time the QH gets scheduled. For highspeed, that's
|
||
* just one microframe in the s-mask. For split interrupt transactions
|
||
* there are additional complications: c-mask, maybe FSTNs.
|
||
*/
|
||
static struct ehci_qh *
|
||
qh_make (
|
||
struct ehci_hcd *ehci,
|
||
struct urb *urb,
|
||
gfp_t flags
|
||
) {
|
||
struct ehci_qh *qh = ehci_qh_alloc (ehci);
|
||
u32 info1 = 0, info2 = 0;
|
||
int is_input, type;
|
||
int maxp = 0;
|
||
//struct usb_tt *tt = urb->dev->tt;
|
||
struct ehci_qh_hw *hw;
|
||
|
||
if (!qh)
|
||
return qh;
|
||
|
||
/*
|
||
* init endpoint/device data for this QH
|
||
*/
|
||
info1 |= usb_pipeendpoint (urb->pipe) << 8;
|
||
info1 |= usb_pipedevice (urb->pipe) << 0;
|
||
|
||
is_input = usb_pipein (urb->pipe);
|
||
type = usb_pipetype (urb->pipe);
|
||
maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
|
||
|
||
/* 1024 byte maxpacket is a hardware ceiling. High bandwidth
|
||
* acts like up to 3KB, but is built from smaller packets.
|
||
*/
|
||
if (max_packet(maxp) > 1024) {
|
||
ehci_dbg("bogus qh maxpacket %d\n", max_packet(maxp));
|
||
goto done;
|
||
}
|
||
|
||
/* Compute interrupt scheduling parameters just once, and save.
|
||
* - allowing for high bandwidth, how many nsec/uframe are used?
|
||
* - split transactions need a second CSPLIT uframe; same question
|
||
* - splits also need a schedule gap (for full/low speed I/O)
|
||
* - qh has a polling interval
|
||
*
|
||
* For control/bulk requests, the HC or TT handles these.
|
||
*/
|
||
if (type == PIPE_INTERRUPT) {
|
||
unsigned tmp;
|
||
|
||
//qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
|
||
// is_input, 0,
|
||
// hb_mult(maxp) * max_packet(maxp)));
|
||
qh->ps.phase = NO_FRAME;
|
||
|
||
if (urb->dev->speed == USB_SPEED_HIGH) {
|
||
qh->ps.c_usecs = 0;
|
||
qh->gap_uf = 0;
|
||
|
||
if (urb->interval > 1 && urb->interval < 8) {
|
||
/* NOTE interval 2 or 4 uframes could work.
|
||
* But interval 1 scheduling is simpler, and
|
||
* includes high bandwidth.
|
||
*/
|
||
urb->interval = 1;
|
||
} else if (urb->interval > ehci->periodic_size << 3) {
|
||
urb->interval = ehci->periodic_size << 3;
|
||
}
|
||
qh->ps.period = urb->interval >> 3;
|
||
|
||
/* period for bandwidth allocation */
|
||
tmp = min(EHCI_BANDWIDTH_SIZE,
|
||
1 << (urb->ep->desc.bInterval - 1));
|
||
|
||
/* Allow urb->interval to override */
|
||
qh->ps.bw_uperiod = min(tmp, (unsigned)urb->interval);
|
||
qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
|
||
} else {
|
||
int think_time;
|
||
|
||
/* gap is f(FS/LS transfer times) */
|
||
//qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
|
||
// is_input, 0, maxp) / (125 * 1000);
|
||
|
||
/* FIXME this just approximates SPLIT/CSPLIT times */
|
||
