4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-15 13:09:21 +08:00
David Lin f4a2a00f3d
[bsp/stm32]Fixed typo 'lenth' in drv_eth.c
Note that the word 'lenth' is wrong in the output infomation,
so that 'lenth' should been replaced with 'length'.
And floder-> folder in line 22.
2020-02-24 20:54:53 +08:00

660 lines
18 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 SummerGift first version
* 2018-12-25 zylx fix some bugs
* 2019-06-10 SummerGift optimize PHY state detection process
* 2019-09-03 xiaofan optimize link change detection process
*/
#include "board.h"
#include "drv_config.h"
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "drv_eth.h"
/*
* Emac driver uses CubeMX tool to generate emac and phy's configuration,
* the configuration files can be found in CubeMX_Config folder.
*/
/* debug option */
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
//#define DRV_DEBUG
#define LOG_TAG "drv.emac"
#include <drv_log.h>
#define MAX_ADDR_LEN 6
struct rt_stm32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
#ifndef PHY_USING_INTERRUPT_MODE
rt_timer_t poll_link_timer;
#endif
/* interface address info, hw address */
rt_uint8_t dev_addr[MAX_ADDR_LEN];
/* ETH_Speed */
uint32_t ETH_Speed;
/* ETH_Duplex_Mode */
uint32_t ETH_Mode;
};
static ETH_DMADescTypeDef *DMARxDscrTab, *DMATxDscrTab;
static rt_uint8_t *Rx_Buff, *Tx_Buff;
static ETH_HandleTypeDef EthHandle;
static struct rt_stm32_eth stm32_eth_device;
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
extern void phy_reset(void);
/* EMAC initialization function */
static rt_err_t rt_stm32_eth_init(rt_device_t dev)
{
__HAL_RCC_ETH_CLK_ENABLE();
phy_reset();
/* ETHERNET Configuration */
EthHandle.Instance = ETH;
EthHandle.Init.MACAddr = (rt_uint8_t *)&stm32_eth_device.dev_addr[0];
EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_DISABLE;
EthHandle.Init.Speed = ETH_SPEED_100M;
EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
#ifdef RT_LWIP_USING_HW_CHECKSUM
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
#else
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
#endif
HAL_ETH_DeInit(&EthHandle);
/* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
if (HAL_ETH_Init(&EthHandle) != HAL_OK)
{
LOG_E("eth hardware init failed");
}
else
{
LOG_D("eth hardware init success");
}
/* Initialize Tx Descriptors list: Chain Mode */
HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, Tx_Buff, ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, Rx_Buff, ETH_RXBUFNB);
/* ETH interrupt Init */
HAL_NVIC_SetPriority(ETH_IRQn, 0x07, 0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
/* Enable MAC and DMA transmission and reception */
if (HAL_ETH_Start(&EthHandle) == HAL_OK)
{
LOG_D("emac hardware start");
}
else
{
LOG_E("emac hardware start faild");
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
LOG_D("emac open");
return RT_EOK;
}
static rt_err_t rt_stm32_eth_close(rt_device_t dev)
{
LOG_D("emac close");
return RT_EOK;
}
static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
LOG_D("emac read");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_stm32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
LOG_D("emac write");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit data*/
rt_err_t rt_stm32_eth_tx(rt_device_t dev, struct pbuf *p)
{
rt_err_t ret = RT_ERROR;
HAL_StatusTypeDef state;
struct pbuf *q;
uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
__IO ETH_DMADescTypeDef *DmaTxDesc;
uint32_t framelength = 0;
uint32_t bufferoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t payloadoffset = 0;
DmaTxDesc = EthHandle.TxDesc;
bufferoffset = 0;
/* copy frame from pbufs to driver buffers */
for (q = p; q != NULL; q = q->next)
{
/* Is this buffer available? If not, goto error */
if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
LOG_D("buffer not valid");
ret = ERR_USE;
goto error;
}
/* Get bytes in current lwIP buffer */
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of data to copy is bigger than Tx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE)
{
/* Copy data to Tx buffer*/
