4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-16 06:19:24 +08:00
Noe Xu 33753f6331 [STM32 BSP]CAN driver for stm32f4xx HAL.
Change-Id: I60868dea91e0a632de469e4841410d4f1ae21516
2018-08-12 20:49:23 +08:00

869 lines
24 KiB
C

/*
* File : drv_can.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2018, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-08-05 Xeon Xu the first version
*/
/* Includes ------------------------------------------------------------------*/
#include "drv_can.h"
#include "board.h"
#include <rtdevice.h>
#include <rthw.h>
#include <rtthread.h>
#define BS1SHIFT 16
#define BS2SHIFT 20
#define RRESCLSHIFT 0
#define SJWSHIFT 24
#define BS1MASK ( (0x0F) << BS1SHIFT )
#define BS2MASK ( (0x07) << BS2SHIFT )
#define RRESCLMASK ( 0x3FF << RRESCLSHIFT )
#define SJWMASK ( 0x3 << SJWSHIFT )
struct stm_baud_rate_tab
{
rt_uint32_t baud_rate;
rt_uint32_t confdata;
};
/* STM32 can driver */
struct stm32_drv_can
{
CAN_HandleTypeDef CanHandle;
CanTxMsgTypeDef TxMessage;
CanRxMsgTypeDef RxMessage;
CAN_FilterConfTypeDef FilterConfig;
};
static const struct stm_baud_rate_tab can_baud_rate_tab[] =
{
{CAN1MBaud , (CAN_SJW_1TQ | CAN_BS1_2TQ | CAN_BS2_4TQ | 6)},
{CAN800kBaud, (CAN_SJW_1TQ | CAN_BS1_5TQ | CAN_BS2_7TQ | 4)},
{CAN500kBaud, (CAN_SJW_1TQ | CAN_BS1_14TQ | CAN_BS2_6TQ | 4)},
{CAN250kBaud, (CAN_SJW_1TQ | CAN_BS1_1TQ | CAN_BS2_2TQ | 42)},
{CAN125kBaud, (CAN_SJW_1TQ | CAN_BS1_1TQ | CAN_BS2_2TQ | 84)},
{CAN100kBaud, (CAN_SJW_1TQ | CAN_BS1_1TQ | CAN_BS2_1TQ | 140)},
{CAN50kBaud , (CAN_SJW_1TQ | CAN_BS1_1TQ | CAN_BS2_1TQ | 280)},
{CAN20kBaud , (CAN_SJW_1TQ | CAN_BS1_1TQ | CAN_BS2_1TQ | 700)},
{CAN10kBaud , (CAN_SJW_1TQ | CAN_BS1_3TQ | CAN_BS2_4TQ | 525)}
};
#define BAUD_DATA(TYPE,NO) \
((can_baud_rate_tab[NO].confdata & TYPE##MASK))
static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index, default_index;
len = sizeof(can_baud_rate_tab)/sizeof(can_baud_rate_tab[0]);
default_index = len;
for(index = 0; index < len; index++)
{
if(can_baud_rate_tab[index].baud_rate == baud)
return index;
if(can_baud_rate_tab[index].baud_rate == 1000UL * 250)
default_index = index;
}
if(default_index != len)
return default_index;
return 0;
}
#ifdef USING_BXCAN1
static struct stm32_drv_can drv_can1;
struct rt_can_device dev_can1;
void CAN1_TX_IRQHandler(void)
{
CAN_HandleTypeDef *hcan;
rt_interrupt_enter();
hcan = &drv_can1.CanHandle;
HAL_CAN_IRQHandler(hcan);
if (__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_0))
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
if (__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_1))
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
if (__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_2))
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 RX0 interrupts.
*/
void CAN1_RX0_IRQHandler(void)
{
CAN_HandleTypeDef *hcan;
hcan = &drv_can1.CanHandle;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0))
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_RXOF_IND | 0 << 8);
}
else
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_RX_IND | 0 << 8);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 RX1 interrupts.
*/
void CAN1_RX1_IRQHandler(void)
{
CAN_HandleTypeDef *hcan;
hcan = &drv_can1.CanHandle;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1))
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_RXOF_IND | 1 << 8);
}
else
{
rt_hw_can_isr(&dev_can1, RT_CAN_EVENT_RX_IND | 1 << 8);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 SCE interrupts.