if (is_input) { // SPLIT, gap, CSPLIT+DATA
|
||
//qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
|
||
//qh->ps.usecs = HS_USECS(1);
|
||
} else { // SPLIT+DATA, gap, CSPLIT
|
||
//qh->ps.usecs += HS_USECS(1);
|
||
//qh->ps.c_usecs = HS_USECS(0);
|
||
}
|
||
|
||
//think_time = tt ? tt->think_time : 0;
|
||
//qh->ps.tt_usecs = NS_TO_US(think_time +
|
||
// usb_calc_bus_time (urb->dev->speed,
|
||
// is_input, 0, max_packet (maxp)));
|
||
if (urb->interval > ehci->periodic_size)
|
||
urb->interval = ehci->periodic_size;
|
||
qh->ps.period = urb->interval;
|
||
|
||
/* period for bandwidth allocation */
|
||
tmp = min(EHCI_BANDWIDTH_FRAMES,
|
||
(unsigned)(urb->ep->desc.bInterval));
|
||
//tmp = rounddown_pow_of_two(tmp);
|
||
|
||
/* Allow urb->interval to override */
|
||
qh->ps.bw_period = min((unsigned)tmp, (unsigned)(urb->interval));
|
||
qh->ps.bw_uperiod = qh->ps.bw_period << 3;
|
||
}
|
||
}
|
||
|
||
/* support for tt scheduling, and access to toggles */
|
||
qh->ps.udev = urb->dev;
|
||
qh->ps.ep = urb->ep;
|
||
|
||
/* using TT? */
|
||
switch (urb->dev->speed) {
|
||
case USB_SPEED_LOW:
|
||
info1 |= QH_LOW_SPEED;
|
||
/* FALL THROUGH */
|
||
|
||
case USB_SPEED_FULL:
|
||
/* EPS 0 means "full" */
|
||
if (type != PIPE_INTERRUPT)
|
||
info1 |= (EHCI_TUNE_RL_TT << 28);
|
||
if (type == PIPE_CONTROL) {
|
||
info1 |= QH_CONTROL_EP; /* for TT */
|
||
info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
|
||
}
|
||
info1 |= maxp << 16;
|
||
|
||
info2 |= (EHCI_TUNE_MULT_TT << 30);
|
||
|
||
/* Some Freescale processors have an erratum in which the
|
||
* port number in the queue head was 0..N-1 instead of 1..N.
|
||
*/
|
||
if (ehci_has_fsl_portno_bug(ehci))
|
||
info2 |= (urb->dev->ttport-1) << 23;
|
||
else
|
||
info2 |= urb->dev->ttport << 23;
|
||
|
||
/* set the address of the TT; for TDI's integrated
|
||
* root hub tt, leave it zeroed.
|
||
*/
|
||
//if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
|
||
// info2 |= tt->hub->devnum << 16;
|
||
|
||
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
|
||
|
||
break;
|
||
|
||
case USB_SPEED_HIGH: /* no TT involved */
|
||
info1 |= QH_HIGH_SPEED;
|
||
if (type == PIPE_CONTROL) {
|
||
info1 |= (EHCI_TUNE_RL_HS << 28);
|
||
info1 |= 64 << 16; /* usb2 fixed maxpacket */
|
||
info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
|
||
info2 |= (EHCI_TUNE_MULT_HS << 30);
|
||
} else if (type == PIPE_BULK) {
|
||
info1 |= (EHCI_TUNE_RL_HS << 28);
|
||
/* The USB spec says that high speed bulk endpoints
|
||
* always use 512 byte maxpacket. But some device
|
||
* vendors decided to ignore that, and MSFT is happy
|
||
* to help them do so. So now people expect to use
|
||
* such nonconformant devices with Linux too; sigh.
