rt-thread-official/bsp/gd32/arm/libraries/gd32_drivers/drv_spi.c

441 lines
11 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-12-20 BruceOu first implementation
*/
#include "drv_spi.h"
#ifdef RT_USING_SPI
#if defined(BSP_USING_SPI0) || defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4)
#define LOG_TAG "drv.spi"
#include <rtdbg.h>
#ifdef BSP_USING_SPI0
static struct rt_spi_bus spi_bus0;
#endif
#ifdef BSP_USING_SPI1
static struct rt_spi_bus spi_bus1;
#endif
#ifdef BSP_USING_SPI2
static struct rt_spi_bus spi_bus2;
#endif
#ifdef BSP_USING_SPI3
static struct rt_spi_bus spi_bus3;
#endif
#ifdef BSP_USING_SPI4
static struct rt_spi_bus spi_bus4;
#endif
static const struct gd32_spi spi_bus_obj[] = {
#ifdef BSP_USING_SPI0
{
SPI0,
"spi0",
RCU_SPI0,
RCU_GPIOA,
&spi_bus0,
GPIOA,
#if defined SOC_SERIES_GD32F4xx
GPIO_AF_5,
#endif
GPIO_PIN_5,
GPIO_PIN_6,
GPIO_PIN_7,
},
#endif /* BSP_USING_SPI0 */
#ifdef BSP_USING_SPI1
{
SPI1,
"spi1",
RCU_SPI1,
RCU_GPIOB,
&spi_bus1,
GPIOB,
#if defined SOC_SERIES_GD32F4xx
GPIO_AF_5,
#endif
GPIO_PIN_12,
GPIO_PIN_14,
GPIO_PIN_15,
},
#endif /* BSP_USING_SPI1 */
#ifdef BSP_USING_SPI2
{
SPI2,
"spi2",
RCU_SPI2,
RCU_GPIOB,
&spi_bus2,
GPIOB,
#if defined SOC_SERIES_GD32F4xx
GPIO_AF_6,
#endif
GPIO_PIN_3,
GPIO_PIN_4,
GPIO_PIN_5,
},
#endif /* BSP_USING_SPI2 */
#ifdef BSP_USING_SPI3
{
SPI2,
"spi2",
RCU_SPI3,
RCU_GPIOE,
&spi_bus3,
GPIOB,
#if defined SOC_SERIES_GD32F4xx
GPIO_AF_5,
#endif
GPIO_PIN_2,
GPIO_PIN_5,
GPIO_PIN_6,
},
#endif /* BSP_USING_SPI3 */
#ifdef BSP_USING_SPI4
{
SPI4,
"spi4",
RCU_SPI4,
RCU_GPIOF,
&spi_bus4,
GPIOF,
#if defined SOC_SERIES_GD32F4xx
GPIO_AF_5,
#endif
GPIO_PIN_7,
GPIO_PIN_8,
GPIO_PIN_9,
}
#endif /* BSP_USING_SPI4 */
};
/* private rt-thread spi ops function */
static rt_err_t spi_configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
static rt_uint32_t spixfer(struct rt_spi_device* device, struct rt_spi_message* message);
static struct rt_spi_ops gd32_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
};
/**
* @brief SPI Initialization
* @param gd32_spi: SPI BUS
* @retval None
*/
static void gd32_spi_init(struct gd32_spi *gd32_spi)
{
/* enable SPI clock */
rcu_periph_clock_enable(gd32_spi->spi_clk);
rcu_periph_clock_enable(gd32_spi->gpio_clk);
#if defined SOC_SERIES_GD32F4xx
/*GPIO pin configuration*/
gpio_af_set(gd32_spi->spi_port, gd32_spi->alt_func_num, gd32_spi->sck_pin | gd32_spi->mosi_pin | gd32_spi->miso_pin);
gpio_mode_set(gd32_spi->spi_port, GPIO_MODE_AF, GPIO_PUPD_NONE, gd32_spi->sck_pin | gd32_spi->mosi_pin | gd32_spi->miso_pin);
gpio_output_options_set(gd32_spi->spi_port, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, gd32_spi->sck_pin | gd32_spi->mosi_pin | gd32_spi->miso_pin);
#else
/* Init SPI SCK MOSI */
gpio_init(gd32_spi->spi_port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, gd32_spi->sck_pin | gd32_spi->mosi_pin);
/* Init SPI MISO */
gpio_init(gd32_spi->spi_port, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, gd32_spi->miso_pin);
#endif
}
static rt_err_t spi_configure(struct rt_spi_device* device,
struct rt_spi_configuration* configuration)
{
struct rt_spi_bus * spi_bus = (struct rt_spi_bus *)device->bus;
struct gd32_spi *spi_device = (struct gd32_spi *)spi_bus->parent.user_data;
spi_parameter_struct spi_init_struct;
uint32_t spi_periph = spi_device->spi_periph;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
//Init SPI
gd32_spi_init(spi_device);
/* data_width */
if(configuration->data_width <= 8)
{
spi_init_struct.frame_size = SPI_FRAMESIZE_8BIT;
}
else if(configuration->data_width <= 16)
{
spi_init_struct.frame_size = SPI_FRAMESIZE_16BIT;
}
else
{
return -RT_EIO;
}
/* baudrate */
{
rcu_clock_freq_enum spi_src;
uint32_t spi_apb_clock;
uint32_t max_hz;
max_hz = configuration->max_hz;
LOG_D("sys freq: %d\n", rcu_clock_freq_get(CK_SYS));
LOG_D("CK_APB2 freq: %d\n", rcu_clock_freq_get(CK_APB2));
LOG_D("max freq: %d\n", max_hz);
if (spi_periph == SPI1 || spi_periph == SPI2)
{
spi_src = CK_APB1;
}
else
{
spi_src = CK_APB2;
}
spi_apb_clock = rcu_clock_freq_get(spi_src);
if(max_hz >= spi_apb_clock/2)
{
spi_init_struct.prescale = SPI_PSC_2;
}
else if (max_hz >= spi_apb_clock/4)
{
spi_init_struct.prescale = SPI_PSC_4;
}