*/
void CAN1_SCE_IRQHandler(void)
{
rt_uint32_t errtype;
CAN_HandleTypeDef *hcan;
hcan = &drv_can1.CanHandle;
errtype = hcan->Instance->ESR;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
if (errtype & 0x70 && dev_can1.status.lasterrtype == (errtype & 0x70))
{
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
dev_can1.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
dev_can1.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:
dev_can1.status.ackerrcnt++;
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
dev_can1.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
dev_can1.status.crcerrcnt++;
break;
}
dev_can1.status.lasterrtype = errtype & 0x70;
hcan->Instance->ESR &= ~0x70;
}
dev_can1.status.rcverrcnt = errtype >> 24;
dev_can1.status.snderrcnt = (errtype >> 16 & 0xFF);
dev_can1.status.errcode = errtype & 0x07;
hcan->Instance->MSR |= CAN_MSR_ERRI;
rt_interrupt_leave();
}
#endif // USING_BXCAN1
#ifdef USING_BXCAN2
static struct stm32_drv_can drv_can2;
struct rt_can_device dev_can2;
/**
* @brief This function handles CAN2 TX interrupts.
*/
void CAN2_TX_IRQHandler(void)
{
CAN_HandleTypeDef *hcan;
rt_interrupt_enter();
hcan = &drv_can2.CanHandle;
HAL_CAN_IRQHandler(hcan);
if (__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_0))
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
if (__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_1))
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
if (__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_2))
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 RX0 interrupts.
*/
void CAN2_RX0_IRQHandler(void)
{
CAN_HandleTypeDef *hcan;
hcan = &drv_can2.CanHandle;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0))
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_RXOF_IND | 0 << 8);
}
else
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_RX_IND | 0 << 8);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 RX1 interrupts.
*/
void CAN2_RX1_IRQHandler(void)
{
CAN_HandleTypeDef *hcan;
hcan = &drv_can2.CanHandle;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1))
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_RXOF_IND | 1 << 8);
}
else
{
rt_hw_can_isr(&dev_can2, RT_CAN_EVENT_RX_IND | 1 << 8);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 SCE interrupts.
*/
void CAN2_SCE_IRQHandler(void)
{
rt_uint32_t errtype;
CAN_HandleTypeDef *hcan;
hcan = &drv_can2.CanHandle;
errtype = hcan->Instance->ESR;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
if (errtype & 0x70 && dev_can2.status.lasterrtype == (errtype & 0x70))
{
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
dev_can2.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
dev_can2.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:
dev_can2.status.ackerrcnt++;
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
dev_can2.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
dev_can2.status.crcerrcnt++;
break;
}
dev_can2.status.lasterrtype = errtype & 0x70;
hcan->Instance->ESR &= ~0x70;
}
dev_can2.status.rcverrcnt = errtype >> 24;
dev_can2.status.snderrcnt = (errtype >> 16 & 0xFF);
dev_can2.status.errcode = errtype & 0x07;
hcan->Instance->MSR |= CAN_MSR_ERRI;
rt_interrupt_leave();
}
#endif // USING_BXCAN2
/**
* @brief Error CAN callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
/* TODO Error Callback */
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_ErrorCallback could be implemented in the user file
*/
}
/**
* @brief Transmission complete callback in non blocking mode
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_TxCpltCallback(CAN_HandleTypeDef* hcan)
{
switch((int)hcan->Instance)
{
case (int)CAN1:
/* User define */
break;
case (int)CAN2:
/* User define */
break;
}
}
/**
* @brief Transmission complete callback in non blocking mode
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* hcan)
{
HAL_CAN_Receive_IT(hcan, CAN_FIFO0);
HAL_CAN_Receive_IT(hcan, CAN_FIFO1);
}
static rt_err_t drv_configure(struct rt_can_device *dev_can,
struct can_configure *cfg)
{
struct stm32_drv_can *drv_can;
rt_uint32_t baud_index;
CAN_InitTypeDef *drv_init;
CAN_FilterConfTypeDef *filterConf;
RT_ASSERT(dev_can);
RT_ASSERT(cfg);
drv_can = (struct stm32_drv_can *)dev_can->parent.user_data;
drv_init = &drv_can->CanHandle.Init;
drv_init->TTCM = DISABLE;
drv_init->ABOM = DISABLE;
drv_init->AWUM = DISABLE;
drv_init->NART = DISABLE;
drv_init->RFLM = DISABLE;
drv_init->TXFP = DISABLE;
switch (cfg->mode)
{
case RT_CAN_MODE_NORMAL:
drv_init->Mode = CAN_MODE_NORMAL;
break;
case RT_CAN_MODE_LISEN:
drv_init->Mode = CAN_MODE_SILENT;
break;
case RT_CAN_MODE_LOOPBACK:
drv_init->Mode = CAN_MODE_LOOPBACK;
break;
case RT_CAN_MODE_LOOPBACKANLISEN:
drv_init->Mode = CAN_MODE_SILENT_LOOPBACK;
break;
}
baud_index = get_can_baud_index(cfg->baud_rate);
drv_init->SJW = BAUD_DATA(SJW, baud_index);
drv_init->BS1 = BAUD_DATA(BS1, baud_index);
drv_init->BS2 = BAUD_DATA(BS2, baud_index);
drv_init->Prescaler = BAUD_DATA(RRESCL, baud_index);
if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
{
return RT_ERROR;
}
/* Filter conf */
filterConf = &drv_can->FilterConfig;
filterConf->FilterNumber = 0;
filterConf->FilterMode = CAN_FILTERMODE_IDMASK;
filterConf->FilterScale = CAN_FILTERSCALE_32BIT;
filterConf->FilterIdHigh = 0x0000;
filterConf->FilterIdLow = 0x0000;
filterConf->FilterMaskIdHigh = 0x0000;
filterConf->FilterMaskIdLow = 0x0000;
filterConf->FilterFIFOAssignment = 0;
filterConf->FilterActivation = ENABLE;
filterConf->BankNumber = 14;
HAL_CAN_ConfigFilter(&drv_can->CanHandle, filterConf);
return RT_EOK;
}
static rt_err_t drv_control(struct rt_can_device *can, int cmd, void *arg)
{
struct stm32_drv_can *drv_can;
rt_uint32_t argval;
drv_can = (struct stm32_drv_can *) can->parent.user_data;
assert_param(drv_can != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
if (CAN1 == drv_can->CanHandle.Instance) {
HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
}
else
{
HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
}
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_FMP0);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_FF0 );
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_FOV0);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_FMP1);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_FF1 );
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_FOV1);
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
}
else
{
HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
}
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_TME);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
if (CAN1 == drv_can->CanHandle.Instance)
{
NVIC_DisableIRQ(CAN1_SCE_IRQn);
}
else
{
NVIC_DisableIRQ(CAN2_SCE_IRQn);
}
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_BOF);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_LEC);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERR);
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_FMP0);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_FF0);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_FOV0);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_FMP1);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_FF1);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_FOV1);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_SetPriority(CAN1_RX1_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_RX1_IRQn);
}
else
{
HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_SetPriority(CAN2_RX1_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_RX1_IRQn);
}
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_TME);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_TX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
}
else
{
HAL_NVIC_SetPriority(CAN2_TX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
}
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_BOF);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_LEC);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERR);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
}
else
{
HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
}
}
break;
case RT_CAN_CMD_SET_FILTER:
/* TODO: filter*/
break;
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_NORMAL ||
argval != RT_CAN_MODE_LISEN ||
argval != RT_CAN_MODE_LOOPBACK ||
argval != RT_CAN_MODE_LOOPBACKANLISEN)
{
return RT_ERROR;
}
if (argval != can->config.mode)
{
can->config.mode = argval;
if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
{
return RT_ERROR;
}
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud &&
argval != CAN800kBaud &&
argval != CAN500kBaud &&
argval != CAN250kBaud &&
argval != CAN125kBaud &&
argval != CAN100kBaud &&
argval != CAN50kBaud &&
argval != CAN20kBaud &&
argval != CAN10kBaud)
{
return RT_ERROR;
}
if (argval != can->config.baud_rate)
{
CAN_InitTypeDef *drv_init;
rt_uint32_t baud_index;
can->config.baud_rate = argval;
drv_init = &drv_can->CanHandle.Init;
drv_init->TTCM = DISABLE;
drv_init->ABOM = DISABLE;
drv_init->AWUM = DISABLE;
drv_init->NART = DISABLE;
drv_init->RFLM = DISABLE;
drv_init->TXFP = DISABLE;
baud_index = get_can_baud_index(can->config.baud_rate);
drv_init->SJW = BAUD_DATA(SJW, baud_index);
drv_init->BS1 = BAUD_DATA(BS1, baud_index);
drv_init->BS2 = BAUD_DATA(BS2, baud_index);