|
||
*/
|
||
info1 |= max_packet(maxp) << 16;
|
||
info2 |= (EHCI_TUNE_MULT_HS << 30);
|
||
} else { /* PIPE_INTERRUPT */
|
||
info1 |= max_packet (maxp) << 16;
|
||
info2 |= hb_mult (maxp) << 30;
|
||
}
|
||
break;
|
||
default:
|
||
ehci_dbg("bogus dev %p speed %d\n", urb->dev,
|
||
urb->dev->speed);
|
||
done:
|
||
qh_destroy(ehci, qh);
|
||
return NULL;
|
||
}
|
||
|
||
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
|
||
|
||
/* init as live, toggle clear */
|
||
qh->qh_state = QH_STATE_IDLE;
|
||
hw = qh->hw;
|
||
hw->hw_info1 = cpu_to_hc32(ehci, info1);
|
||
hw->hw_info2 = cpu_to_hc32(ehci, info2);
|
||
qh->is_out = !is_input;
|
||
usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
|
||
return qh;
|
||
}
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
static void enable_async(struct ehci_hcd *ehci)
|
||
{
|
||
|
||
int cmd;
|
||
int ret;
|
||
|
||
if (ehci->async_count++)
|
||
return;
|
||
|
||
///* Stop waiting to turn off the async schedule */
|
||
ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
|
||
|
||
///* Don't start the schedule until ASS is 0 */
|
||
hal_dcache_clean_all(); //akira 20202020
|
||
hal_dcache_invalidate_all(); //akira 20202020
|
||
ehci_poll_ASS(ehci);
|
||
turn_on_io_watchdog(ehci);
|
||
/*scan??*/
|
||
|
||
//akira???
|
||
// /* need to flush Dcache? */
|
||
// hal_dcache_clean_all();
|
||
|
||
// /* Enable async. schedule. */
|
||
// cmd = ehci_readl(ehci, &ehci->regs->command);
|
||
// cmd |= CMD_ASE;
|
||
// ehci_writel(ehci, cmd, &ehci->regs->command);
|
||
|
||
// ret = ehci_handshake(ehci, (uint32_t *)&ehci->regs->status, STS_ASS, STS_ASS,
|
||
// 100*1000);
|
||
// if (ret < 0) {
|
||
// hal_log_err("EHCI fail timeout STS_ASS set.\n");
|
||
// return;
|
||
// }
|
||
|
||
// if (ehci->isoc_count > 0 || (ehci->async_count + ehci->intr_count > 0))
|
||
// ehci_work(ehci);
|
||
}
|
||
|
||
static void disable_async(struct ehci_hcd *ehci)
|
||
{
|
||
int cmd;
|
||
int ret;
|
||
|
||
if (--ehci->async_count)
|
||
return;
|
||
|
||
/* The async schedule and unlink lists are supposed to be empty */
|
||
//WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
|
||
// !list_empty(&ehci->async_idle));
|
||
|
||
///* Don't turn off the schedule until ASS is 1 */
|
||
hal_dcache_clean_all(); //akira 20202020
|
||
hal_dcache_invalidate_all(); //akira 20202020
|
||
|
||
ehci_poll_ASS(ehci);
|
||
// cmd = ehci_readl(ehci, &ehci->regs->command);
|
||
// cmd &= ~CMD_ASE;
|
||
// ehci_writel(ehci, cmd, &ehci->regs->command);
|
||
|
||
// ret = ehci_handshake(ehci, (uint32_t *)&ehci->regs->status, STS_ASS, 0,
|
||
// 100*1000);
|
||
// if (ret < 0) {
|
||
// hal_log_err("EHCI fail timeout STS_ASS reset.\n");
|
||
// return;
|
||
// }
|
||
}
|
||
|
||
/* move qh (and its qtds) onto async queue; maybe enable queue. */
|
||
|
||
static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
{
|
||
uint32_t dma = QH_NEXT(ehci, qh->qh_dma);
|
||
struct ehci_qh *head;
|
||
|
||
/* Don't link a QH if there's a Clear-TT-Buffer pending */
|
||
//if (unlikely(qh->clearing_tt))
|
||
// return;
|
||
|
||
//WARN_ON(qh->qh_state != QH_STATE_IDLE);
|
||
|
||
/* clear halt and/or toggle; and maybe recover from silicon quirk */
|
||
qh_refresh(ehci, qh);
|
||
|
||
/* splice right after start */
|
||
head = ehci->async;
|
||
qh->qh_next = head->qh_next;
|
||
qh->hw->hw_next = head->hw->hw_next;
|
||
|
||
head->qh_next.qh = qh;
|
||
head->hw->hw_next = dma;
|
||
|
||
qh->qh_state = QH_STATE_LINKED;
|
||
qh->xacterrs = 0;
|
||
qh->unlink_reason = 0;
|
||
/* qtd completions reported later by interrupt */
|
||
|
||
enable_async(ehci);
|
||
}
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
/*
|
||
* For control/bulk/interrupt, return QH with these TDs appended.
