rt-thread-official/bsp/gd32450z-eval/Libraries/GD32F4xx_standard_peripheral/Source/gd32f4xx_adc.c

1203 lines
48 KiB
C

/*!
\file gd32f4xx_adc.c
\brief ADC driver
\version 2016-08-15, V1.0.0, firmware for GD32F4xx
\version 2018-12-12, V2.0.0, firmware for GD32F4xx
\version 2020-09-30, V2.1.0, firmware for GD32F4xx
*/
/*
Copyright (c) 2020, GigaDevice Semiconductor Inc.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
*/
#include "gd32f4xx_adc.h"
#define REGULAR_TRIGGER_MODE ((uint32_t)28U)
#define INSERTED_TRIGGER_MODE ((uint32_t)20U)
/* discontinuous mode macro*/
#define ADC_CHANNEL_LENGTH_SUBTRACT_ONE ((uint8_t)1U)
/* ADC regular channel macro */
#define ADC_REGULAR_CHANNEL_RANK_SIX ((uint8_t)6U)
#define ADC_REGULAR_CHANNEL_RANK_TWELVE ((uint8_t)12U)
#define ADC_REGULAR_CHANNEL_RANK_SIXTEEN ((uint8_t)16U)
#define ADC_REGULAR_CHANNEL_RANK_LENGTH ((uint8_t)5U)
/* ADC sampling time macro */
#define ADC_CHANNEL_SAMPLE_TEN ((uint8_t)10U)
#define ADC_CHANNEL_SAMPLE_EIGHTEEN ((uint8_t)18U)
#define ADC_CHANNEL_SAMPLE_LENGTH ((uint8_t)3U)
/* ADC inserted channel macro */
#define ADC_INSERTED_CHANNEL_RANK_LENGTH ((uint8_t)5U)
#define ADC_INSERTED_CHANNEL_SHIFT_LENGTH ((uint8_t)15U)
/* ADC inserted channel offset macro */
#define ADC_OFFSET_LENGTH ((uint8_t)3U)
#define ADC_OFFSET_SHIFT_LENGTH ((uint8_t)4U)
/*!
\brief reset ADC
\param[in] none
\param[out] none
\retval none
*/
void adc_deinit(void)
{
rcu_periph_reset_enable(RCU_ADCRST);
rcu_periph_reset_disable(RCU_ADCRST);
}
/*!
\brief configure the ADC clock for all the ADCs
\param[in] prescaler: configure ADCs prescaler ratio
only one parameter can be selected which is shown as below:
\arg ADC_ADCCK_PCLK2_DIV2: PCLK2 div2
\arg ADC_ADCCK_PCLK2_DIV4: PCLK2 div4
\arg ADC_ADCCK_PCLK2_DIV6: PCLK2 div6
\arg ADC_ADCCK_PCLK2_DIV8: PCLK2 div8
\arg ADC_ADCCK_HCLK_DIV5: HCLK div5
\arg ADC_ADCCK_HCLK_DIV6: HCLK div6
\arg ADC_ADCCK_HCLK_DIV10: HCLK div10
\arg ADC_ADCCK_HCLK_DIV20: HCLK div20
\param[out] none
\retval none
*/
void adc_clock_config(uint32_t prescaler)
{
ADC_SYNCCTL &= ~((uint32_t)ADC_SYNCCTL_ADCCK);
ADC_SYNCCTL |= (uint32_t) prescaler;
}
/*!
\brief enable or disable ADC special function
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] function: the function to config
only one parameter can be selected which is shown as below:
\arg ADC_SCAN_MODE: scan mode select
\arg ADC_INSERTED_CHANNEL_AUTO: inserted channel group convert automatically
\arg ADC_CONTINUOUS_MODE: continuous mode select
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void adc_special_function_config(uint32_t adc_periph , uint32_t function , ControlStatus newvalue)
{
if(newvalue){
if(0U != (function & ADC_SCAN_MODE)){
/* enable scan mode */
ADC_CTL0(adc_periph) |= ADC_SCAN_MODE;
}
if(0U != (function & ADC_INSERTED_CHANNEL_AUTO)){
/* enable inserted channel group convert automatically */
ADC_CTL0(adc_periph) |= ADC_INSERTED_CHANNEL_AUTO;
}
if(0U != (function & ADC_CONTINUOUS_MODE)){
/* enable continuous mode */
ADC_CTL1(adc_periph) |= ADC_CONTINUOUS_MODE;
}
}else{
if(0U != (function & ADC_SCAN_MODE)){
/* disable scan mode */
ADC_CTL0(adc_periph) &= ~ADC_SCAN_MODE;
}
if(0U != (function & ADC_INSERTED_CHANNEL_AUTO)){
/* disable inserted channel group convert automatically */
ADC_CTL0(adc_periph) &= ~ADC_INSERTED_CHANNEL_AUTO;
}
if(0U != (function & ADC_CONTINUOUS_MODE)){
/* disable continuous mode */
ADC_CTL1(adc_periph) &= ~ADC_CONTINUOUS_MODE;
}
}
}
/*!