drv_init->Prescaler = BAUD_DATA(RRESCL, baud_index);
if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
{
return RT_ERROR;
}
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_PRIV ||
argval != RT_CAN_MODE_NOPRIV)
{
return RT_ERROR;
}
if (argval != can->config.privmode)
{
can->config.privmode = argval;
if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
{
return RT_ERROR;
}
}
break;
case RT_CAN_CMD_GET_STATUS:
{
rt_uint32_t errtype;
errtype = drv_can->CanHandle.Instance->ESR;
can->status.rcverrcnt = errtype >> 24;
can->status.snderrcnt = (errtype >> 16 & 0xFF);
can->status.errcode = errtype & 0x07;
if (arg != &can->status)
{
rt_memcpy(arg, &can->status, sizeof(can->status));
}
}
break;
}
return RT_EOK;
}
static int drv_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t boxno)
{
CAN_HandleTypeDef *hcan;
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
hcan = &((struct stm32_drv_can *) can->parent.user_data)->CanHandle;
hcan->pTxMsg->StdId = pmsg->id;
hcan->pTxMsg->RTR = pmsg->rtr;
hcan->pTxMsg->IDE = pmsg->ide;
hcan->pTxMsg->DLC = pmsg->len;
rt_memset(&hcan->pTxMsg->Data, 0x00, 8);
/* rt_memcpy(&hcan->pTxMsg->Data, &pmsg->data, 8); */
hcan->pTxMsg->Data[0] = pmsg->data[0];
hcan->pTxMsg->Data[1] = pmsg->data[1];
hcan->pTxMsg->Data[2] = pmsg->data[2];
hcan->pTxMsg->Data[3] = pmsg->data[3];
hcan->pTxMsg->Data[4] = pmsg->data[4];
hcan->pTxMsg->Data[5] = pmsg->data[5];
hcan->pTxMsg->Data[6] = pmsg->data[6];
hcan->pTxMsg->Data[7] = pmsg->data[7];
HAL_CAN_Transmit_IT(hcan);
return RT_EOK;
}
static int drv_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t boxno)
{
CAN_HandleTypeDef *hcan;
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
hcan = &((struct stm32_drv_can *) can->parent.user_data)->CanHandle;
pmsg->id = hcan->pRxMsg->StdId;
pmsg->rtr = hcan->pRxMsg->RTR;
pmsg->ide = hcan->pRxMsg->IDE;
pmsg->len = hcan->pRxMsg->DLC;
/* rt_memcpy(&pmsg->data, &hcan->pRxMsg->Data, 8); */
pmsg->data[0] = hcan->pRxMsg->Data[0];
pmsg->data[1] = hcan->pRxMsg->Data[1];
pmsg->data[2] = hcan->pRxMsg->Data[2];
pmsg->data[3] = hcan->pRxMsg->Data[3];
pmsg->data[4] = hcan->pRxMsg->Data[4];
pmsg->data[5] = hcan->pRxMsg->Data[5];
pmsg->data[6] = hcan->pRxMsg->Data[6];
pmsg->data[7] = hcan->pRxMsg->Data[7];
return RT_EOK;
}
static const struct rt_can_ops drv_can_ops =
{
drv_configure,
drv_control,
drv_sendmsg,
drv_recvmsg,
};
void HAL_CAN_MspInit(CAN_HandleTypeDef* canHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(canHandle->Instance==CAN1)
{
/* CAN1 clock enable */
__HAL_RCC_CAN1_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/**CAN1 GPIO Configuration
PD0 ------> CAN1_RX
PD1 ------> CAN1_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_CAN1;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
}
else if(canHandle->Instance==CAN2)
{
/* CAN2 clock enable */
__HAL_RCC_CAN2_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**CAN2 GPIO Configuration
PB12 ------> CAN2_RX
PB6 ------> CAN2_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_CAN2;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
}
void HAL_CAN_MspDeInit(CAN_HandleTypeDef* canHandle)
{
if(canHandle->Instance==CAN1)
{
/* Peripheral clock disable */
__HAL_RCC_CAN1_CLK_DISABLE();
/**CAN1 GPIO Configuration
PD0 ------> CAN1_RX
PD1 ------> CAN1_TX
*/
HAL_GPIO_DeInit(GPIOD, GPIO_PIN_0|GPIO_PIN_2);
HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
}
else if(canHandle->Instance==CAN2)
{
__HAL_RCC_CAN2_CLK_DISABLE();
/**CAN2 GPIO Configuration
PB12 ------> CAN2_RX
PB6 ------> CAN2_TX
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_12|GPIO_PIN_6);
HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
}
}
int hw_can_init(void)
{
struct stm32_drv_can *drv_can;
struct can_configure config = CANDEFAULTCONFIG;
config.privmode = 0;
config.ticks = 50;
config.sndboxnumber = 3;
#ifdef RT_CAN_USING_HDR
config.maxhdr = 28;
#endif
#ifdef USING_BXCAN1
drv_can = &drv_can1;
drv_can->CanHandle.Instance = CAN1;
drv_can->CanHandle.pTxMsg = &drv_can->TxMessage;
drv_can->CanHandle.pRxMsg = &drv_can->RxMessage;
dev_can1.ops = &drv_can_ops;
dev_can1.config = config;
/* register CAN1 device */
rt_hw_can_register(&dev_can1, "can1",
&drv_can_ops,
drv_can);
#endif /* USING_BXCAN1 */
#ifdef USING_BXCAN2
drv_can = &drv_can2;
drv_can->CanHandle.Instance = CAN2;
drv_can->CanHandle.pTxMsg = &drv_can->TxMessage;
drv_can->CanHandle.pRxMsg = &drv_can->RxMessage;
dev_can2.ops = &drv_can_ops;
dev_can2.config = config;
/* register CAN2 device */
rt_hw_can_register(&dev_can2, "can2",
&drv_can_ops,
drv_can);
#endif /* USING_BXCAN2 */
return 0;
}
INIT_BOARD_EXPORT(hw_can_init);