memcpy((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
/* Check if the buffer is available */
if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
LOG_E("dma tx desc buffer is not valid");
ret = ERR_USE;
goto error;
}
buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy the remaining bytes */
memcpy((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
framelength = framelength + byteslefttocopy;
}
#ifdef ETH_TX_DUMP
dump_hex(buffer, p->tot_len);
#endif
/* Prepare transmit descriptors to give to DMA */
/* TODO Optimize data send speed*/
LOG_D("transmit frame length :%d", framelength);
/* wait for unlocked */
while (EthHandle.Lock == HAL_LOCKED);
state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
if (state != HAL_OK)
{
LOG_E("eth transmit frame faild: %d", state);
}
ret = ERR_OK;
error:
/* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
{
/* Clear TUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_TUS;
/* Resume DMA transmission*/
EthHandle.Instance->DMATPDR = 0;
}
return ret;
}
/* receive data*/
struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q = NULL;
HAL_StatusTypeDef state;
uint16_t len = 0;
uint8_t *buffer;
__IO ETH_DMADescTypeDef *dmarxdesc;
uint32_t bufferoffset = 0;
uint32_t payloadoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t i = 0;
/* Get received frame */
state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
if (state != HAL_OK)
{
LOG_D("receive frame faild");
return NULL;
}
/* Obtain the size of the packet and put it into the "len" variable. */
len = EthHandle.RxFrameInfos.length;
buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
LOG_D("receive frame len : %d", len);
if (len > 0)
{
/* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
}
#ifdef ETH_RX_DUMP
dump_hex(buffer, p->tot_len);
#endif
if (p != NULL)
{
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
bufferoffset = 0;
for (q = p; q != NULL; q = q->next)
{
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE)
{
/* Copy data to pbuf */
memcpy((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy remaining data in pbuf */
memcpy((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
}
}
/* Release descriptors to DMA */
/* Point to first descriptor */
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (i = 0; i < EthHandle.RxFrameInfos.SegCount; i++)
{
dmarxdesc->Status |= ETH_DMARXDESC_OWN;
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
}
/* Clear Segment_Count */
EthHandle.RxFrameInfos.SegCount = 0;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
EthHandle.Instance->DMARPDR = 0;
}
return p;
}
/* interrupt service routine */
void ETH_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_ETH_IRQHandler(&EthHandle);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
{
rt_err_t result;
result = eth_device_ready(&(stm32_eth_device.parent));
if (result != RT_EOK)
LOG_I("RxCpltCallback err = %d", result);
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
{
LOG_E("eth err");
}
enum {
PHY_LINK = (1 << 0),
PHY_100M = (1 << 1),
PHY_FULL_DUPLEX = (1 << 2),
};
static void phy_linkchange()
{
static rt_uint8_t phy_speed = 0;
rt_uint8_t phy_speed_new = 0;
rt_uint32_t status;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_BASIC_STATUS_REG, (uint32_t *)&status);
LOG_D("phy basic status reg is 0x%X", status);
if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK))
{
rt_uint32_t SR = 0;
phy_speed_new |= PHY_LINK;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_Status_REG, (uint32_t *)&SR);
LOG_D("phy control status reg is 0x%X", SR);
if (PHY_Status_SPEED_100M(SR))
{
phy_speed_new |= PHY_100M;
}
if (PHY_Status_FULL_DUPLEX(SR))
{
phy_speed_new |= PHY_FULL_DUPLEX;
}
}
if (phy_speed != phy_speed_new)
{
phy_speed = phy_speed_new;
if (phy_speed & PHY_LINK)
{
LOG_D("link up");
if (phy_speed & PHY_100M)
{
LOG_D("100Mbps");
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
}
else
{
stm32_eth_device.ETH_Speed = ETH_SPEED_10M;
LOG_D("10Mbps");
}
if (phy_speed & PHY_FULL_DUPLEX)
{
LOG_D("full-duplex");
stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
}
else
{