\brief configure ADC data alignment
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] data_alignment: data alignment select
only one parameter can be selected which is shown as below:
\arg ADC_DATAALIGN_RIGHT: LSB alignment
\arg ADC_DATAALIGN_LEFT: MSB alignment
\param[out] none
\retval none
*/
void adc_data_alignment_config(uint32_t adc_periph , uint32_t data_alignment)
{
if(ADC_DATAALIGN_RIGHT != data_alignment){
/* MSB alignment */
ADC_CTL1(adc_periph) |= ADC_CTL1_DAL;
}else{
/* LSB alignment */
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DAL);
}
}
/*!
\brief enable ADC interface
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_enable(uint32_t adc_periph)
{
if(RESET == (ADC_CTL1(adc_periph) & ADC_CTL1_ADCON)){
/* enable ADC */
ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_ADCON;
}
}
/*!
\brief disable ADC interface
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_disable(uint32_t adc_periph)
{
/* disable ADC */
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ADCON);
}
/*!
\brief ADC calibration and reset calibration
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_calibration_enable(uint32_t adc_periph)
{
/* reset the selected ADC calibration registers */
ADC_CTL1(adc_periph) |= (uint32_t) ADC_CTL1_RSTCLB;
/* check the RSTCLB bit state */
while(RESET != (ADC_CTL1(adc_periph) & ADC_CTL1_RSTCLB)){
}
/* enable ADC calibration process */
ADC_CTL1(adc_periph) |= ADC_CTL1_CLB;
/* check the CLB bit state */
while(RESET != (ADC_CTL1(adc_periph) & ADC_CTL1_CLB)){
}
}
/*!
\brief configure temperature sensor and internal reference voltage channel or VBAT channel function
\param[in] function: temperature sensor and internal reference voltage channel or VBAT channel
only one parameter can be selected which is shown as below:
\arg ADC_VBAT_CHANNEL_SWITCH: channel 18 (1/4 voltate of external battery) switch of ADC0
\arg ADC_TEMP_VREF_CHANNEL_SWITCH: channel 16 (temperature sensor) and 17 (internal reference voltage) switch of ADC0
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void adc_channel_16_to_18(uint32_t function, ControlStatus newvalue)
{
if(newvalue){
if(RESET != (function & ADC_VBAT_CHANNEL_SWITCH)){
/* enable ADC0 Vbat channel */
ADC_SYNCCTL |= ADC_VBAT_CHANNEL_SWITCH;
}
if(RESET != (function & ADC_TEMP_VREF_CHANNEL_SWITCH)){
/* enable ADC0 Vref and Temperature channel */
ADC_SYNCCTL |= ADC_TEMP_VREF_CHANNEL_SWITCH;
}
}else{
if(RESET != (function & ADC_VBAT_CHANNEL_SWITCH)){
/* disable ADC0 Vbat channel */
ADC_SYNCCTL &= ~ADC_VBAT_CHANNEL_SWITCH;
}
if(RESET != (function & ADC_TEMP_VREF_CHANNEL_SWITCH)){
/* disable ADC0 Vref and Temperature channel */
ADC_SYNCCTL &= ~ADC_TEMP_VREF_CHANNEL_SWITCH;
}
}
}
/*!
