4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 22:17:27 +08:00
Meco Man f58d3c5200 rt_device_write/read return data type as rt_ssize_t
rt_ssize_t can give negative error code, which follows the unix style correctly
2023-02-07 21:43:57 -05:00

334 lines
8.1 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-07-28 Tanek the first version
*/
#include <rtthread.h>
#include "usart.h"
#include "peri_driver.h"
#ifdef RT_USING_UART
#ifdef RT_USING_DEVICE
#include <rtdevice.h>
#endif
#define UART_RX_BUFSZ 8
/* LPC8XX uart driver */
struct lpc8xx_uart
{
struct rt_device parent;
struct rt_ringbuffer rx_rb;
LPC_USART_T * uart_base;
IRQn_Type uart_irq;
rt_uint8_t rx_buffer[UART_RX_BUFSZ];
};
#ifdef RT_USING_UART0
struct lpc8xx_uart uart0_device;
#endif
#ifdef RT_USING_UART1
struct lpc8xx_uart uart1_device;
#endif
#ifdef RT_USING_UART2
struct lpc8xx_uart uart2_device;
#endif
void uart_irq_handler(struct lpc8xx_uart* uart)
{
uint32_t status;
/* enter interrupt */
rt_interrupt_enter();
status = Chip_UART_GetStatus(uart->uart_base);
if(status & UART_STAT_RXRDY) // RXIRQ
{
rt_ringbuffer_putchar_force(&(uart->rx_rb), (rt_uint8_t)Chip_UART_ReadByte(uart->uart_base));
/* invoke callback */
if(uart->parent.rx_indicate != RT_NULL)
{
uart->parent.rx_indicate(&uart->parent, rt_ringbuffer_data_len(&uart->rx_rb));
}
}
/* leave interrupt */
rt_interrupt_leave();
}
#ifdef RT_USING_UART0
void UART0_IRQHandler(void)
{
uart_irq_handler(&uart0_device);
}
#endif
#ifdef RT_USING_UART1
void UART1_IRQHandler(void)
{
uart_irq_handler(&uart1_device);
}
#endif
#ifdef RT_USING_UART2
void UART2_IRQHandler(void)
{
uart_irq_handler(&uart2_device);
}
#endif
static void uart1_io_init(LPC_USART_T * uart_base)
{
/* Enable the clock to the Switch Matrix */
Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_SWM);
Chip_Clock_SetUARTClockDiv(1);
#ifdef RT_USING_UART0
if (uart_base == LPC_USART0)
{
Chip_SWM_MovablePinAssign(SWM_U0_TXD_O, 4);
Chip_SWM_MovablePinAssign(SWM_U0_RXD_I, 0);
}
else
#endif
#ifdef RT_USING_UART1
if (uart_base == LPC_USART1)
{
Chip_SWM_MovablePinAssign(SWM_U1_TXD_O, 4);
Chip_SWM_MovablePinAssign(SWM_U1_RXD_I, 0);
}
else
#endif
#ifdef RT_USING_UART2
if (uart_base == LPC_USART2)
{
Chip_SWM_MovablePinAssign(SWM_U2_TXD_O, 4);
Chip_SWM_MovablePinAssign(SWM_U2_RXD_I, 0);
}
else
#endif
{
RT_ASSERT((uart_base == USART0) || (uart_base == USART2) || (uart_base == USART2));
}
/* Disable the clock to the Switch Matrix to save power */
Chip_Clock_DisablePeriphClock(SYSCTL_CLOCK_SWM);
}
static void uart_ll_init(LPC_USART_T * uart)
{
Chip_UART_Init(uart);
Chip_UART_ConfigData(uart, UART_CFG_DATALEN_8 | UART_CFG_PARITY_NONE | UART_CFG_STOPLEN_1);
Chip_Clock_SetUSARTNBaseClockRate((115200 * 6 * 16), true);
Chip_UART_SetBaud(uart, 115200);
Chip_UART_Enable(uart);
Chip_UART_TXEnable(uart);
// we must NOT enable TX ready/idle IRQ before we want to write data
// otherwise the IRQs will happen as soon as Uart IRQ is enabled in NVIC
Chip_UART_IntDisable(uart, UART_INTEN_TXRDY | UART_INTEN_TXIDLE);
Chip_UART_IntEnable(uart, UART_INTEN_RXRDY);
}
static rt_err_t rt_uart_init (rt_device_t dev)
{
struct lpc8xx_uart* uart;
RT_ASSERT(dev != RT_NULL);
uart = (struct lpc8xx_uart *)dev;
uart1_io_init(uart->uart_base);
uart_ll_init(uart->uart_base);
return RT_EOK;
}
static rt_err_t rt_uart_open(rt_device_t dev, rt_uint16_t oflag)
{
struct lpc8xx_uart* uart;
RT_ASSERT(dev != RT_NULL);
uart = (struct lpc8xx_uart *)dev;
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* Enable the UART Interrupt */
NVIC_EnableIRQ(uart->uart_irq);
}
return RT_EOK;
}