|
||
* Allocates and initializes the QH if necessary.
|
||
* Returns null if it can't allocate a QH it needs to.
|
||
* If the QH has TDs (urbs) already, that's great.
|
||
*/
|
||
static struct ehci_qh *qh_append_tds (
|
||
struct ehci_hcd *ehci,
|
||
struct urb *urb,
|
||
struct list_head *qtd_list,
|
||
int epnum,
|
||
void **ptr
|
||
)
|
||
{
|
||
struct ehci_qh *qh = NULL;
|
||
uint32_t qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
|
||
|
||
qh = (struct ehci_qh *) *ptr;
|
||
if (unlikely (qh == NULL)) {
|
||
/* can't sleep here, we have ehci->lock... */
|
||
qh = qh_make (ehci, urb, 0);
|
||
*ptr = qh;
|
||
}
|
||
if (qh != NULL) {
|
||
struct ehci_qtd *qtd;
|
||
|
||
if (unlikely (list_empty (qtd_list)))
|
||
qtd = NULL;
|
||
else
|
||
qtd = list_entry (qtd_list->next, struct ehci_qtd,
|
||
qtd_list);
|
||
|
||
/* control qh may need patching ... */
|
||
if (epnum == 0) {
|
||
|
||
/* usb_reset_device() briefly reverts to address 0 */
|
||
if (usb_pipedevice (urb->pipe) == 0)
|
||
qh->hw->hw_info1 &= ~qh_addr_mask;
|
||
}
|
||
|
||
/* just one way to queue requests: swap with the dummy qtd.
|
||
* only hc or qh_refresh() ever modify the overlay.
|
||
*/
|
||
if (qtd != NULL) {
|
||
struct ehci_qtd *dummy;
|
||
dma_addr_t dma;
|
||
uint32_t token;
|
||
|
||
/* to avoid racing the HC, use the dummy td instead of
|
||
* the first td of our list (becomes new dummy). both
|
||
* tds stay deactivated until we're done, when the
|
||
* HC is allowed to fetch the old dummy (4.10.2).
|
||
*/
|
||
token = qtd->hw_token;
|
||
qtd->hw_token = HALT_BIT(ehci);
|
||
|
||
dummy = qh->dummy;
|
||
|
||
dma = dummy->qtd_dma;
|
||
*dummy = *qtd;
|
||
dummy->qtd_dma = dma;
|
||
|
||
list_del (&qtd->qtd_list);
|
||
list_add (&dummy->qtd_list, qtd_list);
|
||
list_splice_tail(qtd_list, &qh->qtd_list);
|
||
|
||
ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
|
||
qh->dummy = qtd;
|
||
|
||
/* hc must see the new dummy at list end */
|
||
dma = qtd->qtd_dma;
|
||
qtd = list_entry (qh->qtd_list.prev,
|
||
struct ehci_qtd, qtd_list);
|
||
qtd->hw_next = QTD_NEXT(ehci, dma);
|
||
|
||
/* let the hc process these next qtds */
|
||
dummy->hw_token = token;
|
||
|
||
urb->hcpriv = qh;
|
||
}
|
||
}
|
||
return qh;
|
||
}
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
|
||
static int
|
||
submit_async (
|
||
struct ehci_hcd *ehci,
|
||
struct urb *urb,
|
||
struct list_head *qtd_list,
|
||
gfp_t mem_flags
|
||
) {
|
||
int epnum;
|
||
unsigned long flags;
|
||
struct ehci_qh *qh = NULL;
|
||
int rc = 0;
|
||
|
||
epnum = urb->ep->desc.bEndpointAddress;
|
||
|
||
flags = hal_spin_lock_irqsave(&ehci->lock);
|
||
//if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
|
||
// rc = -ESHUTDOWN;
|
||
// goto done;
|
||
//}
|
||
// rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
|
||
// if (rc)
|
||
// goto done;
|
||
|
||
qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
|
||
if (qh == NULL) {
|
||
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
||
rc = -ENOMEM;
|
||
goto done;
|
||
}
|
||
|
||
/* Control/bulk operations through TTs don't need scheduling,
|
||
* the HC and TT handle it when the TT has a buffer ready.