\brief configure ADC resolution
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] resolution: ADC resolution
only one parameter can be selected which is shown as below:
\arg ADC_RESOLUTION_12B: 12-bit ADC resolution
\arg ADC_RESOLUTION_10B: 10-bit ADC resolution
\arg ADC_RESOLUTION_8B: 8-bit ADC resolution
\arg ADC_RESOLUTION_6B: 6-bit ADC resolution
\param[out] none
\retval none
*/
void adc_resolution_config(uint32_t adc_periph , uint32_t resolution)
{
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_DRES);
ADC_CTL0(adc_periph) |= (uint32_t)resolution;
}
/*!
\brief configure ADC oversample mode
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] mode: ADC oversampling mode
only one parameter can be selected which is shown as below:
\arg ADC_OVERSAMPLING_ALL_CONVERT: all oversampled conversions for a channel are done consecutively after a trigger
\arg ADC_OVERSAMPLING_ONE_CONVERT: each oversampled conversion for a channel needs a trigger
\param[in] shift: ADC oversampling shift
only one parameter can be selected which is shown as below:
\arg ADC_OVERSAMPLING_SHIFT_NONE: no oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_1B: 1-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_2B: 2-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_3B: 3-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_4B: 3-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_5B: 5-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_6B: 6-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_7B: 7-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_8B: 8-bit oversampling shift
\param[in] ratio: ADC oversampling ratio
only one parameter can be selected which is shown as below:
\arg ADC_OVERSAMPLING_RATIO_MUL2: oversampling ratio multiple 2
\arg ADC_OVERSAMPLING_RATIO_MUL4: oversampling ratio multiple 4
\arg ADC_OVERSAMPLING_RATIO_MUL8: oversampling ratio multiple 8
\arg ADC_OVERSAMPLING_RATIO_MUL16: oversampling ratio multiple 16
\arg ADC_OVERSAMPLING_RATIO_MUL32: oversampling ratio multiple 32
\arg ADC_OVERSAMPLING_RATIO_MUL64: oversampling ratio multiple 64
\arg ADC_OVERSAMPLING_RATIO_MUL128: oversampling ratio multiple 128
\arg ADC_OVERSAMPLING_RATIO_MUL256: oversampling ratio multiple 256
\param[out] none
\retval none
*/
void adc_oversample_mode_config(uint32_t adc_periph , uint32_t mode , uint16_t shift , uint8_t ratio)
{
if(ADC_OVERSAMPLING_ONE_CONVERT == mode){
ADC_OVSAMPCTL(adc_periph) |= (uint32_t)ADC_OVSAMPCTL_TOVS;
}else{
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_TOVS);
}
/* config the shift and ratio */
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)(ADC_OVSAMPCTL_OVSR | ADC_OVSAMPCTL_OVSS));
ADC_OVSAMPCTL(adc_periph) |= ((uint32_t)shift | (uint32_t)ratio);
}
/*!
\brief enable ADC oversample mode
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_oversample_mode_enable(uint32_t adc_periph)
{
ADC_OVSAMPCTL(adc_periph) |= ADC_OVSAMPCTL_OVSEN;
}
/*!
\brief disable ADC oversample mode
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_oversample_mode_disable(uint32_t adc_periph)
{
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_OVSEN);
}
/*!
\brief enable DMA request
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_dma_mode_enable(uint32_t adc_periph)
{
/* enable DMA request */
ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_DMA);
}
/*!
\brief disable DMA request
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_dma_mode_disable(uint32_t adc_periph)
{
/* disable DMA request */
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DMA);
}
/*!
\brief when DMA=1, the DMA engine issues a request at end of each regular conversion
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_dma_request_after_last_enable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_DDM);
}
/*!
\brief the DMA engine is disabled after the end of transfer signal from DMA controller is detected
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_dma_request_after_last_disable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DDM);
}
/*!
\brief configure ADC discontinuous mode
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
only one parameter can be selected which is shown as below:
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\arg ADC_CHANNEL_DISCON_DISABLE: disable discontinuous mode of regular & inserted channel
\param[in] length: number of conversions in discontinuous mode,the number can be 1..8
for regular channel ,the number has no effect for inserted channel
\param[out] none
\retval none
*/
void adc_discontinuous_mode_config(uint32_t adc_periph , uint8_t adc_channel_group , uint8_t length)
{
/* disable discontinuous mode of regular & inserted channel */
ADC_CTL0(adc_periph) &= ~((uint32_t)( ADC_CTL0_DISRC | ADC_CTL0_DISIC ));
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
/* config the number of conversions in discontinuous mode */
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_DISNUM);
if((length <= 8U) && (length >= 1U)){
ADC_CTL0(adc_periph) |= CTL0_DISNUM(((uint32_t)length - ADC_CHANNEL_LENGTH_SUBTRACT_ONE));
}
/* enable regular channel group discontinuous mode */
ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISRC;
break;
case ADC_INSERTED_CHANNEL:
/* enable inserted channel group discontinuous mode */
ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISIC;
break;
case ADC_CHANNEL_DISCON_DISABLE:
/* disable discontinuous mode of regular & inserted channel */
default:
break;
}
}
/*!