LOG_D("half-duplex");
stm32_eth_device.ETH_Mode = ETH_MODE_HALFDUPLEX;
}
/* send link up. */
eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
}
else
{
LOG_I("link down");
eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
}
}
}
#ifdef PHY_USING_INTERRUPT_MODE
static void eth_phy_isr(void *args)
{
rt_uint32_t status = 0;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_INTERRUPT_FLAG_REG, (uint32_t *)&status);
LOG_D("phy interrupt status reg is 0x%X", status);
phy_linkchange();
}
#endif /* PHY_USING_INTERRUPT_MODE */
static void phy_monitor_thread_entry(void *parameter)
{
uint8_t phy_addr = 0xFF;
uint8_t detected_count = 0;
while(phy_addr == 0xFF)
{
/* phy search */
rt_uint32_t i, temp;
for (i = 0; i <= 0x1F; i++)
{
EthHandle.Init.PhyAddress = i;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ID1_REG, (uint32_t *)&temp);
if (temp != 0xFFFF && temp != 0x00)
{
phy_addr = i;
break;
}
}
detected_count++;
rt_thread_mdelay(1000);
if (detected_count > 10)
{
LOG_E("No PHY device was detected, please check hardware!");
}
}
LOG_D("Found a phy, address:0x%02X", phy_addr);
/* RESET PHY */
LOG_D("RESET PHY!");
HAL_ETH_WritePHYRegister(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK);
rt_thread_mdelay(2000);
HAL_ETH_WritePHYRegister(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_AUTO_NEGOTIATION_MASK);
phy_linkchange();
#ifdef PHY_USING_INTERRUPT_MODE
/* configuration intterrupt pin */
rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_isr, (void *)"callbackargs");
rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE);
/* enable phy interrupt */
HAL_ETH_WritePHYRegister(&EthHandle, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK);
#if defined(PHY_INTERRUPT_CTRL_REG)
HAL_ETH_WritePHYRegister(&EthHandle, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN);
#endif
#else /* PHY_USING_INTERRUPT_MODE */
stm32_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
if (!stm32_eth_device.poll_link_timer || rt_timer_start(stm32_eth_device.poll_link_timer) != RT_EOK)
{
LOG_E("Start link change detection timer failed");
}
#endif /* PHY_USING_INTERRUPT_MODE */
}
/* Register the EMAC device */
static int rt_hw_stm32_eth_init(void)
{
rt_err_t state = RT_EOK;
/* Prepare receive and send buffers */
Rx_Buff = (rt_uint8_t *)rt_calloc(ETH_RXBUFNB, ETH_MAX_PACKET_SIZE);
if (Rx_Buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
Tx_Buff = (rt_uint8_t *)rt_calloc(ETH_TXBUFNB, ETH_MAX_PACKET_SIZE);
if (Tx_Buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
DMARxDscrTab = (ETH_DMADescTypeDef *)rt_calloc(ETH_RXBUFNB, sizeof(ETH_DMADescTypeDef));
if (DMARxDscrTab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
DMATxDscrTab = (ETH_DMADescTypeDef *)rt_calloc(ETH_TXBUFNB, sizeof(ETH_DMADescTypeDef));
if (DMATxDscrTab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
/* OUI 00-80-E1 STMICROELECTRONICS. */
stm32_eth_device.dev_addr[0] = 0x00;
stm32_eth_device.dev_addr[1] = 0x80;
stm32_eth_device.dev_addr[2] = 0xE1;
/* generate MAC addr from 96bit unique ID (only for test). */
stm32_eth_device.dev_addr[3] = *(rt_uint8_t *)(UID_BASE + 4);
stm32_eth_device.dev_addr[4] = *(rt_uint8_t *)(UID_BASE + 2);
stm32_eth_device.dev_addr[5] = *(rt_uint8_t *)(UID_BASE + 0);
stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
stm32_eth_device.parent.parent.user_data = RT_NULL;
stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
/* register eth device */
state = eth_device_init(&(stm32_eth_device.parent), "e0");
if (RT_EOK == state)
{
LOG_D("emac device init success");
}
else
{
LOG_E("emac device init faild: %d", state);
state = -RT_ERROR;
goto __exit;
}
/* start phy monitor */
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
RT_NULL,
1024,
RT_THREAD_PRIORITY_MAX - 2,
2);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
}
else
{
state = -RT_ERROR;
}
__exit:
if (state != RT_EOK)
{
if (Rx_Buff)
{
rt_free(Rx_Buff);
}
if (Tx_Buff)
{
rt_free(Tx_Buff);
}
if (DMARxDscrTab)
{
rt_free(DMARxDscrTab);
}
if (DMATxDscrTab)
{
rt_free(DMATxDscrTab);
}
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);