|
||
*/
|
||
if (qh->qh_state == QH_STATE_IDLE) {
|
||
qh_link_async(ehci, qh);
|
||
}
|
||
done:
|
||
hal_spin_unlock_irqrestore(&ehci->lock, flags);
|
||
// qtd_list_free (ehci, urb, &(ehci->wait_free_list));
|
||
|
||
if (qh == NULL)
|
||
qtd_list_free (ehci, urb, qtd_list);
|
||
return rc;
|
||
}
|
||
|
||
static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
{
|
||
struct ehci_qh *prev;
|
||
|
||
/* Add to the end of the list of QHs waiting for the next IAAD */
|
||
qh->qh_state = QH_STATE_UNLINK_WAIT;
|
||
list_add_tail(&qh->unlink_node, &ehci->async_unlink);
|
||
|
||
/* Unlink it from the schedule */
|
||
prev = ehci->async;
|
||
while (prev->qh_next.qh != qh)
|
||
prev = prev->qh_next.qh;
|
||
|
||
prev->hw->hw_next = qh->hw->hw_next;
|
||
prev->qh_next = qh->qh_next;
|
||
if (ehci->qh_scan_next == qh)
|
||
ehci->qh_scan_next = qh->qh_next.qh;
|
||
}
|
||
|
||
static void start_iaa_cycle(struct ehci_hcd *ehci)
|
||
{
|
||
/* If the controller isn't running, we don't have to wait for it */
|
||
if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
|
||
end_unlink_async(ehci);
|
||
|
||
/* Otherwise start a new IAA cycle if one isn't already running */
|
||
} else if (ehci->rh_state == EHCI_RH_RUNNING &&
|
||
!ehci->iaa_in_progress) {
|
||
|
||
/* Make sure the unlinks are all visible to the hardware */
|
||
//wmb();
|
||
|
||
ehci_writel(ehci, ehci->command | CMD_IAAD,
|
||
&ehci->regs->command);
|
||
ehci_readl(ehci, &ehci->regs->command);
|
||
ehci->iaa_in_progress = true;
|
||
// ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
|
||
ehci_iaa_watchdog(ehci);
|
||
}
|
||
}
|
||
|
||
static void end_iaa_cycle(struct ehci_hcd *ehci)
|
||
{
|
||
if (ehci->has_synopsys_hc_bug)
|
||
ehci_writel(ehci, (u32) ehci->async->qh_dma,
|
||
&ehci->regs->async_next);
|
||
|
||
/* The current IAA cycle has ended */
|
||
ehci->iaa_in_progress = false;
|
||
|
||
end_unlink_async(ehci);
|
||
}
|
||
|
||
/* See if the async qh for the qtds being unlinked are now gone from the HC */
|
||
|
||
static void end_unlink_async(struct ehci_hcd *ehci)
|
||
{
|
||
struct ehci_qh *qh;
|
||
bool early_exit;
|
||
|
||
if (list_empty(&ehci->async_unlink))
|
||
return;
|
||
qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
|
||
unlink_node); /* QH whose IAA cycle just ended */
|
||
|
||
/*
|
||
* If async_unlinking is set then this routine is already running,
|
||
* either on the stack or on another CPU.