\brief configure the length of regular channel group or inserted channel group
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
only one parameter can be selected which is shown as below:
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] length: the length of the channel
regular channel 1-16
inserted channel 1-4
\param[out] none
\retval none
*/
void adc_channel_length_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t length)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
if((length >= 1U) && (length <= 16U)){
ADC_RSQ0(adc_periph) &= ~((uint32_t)ADC_RSQ0_RL);
ADC_RSQ0(adc_periph) |= RSQ0_RL((uint32_t)(length-ADC_CHANNEL_LENGTH_SUBTRACT_ONE));
}
break;
case ADC_INSERTED_CHANNEL:
if((length >= 1U) && (length <= 4U)){
ADC_ISQ(adc_periph) &= ~((uint32_t)ADC_ISQ_IL);
ADC_ISQ(adc_periph) |= ISQ_IL((uint32_t)(length-ADC_CHANNEL_LENGTH_SUBTRACT_ONE));
}
break;
default:
break;
}
}
/*!
\brief configure ADC regular channel
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] rank: the regular group sequencer rank,this parameter must be between 0 to 15
\param[in] adc_channel: the selected ADC channel
only one parameter can be selected which is shown as below:
\arg ADC_CHANNEL_x(x=0..18): ADC Channelx
\param[in] sample_time: the sample time value
only one parameter can be selected which is shown as below:
\arg ADC_SAMPLETIME_3: 3 cycles
\arg ADC_SAMPLETIME_15: 15 cycles
\arg ADC_SAMPLETIME_28: 28 cycles
\arg ADC_SAMPLETIME_56: 56 cycles
\arg ADC_SAMPLETIME_84: 84 cycles
\arg ADC_SAMPLETIME_112: 112 cycles
\arg ADC_SAMPLETIME_144: 144 cycles
\arg ADC_SAMPLETIME_480: 480 cycles
\param[out] none
\retval none
*/
void adc_regular_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time)
{
uint32_t rsq,sampt;
/* ADC regular sequence config */
if(rank < ADC_REGULAR_CHANNEL_RANK_SIX){
/* the regular group sequence rank is smaller than six */
rsq = ADC_RSQ2(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (ADC_REGULAR_CHANNEL_RANK_LENGTH*rank)));
/* the channel number is written to these bits to select a channel as the nth conversion in the regular channel group */
rsq |= ((uint32_t)adc_channel << (ADC_REGULAR_CHANNEL_RANK_LENGTH*rank));
ADC_RSQ2(adc_periph) = rsq;
}else if(rank < ADC_REGULAR_CHANNEL_RANK_TWELVE){
/* the regular group sequence rank is smaller than twelve */
rsq = ADC_RSQ1(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (ADC_REGULAR_CHANNEL_RANK_LENGTH*(rank-ADC_REGULAR_CHANNEL_RANK_SIX))));
/* the channel number is written to these bits to select a channel as the nth conversion in the regular channel group */
rsq |= ((uint32_t)adc_channel << (ADC_REGULAR_CHANNEL_RANK_LENGTH*(rank-ADC_REGULAR_CHANNEL_RANK_SIX)));
ADC_RSQ1(adc_periph) = rsq;
}else if(rank < ADC_REGULAR_CHANNEL_RANK_SIXTEEN){
/* the regular group sequence rank is smaller than sixteen */
rsq = ADC_RSQ0(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (ADC_REGULAR_CHANNEL_RANK_LENGTH*(rank-ADC_REGULAR_CHANNEL_RANK_TWELVE))));
/* the channel number is written to these bits to select a channel as the nth conversion in the regular channel group */
rsq |= ((uint32_t)adc_channel << (ADC_REGULAR_CHANNEL_RANK_LENGTH*(rank-ADC_REGULAR_CHANNEL_RANK_TWELVE)));