static rt_err_t rt_uart_close(rt_device_t dev)
{
struct lpc8xx_uart* uart;
RT_ASSERT(dev != RT_NULL);
uart = (struct lpc8xx_uart *)dev;
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* Disable the UART Interrupt */
NVIC_DisableIRQ(uart->uart_irq);
}
return RT_EOK;
}
static rt_ssize_t rt_uart_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
/* interrupt receive */
rt_base_t level;
rt_size_t length;
struct lpc8xx_uart* uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct lpc8xx_uart *)dev;
RT_ASSERT(uart != RT_NULL);
/* disable interrupt */
level = rt_hw_interrupt_disable();
length = rt_ringbuffer_get(&(uart->rx_rb), buffer, size);
/* enable interrupt */
rt_hw_interrupt_enable(level);
return length;
}
static rt_ssize_t rt_uart_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
char *ptr = (char*) buffer;
struct lpc8xx_uart* uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct lpc8xx_uart *)dev;
if (dev->open_flag & RT_DEVICE_FLAG_STREAM)
{
/* stream mode */
while (size)
{
if (*ptr == '\n')
{
while (!(Chip_UART_GetStatus(uart->uart_base) & UART_STAT_TXRDY));
Chip_UART_SendByte(uart->uart_base, '\r');
}
while (!(Chip_UART_GetStatus(uart->uart_base) & UART_STAT_TXRDY));
Chip_UART_SendByte(uart->uart_base, *ptr);
ptr ++;
size --;
}
}
else
{
while (size)
{
while (!(Chip_UART_GetStatus(uart->uart_base) & UART_STAT_TXRDY));
Chip_UART_SendByte(uart->uart_base, *ptr);
ptr++;
size--;
}
}
return (rt_size_t) ptr - (rt_size_t) buffer;
}
int rt_hw_usart_init(void)
{
#ifdef RT_USING_UART0
{
struct lpc8xx_uart* uart;
/* get uart device */
uart = &uart1_device;
/* device initialization */
uart->parent.type = RT_Device_Class_Char;
uart->uart_base = LPC_USART0;
uart->uart_irq = UART0_IRQn;
rt_ringbuffer_init(&(uart->rx_rb), uart->rx_buffer, sizeof(uart->rx_buffer));
/* device interface */
uart->parent.init = rt_uart_init;
uart->parent.open = rt_uart_open;
uart->parent.close = rt_uart_close;
uart->parent.read = rt_uart_read;
uart->parent.write = rt_uart_write;
uart->parent.control = RT_NULL;
uart->parent.user_data = RT_NULL;
rt_device_register(&uart->parent, "uart0", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX);
}
#endif
#ifdef RT_USING_UART1
{
struct lpc8xx_uart* uart;
/* get uart device */
uart = &uart1_device;
/* device initialization */
uart->parent.type = RT_Device_Class_Char;
uart->uart_base = LPC_USART1;
uart->uart_irq = UART1_IRQn;
rt_ringbuffer_init(&(uart->rx_rb), uart->rx_buffer, sizeof(uart->rx_buffer));
/* device interface */
uart->parent.init = rt_uart_init;
uart->parent.open = rt_uart_open;
uart->parent.close = rt_uart_close;
uart->parent.read = rt_uart_read;
uart->parent.write = rt_uart_write;
uart->parent.control = RT_NULL;
uart->parent.user_data = RT_NULL;
rt_device_register(&uart->parent, "uart1", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX);
}
#endif
#ifdef RT_USING_UART2
{
struct lpc8xx_uart* uart;
/* get uart device */
uart = &uart2_device;
/* device initialization */
uart->parent.type = RT_Device_Class_Char;
uart->uart_base = LPC_USART1;
uart->uart_irq = UART2_IRQn;
rt_ringbuffer_init(&(uart->rx_rb), uart->rx_buffer, sizeof(uart->rx_buffer));
/* device interface */
uart->parent.init = rt_uart_init;
uart->parent.open = rt_uart_open;
uart->parent.close = rt_uart_close;
uart->parent.read = rt_uart_read;
uart->parent.write = rt_uart_write;
uart->parent.control = RT_NULL;
uart->parent.user_data = RT_NULL;
rt_device_register(&uart->parent, "uart2", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX);
}
#endif /* RT_USING_UART2 */
return 0;
}
INIT_BOARD_EXPORT(rt_hw_usart_init);
#endif /*RT_USING_UART*/