|
||
*/
|
||
early_exit = ehci->async_unlinking;
|
||
|
||
/* If the controller isn't running, process all the waiting QHs */
|
||
if (ehci->rh_state < EHCI_RH_RUNNING)
|
||
list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
|
||
|
||
/*
|
||
* Intel (?) bug: The HC can write back the overlay region even
|
||
* after the IAA interrupt occurs. In self-defense, always go
|
||
* through two IAA cycles for each QH.
|
||
*/
|
||
else if (qh->qh_state == QH_STATE_UNLINK) {
|
||
/*
|
||
* Second IAA cycle has finished. Process only the first
|
||
* waiting QH (NVIDIA (?) bug).
|
||
*/
|
||
list_move_tail(&qh->unlink_node, &ehci->async_idle);
|
||
}
|
||
|
||
/*
|
||
* AMD/ATI (?) bug: The HC can continue to use an active QH long
|
||
* after the IAA interrupt occurs. To prevent problems, QHs that
|
||
* may still be active will wait until 2 ms have passed with no
|
||
* change to the hw_current and hw_token fields (this delay occurs
|
||
* between the two IAA cycles).
|
||
*
|
||
* The EHCI spec (4.8.2) says that active QHs must not be removed
|
||
* from the async schedule and recommends waiting until the QH
|
||
* goes inactive. This is ridiculous because the QH will _never_
|
||
* become inactive if the endpoint NAKs indefinitely.
|
||
*/
|
||
|
||
/* Some reasons for unlinking guarantee the QH can't be active */
|
||
else if (qh->unlink_reason & (QH_UNLINK_HALTED |
|
||
QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
|
||
goto DelayDone;
|
||
|
||
/* The QH can't be active if the queue was and still is empty... */
|
||
else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
|
||
list_empty(&qh->qtd_list))
|
||
goto DelayDone;
|
||
|
||
/* ... or if the QH has halted */
|
||
else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
|
||
goto DelayDone;
|
||
|
||
/* Otherwise we have to wait until the QH stops changing */
|
||
else {
|
||
uint32_t qh_current, qh_token;
|
||
|
||
qh_current = qh->hw->hw_current;
|
||
qh_token = qh->hw->hw_token;
|
||
if (qh_current != ehci->old_current ||
|
||
qh_token != ehci->old_token) {
|
||
ehci->old_current = qh_current;
|
||
ehci->old_token = qh_token;
|
||
ehci_enable_event(ehci, EHCI_HRTIMER_ACTIVE_UNLINK, true);
|
||
return;
|
||
}
|
||
DelayDone:
|
||
qh->qh_state = QH_STATE_UNLINK;
|
||
early_exit = true;
|
||
}
|
||
ehci->old_current = ~0; /* Prepare for next QH */
|
||
|
||
/* Start a new IAA cycle if any QHs are waiting for it */
|
||
if (!list_empty(&ehci->async_unlink))
|
||
start_iaa_cycle(ehci);
|
||
|
||
/*
|
||
* Don't allow nesting or concurrent calls,
|
||
* or wait for the second IAA cycle for the next QH.