ADC_RSQ0(adc_periph) = rsq;
}else{
}
/* ADC sampling time config */
if(adc_channel < ADC_CHANNEL_SAMPLE_TEN){
/* the regular group sequence rank is smaller than ten */
sampt = ADC_SAMPT1(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (ADC_CHANNEL_SAMPLE_LENGTH*adc_channel)));
/* channel sample time set*/
sampt |= (uint32_t)(sample_time << (ADC_CHANNEL_SAMPLE_LENGTH*adc_channel));
ADC_SAMPT1(adc_periph) = sampt;
}else if(adc_channel <= ADC_CHANNEL_SAMPLE_EIGHTEEN){
/* the regular group sequence rank is smaller than eighteen */
sampt = ADC_SAMPT0(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (ADC_CHANNEL_SAMPLE_LENGTH*(adc_channel-ADC_CHANNEL_SAMPLE_TEN))));
/* channel sample time set*/
sampt |= (uint32_t)(sample_time << (ADC_CHANNEL_SAMPLE_LENGTH*(adc_channel-ADC_CHANNEL_SAMPLE_TEN)));
ADC_SAMPT0(adc_periph) = sampt;
}else{
}
}
/*!
\brief configure ADC inserted channel
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] rank: the inserted group sequencer rank,this parameter must be between 0 to 3
\param[in] adc_channel: the selected ADC channel
only one parameter can be selected which is shown as below:
\arg ADC_CHANNEL_x(x=0..18): ADC Channelx
\param[in] sample_time: The sample time value
only one parameter can be selected which is shown as below:
\arg ADC_SAMPLETIME_3: 3 cycles
\arg ADC_SAMPLETIME_15: 15 cycles
\arg ADC_SAMPLETIME_28: 28 cycles
\arg ADC_SAMPLETIME_56: 56 cycles
\arg ADC_SAMPLETIME_84: 84 cycles
\arg ADC_SAMPLETIME_112: 112 cycles
\arg ADC_SAMPLETIME_144: 144 cycles
\arg ADC_SAMPLETIME_480: 480 cycles
\param[out] none
\retval none
*/
void adc_inserted_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time)
{
uint8_t inserted_length;
uint32_t isq,sampt;
/* get inserted channel group length */
inserted_length = (uint8_t)GET_BITS(ADC_ISQ(adc_periph) , 20U , 21U);
/* the channel number is written to these bits to select a channel as the nth conversion in the inserted channel group */
if(rank < 4U){
isq = ADC_ISQ(adc_periph);
isq &= ~((uint32_t)(ADC_ISQ_ISQN << (ADC_INSERTED_CHANNEL_SHIFT_LENGTH-(inserted_length-rank)*ADC_INSERTED_CHANNEL_RANK_LENGTH)));
isq |= ((uint32_t)adc_channel << (ADC_INSERTED_CHANNEL_SHIFT_LENGTH-(inserted_length-rank)*ADC_INSERTED_CHANNEL_RANK_LENGTH));
ADC_ISQ(adc_periph) = isq;
}
/* ADC sampling time config */
if(adc_channel < ADC_CHANNEL_SAMPLE_TEN){
/* the inserted group sequence rank is smaller than ten */
sampt = ADC_SAMPT1(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (ADC_CHANNEL_SAMPLE_LENGTH*adc_channel)));
/* channel sample time set*/
sampt |= (uint32_t) sample_time << (ADC_CHANNEL_SAMPLE_LENGTH*adc_channel);
ADC_SAMPT1(adc_periph) = sampt;
}else if(adc_channel <= ADC_CHANNEL_SAMPLE_EIGHTEEN){
/* the inserted group sequence rank is smaller than eighteen */
sampt = ADC_SAMPT0(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (ADC_CHANNEL_SAMPLE_LENGTH*(adc_channel - ADC_CHANNEL_SAMPLE_TEN))));
/* channel sample time set*/
sampt |= ((uint32_t)sample_time << (ADC_CHANNEL_SAMPLE_LENGTH*(adc_channel - ADC_CHANNEL_SAMPLE_TEN)));
ADC_SAMPT0(adc_periph) = sampt;
}else{
}
}
/*!