else if (max_hz >= spi_apb_clock/8)
{
spi_init_struct.prescale = SPI_PSC_8;
}
else if (max_hz >= spi_apb_clock/16)
{
spi_init_struct.prescale = SPI_PSC_16;
}
else if (max_hz >= spi_apb_clock/32)
{
spi_init_struct.prescale = SPI_PSC_32;
}
else if (max_hz >= spi_apb_clock/64)
{
spi_init_struct.prescale = SPI_PSC_64;
}
else if (max_hz >= spi_apb_clock/128)
{
spi_init_struct.prescale = SPI_PSC_128;
}
else
{
/* min prescaler 256 */
spi_init_struct.prescale = SPI_PSC_256;
}
} /* baudrate */
switch(configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE;
break;
case RT_SPI_MODE_1:
spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_2EDGE;
break;
case RT_SPI_MODE_2:
spi_init_struct.clock_polarity_phase = SPI_CK_PL_HIGH_PH_1EDGE;
break;
case RT_SPI_MODE_3:
spi_init_struct.clock_polarity_phase = SPI_CK_PL_HIGH_PH_2EDGE;
break;
}
/* MSB or LSB */
if(configuration->mode & RT_SPI_MSB)
{
spi_init_struct.endian = SPI_ENDIAN_MSB;
}
else
{
spi_init_struct.endian = SPI_ENDIAN_LSB;
}
spi_init_struct.trans_mode = SPI_TRANSMODE_FULLDUPLEX;
spi_init_struct.device_mode = SPI_MASTER;
spi_init_struct.nss = SPI_NSS_SOFT;
spi_crc_off(spi_periph);
/* init SPI */
spi_init(spi_periph, &spi_init_struct);
/* Enable SPI_MASTER */
spi_enable(spi_periph);
return RT_EOK;
};
static rt_uint32_t spixfer(struct rt_spi_device* device, struct rt_spi_message* message)
{
struct rt_spi_bus * gd32_spi_bus = (struct rt_spi_bus *)device->bus;
struct gd32_spi *spi_device = (struct gd32_spi *)gd32_spi_bus->parent.user_data;
struct rt_spi_configuration * config = &device->config;
struct gd32_spi_cs * gd32_spi_cs = device->parent.user_data;
uint32_t spi_periph = spi_device->spi_periph;
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
/* take CS */
if(message->cs_take)
{
gpio_bit_reset(gd32_spi_cs->GPIOx, gd32_spi_cs->GPIO_Pin);
LOG_D("spi take cs\n");
}
{
if(config->data_width <= 8)
{
const rt_uint8_t * send_ptr = message->send_buf;
rt_uint8_t * recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
LOG_D("spi poll transfer start: %d\n", size);
while(size--)
{
rt_uint8_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
// Todo: replace register read/write by gd32f4 lib
//Wait until the transmit buffer is empty
while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE));
// Send the byte
spi_i2s_data_transmit(spi_periph, data);
//Wait until a data is received
while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_RBNE));
// Get the received data
data = spi_i2s_data_receive(spi_periph);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
LOG_D("spi poll transfer finsh\n");
}
else if(config->data_width <= 16)
{
const rt_uint16_t * send_ptr = message->send_buf;
rt_uint16_t * recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
while(size--)
{
rt_uint16_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
//Wait until the transmit buffer is empty
while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE));
// Send the byte
spi_i2s_data_transmit(spi_periph, data);
//Wait until a data is received
while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_RBNE));
// Get the received data
data = spi_i2s_data_receive(spi_periph);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
}
/* release CS */
if(message->cs_release)
{
gpio_bit_set(gd32_spi_cs->GPIOx, gd32_spi_cs->GPIO_Pin);
LOG_D("spi release cs\n");
}
return message->length;
};
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_base_t cs_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
if(cs_pin != PIN_NONE)
{
/* initialize the cs pin && select the slave*/
rt_pin_mode(cs_pin, PIN_MODE_OUTPUT);
rt_pin_write(cs_pin, PIN_HIGH);
}
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
int rt_hw_spi_init(void)
{
int result = 0;
int i;
for (i = 0; i < sizeof(spi_bus_obj) / sizeof(spi_bus_obj[0]); i++)
{
spi_bus_obj[i].spi_bus->parent.user_data = (void *)&spi_bus_obj[i];
result = rt_spi_bus_register(spi_bus_obj[i].spi_bus, spi_bus_obj[i].bus_name, &gd32_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_bus_obj[i].bus_name);
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* BSP_USING_SPI0 || BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4*/
#endif /* RT_USING_SPI */