|
||
*/
|
||
if (early_exit)
|
||
return;
|
||
|
||
/* Process the idle QHs */
|
||
ehci->async_unlinking = true;
|
||
while (!list_empty(&ehci->async_idle)) {
|
||
qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
|
||
unlink_node);
|
||
list_del(&qh->unlink_node);
|
||
|
||
qh->qh_state = QH_STATE_IDLE;
|
||
qh->qh_next.qh = NULL;
|
||
|
||
if (!list_empty(&qh->qtd_list))
|
||
qh_completions(ehci, qh);
|
||
if (!list_empty(&qh->qtd_list) &&
|
||
ehci->rh_state == EHCI_RH_RUNNING)
|
||
qh_link_async(ehci, qh);
|
||
disable_async(ehci);
|
||
}
|
||
ehci->async_unlinking = false;
|
||
}
|
||
|
||
static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
|
||
|
||
static void unlink_empty_async(struct ehci_hcd *ehci)
|
||
{
|
||
struct ehci_qh *qh;
|
||
struct ehci_qh *qh_to_unlink = NULL;
|
||
int count = 0;
|
||
|
||
/* Find the last async QH which has been empty for a timer cycle */
|
||
for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
|
||
if (list_empty(&qh->qtd_list) &&
|
||
qh->qh_state == QH_STATE_LINKED) {
|
||
++count;
|
||
if (qh->unlink_cycle != ehci->async_unlink_cycle)
|
||
qh_to_unlink = qh;
|
||
}
|
||
}
|
||
|
||
/* If nothing else is being unlinked, unlink the last empty QH */
|
||
if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
|
||
qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
|
||
start_unlink_async(ehci, qh_to_unlink);
|
||
--count;
|
||
}
|
||
|
||
/* Other QHs will be handled later */
|
||
if (count > 0) {
|
||
// ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
|
||
++ehci->async_unlink_cycle;
|
||
unlink_empty_async(ehci);
|
||
}
|
||
}
|
||
|
||
#ifdef CONFIG_PM
|
||
|
||
/* The root hub is suspended; unlink all the async QHs */
|
||
static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
|
||
{
|
||
struct ehci_qh *qh;
|
||
|
||
while (ehci->async->qh_next.qh) {
|
||
qh = ehci->async->qh_next.qh;
|
||
WARN_ON(!list_empty(&qh->qtd_list));
|
||
single_unlink_async(ehci, qh);
|
||
}
|
||
}
|
||
|
||
#endif
|
||
|
||
/* makes sure the async qh will become idle */
|
||
/* caller must own ehci->lock */
|
||
|
||
static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
||
{
|
||
/* If the QH isn't linked then there's nothing we can do. */
|
||
if (qh->qh_state != QH_STATE_LINKED)
|
||
return;
|
||
|
||
single_unlink_async(ehci, qh);
|
||
start_iaa_cycle(ehci);
|
||
}
|
||
|
||
/*-------------------------------------------------------------------------*/
|
||
// scan_async()函数的工作就是去check传输的状况,并回收qtd
|
||
static void scan_async (struct ehci_hcd *ehci)
|
||
{
|
||
struct ehci_qh *qh;
|
||
bool check_unlinks_later = false;
|
||
|
||
ehci->qh_scan_next = ehci->async->qh_next.qh;
|
||
while (ehci->qh_scan_next) {
|
||
qh = ehci->qh_scan_next;
|
||
ehci->qh_scan_next = qh->qh_next.qh;
|
||
|
||
/* clean any finished work for this qh */
|
||
if (!list_empty(&qh->qtd_list)) {
|
||
int temp;
|
||
|
||
/*
|
||
* Unlinks could happen here; completion reporting
|
||
* drops the lock. That's why ehci->qh_scan_next
|
||
* always holds the next qh to scan; if the next qh
|
||
* gets unlinked then ehci->qh_scan_next is adjusted
|
||
* in single_unlink_async().
|
||
*/
|
||
temp = qh_completions(ehci, qh);
|
||
if (temp) {
|
||
start_unlink_async(ehci, qh);
|
||
} else if (list_empty(&qh->qtd_list)
|
||
&& qh->qh_state == QH_STATE_LINKED) {
|
||
qh->unlink_cycle = ehci->async_unlink_cycle;
|
||
check_unlinks_later = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Unlink empty entries, reducing DMA usage as well
|
||
* as HCD schedule-scanning costs. Delay for any qh
|
||
* we just scanned, there's a not-unusual case that it
|
||
* doesn't stay idle for long.
|
||
*/
|
||
// if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
|
||
// !(ehci->enabled_hrtimer_events &
|
||
// BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
|
||
// ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
|
||
// ++ehci->async_unlink_cycle;
|
||
// }
|
||
if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING) {
|
||
++ehci->async_unlink_cycle;//akira 20202020
|
||
unlink_empty_async(ehci);
|
||
}
|
||
}
|