\brief configure ADC inserted channel offset
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] inserted_channel : insert channel select
only one parameter can be selected which is shown as below:
\arg ADC_INSERTED_CHANNEL_0: inserted channel0
\arg ADC_INSERTED_CHANNEL_1: inserted channel1
\arg ADC_INSERTED_CHANNEL_2: inserted channel2
\arg ADC_INSERTED_CHANNEL_3: inserted channel3
\param[in] offset : the offset data
\param[out] none
\retval none
*/
void adc_inserted_channel_offset_config(uint32_t adc_periph , uint8_t inserted_channel , uint16_t offset)
{
uint8_t inserted_length;
uint32_t num = 0U;
inserted_length = (uint8_t)GET_BITS(ADC_ISQ(adc_periph) , 20U , 21U);
num = ((uint32_t)ADC_OFFSET_LENGTH - ((uint32_t)inserted_length - (uint32_t)inserted_channel));
if(num <= ADC_OFFSET_LENGTH){
/* calculate the offset of the register */
num = num * ADC_OFFSET_SHIFT_LENGTH;
/* config the offset of the selected channels */
REG32((adc_periph) + 0x14U + num) = IOFFX_IOFF((uint32_t)offset);
}
}
/*!
\brief configure ADC external trigger source
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
only one parameter can be selected which is shown as below:
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] external_trigger_source: regular or inserted group trigger source
for regular channel:
only one parameter can be selected which is shown as below:
\arg ADC_EXTTRIG_REGULAR_T0_CH0: external trigger timer 0 CC0 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T0_CH1: external trigger timer 0 CC1 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T0_CH2: external trigger timer 0 CC2 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T1_CH1: external trigger timer 1 CC1 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T1_CH2: external trigger timer 1 CC2 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T1_CH3: external trigger timer 1 CC3 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T1_TRGO: external trigger timer 1 TRGO event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T2_CH0 : external trigger timer 2 CC0 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T2_TRGO : external trigger timer 2 TRGO event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T3_CH3: external trigger timer 3 CC3 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T4_CH0: external trigger timer 4 CC0 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T4_CH1: external trigger timer 4 CC1 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T4_CH2: external trigger timer 4 CC2 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T7_CH0: external trigger timer 7 CC0 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T7_TRGO: external trigger timer 7 TRGO event select for regular channel
\arg ADC_EXTTRIG_REGULAR_EXTI_11: external trigger extiline 11 select for regular channel
for inserted channel:
only one parameter can be selected which is shown as below:
\arg ADC_EXTTRIG_INSERTED_T0_CH3: timer0 capture compare 3
\arg ADC_EXTTRIG_INSERTED_T0_TRGO: timer0 TRGO event
\arg ADC_EXTTRIG_INSERTED_T1_CH0: timer1 capture compare 0
\arg ADC_EXTTRIG_INSERTED_T1_TRGO: timer1 TRGO event
\arg ADC_EXTTRIG_INSERTED_T2_CH1: timer2 capture compare 1
\arg ADC_EXTTRIG_INSERTED_T2_CH3: timer2 capture compare 3
\arg ADC_EXTTRIG_INSERTED_T3_CH0: timer3 capture compare 0
\arg ADC_EXTTRIG_INSERTED_T3_CH1: timer3 capture compare 1
\arg ADC_EXTTRIG_INSERTED_T3_CH2: timer3 capture compare 2
\arg ADC_EXTTRIG_INSERTED_T3_TRGO: timer3 capture compare TRGO
\arg ADC_EXTTRIG_INSERTED_T4_CH3: timer4 capture compare 3
\arg ADC_EXTTRIG_INSERTED_T4_TRGO: timer4 capture compare TRGO
\arg ADC_EXTTRIG_INSERTED_T7_CH1: timer7 capture compare 1
\arg ADC_EXTTRIG_INSERTED_T7_CH2: timer7 capture compare 2
\arg ADC_EXTTRIG_INSERTED_T7_CH3: timer7 capture compare 3
\arg ADC_EXTTRIG_INSERTED_EXTI_15: external interrupt line 15
\param[out] none
\retval none
*/
void adc_external_trigger_source_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t external_trigger_source)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
/* configure ADC regular group external trigger source */
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSRC);
ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source;
break;
case ADC_INSERTED_CHANNEL:
/* configure ADC inserted group external trigger source */
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSIC);
ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source;
break;
default:
break;
}
}
/*!
\brief enable ADC external trigger
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
only one parameter can be selected which is shown as below:
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] trigger_mode: external trigger mode
only one parameter can be selected which is shown as below:
\arg EXTERNAL_TRIGGER_DISABLE: external trigger disable
\arg EXTERNAL_TRIGGER_RISING: rising edge of external trigger
\arg EXTERNAL_TRIGGER_FALLING: falling edge of external trigger
\arg EXTERNAL_TRIGGER_RISING_FALLING: rising and falling edge of external trigger
\param[out] none
\retval none
*/
void adc_external_trigger_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t trigger_mode)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
/* configure ADC regular channel group external trigger mode */
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETMRC);
ADC_CTL1(adc_periph) |= (uint32_t) (trigger_mode << REGULAR_TRIGGER_MODE);
break;
case ADC_INSERTED_CHANNEL:
/* configure ADC inserted channel group external trigger mode */
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETMIC);
ADC_CTL1(adc_periph) |= (uint32_t) (trigger_mode << INSERTED_TRIGGER_MODE);
break;
default:
break;
}
}
/*!
\brief enable ADC software trigger
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
only one parameter can be selected which is shown as below:
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[out] none
\retval none
*/
void adc_software_trigger_enable(uint32_t adc_periph , uint8_t adc_channel_group)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
/* enable ADC regular channel group software trigger */
ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_SWRCST;
break;
case ADC_INSERTED_CHANNEL:
/* enable ADC inserted channel group software trigger */
ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_SWICST;
break;
default:
break;
}
}
/*!
\brief configure end of conversion mode
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] end_selection: end of conversion mode
only one parameter can be selected which is shown as below:
\arg ADC_EOC_SET_SEQUENCE: only at the end of a sequence of regular conversions, the EOC bit is set.Overflow detection is disabled unless DMA=1.
\arg ADC_EOC_SET_CONVERSION: at the end of each regular conversion, the EOC bit is set.Overflow is detected automatically.
\param[out] none
\retval none
*/
void adc_end_of_conversion_config(uint32_t adc_periph , uint8_t end_selection)
{
switch(end_selection){
case ADC_EOC_SET_SEQUENCE:
/* only at the end of a sequence of regular conversions, the EOC bit is set */
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_EOCM);
break;
case ADC_EOC_SET_CONVERSION:
/* at the end of each regular conversion, the EOC bit is set.Overflow is detected automatically */
ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_EOCM);
break;
default:
break;
}
}
/*!
\brief read ADC regular group data register
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] none
\param[out] none
\retval the conversion value
*/
uint16_t adc_regular_data_read(uint32_t adc_periph)
{
return (uint16_t)(ADC_RDATA(adc_periph));
}
/*!
\brief read ADC inserted group data register
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] inserted_channel : insert channel select
only one parameter can be selected which is shown as below:
\arg ADC_INSERTED_CHANNEL_0: inserted Channel0
\arg ADC_INSERTED_CHANNEL_1: inserted channel1
\arg ADC_INSERTED_CHANNEL_2: inserted Channel2
\arg ADC_INSERTED_CHANNEL_3: inserted Channel3
\param[out] none
\retval the conversion value
*/
uint16_t adc_inserted_data_read(uint32_t adc_periph , uint8_t inserted_channel)
{
uint32_t idata;
/* read the data of the selected channel */
switch(inserted_channel){
case ADC_INSERTED_CHANNEL_0:
/* read the data of channel 0 */
idata = ADC_IDATA0(adc_periph);
break;
case ADC_INSERTED_CHANNEL_1:
/* read the data of channel 1 */
idata = ADC_IDATA1(adc_periph);
break;
case ADC_INSERTED_CHANNEL_2:
/* read the data of channel 2 */
idata = ADC_IDATA2(adc_periph);
break;
case ADC_INSERTED_CHANNEL_3:
/* read the data of channel 3 */
idata = ADC_IDATA3(adc_periph);
break;
default:
idata = 0U;
break;
}
return (uint16_t)idata;
}
/*!
\brief disable ADC analog watchdog single channel
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_watchdog_single_channel_disable(uint32_t adc_periph )
{
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDSC);
}
/*!
\brief enable ADC analog watchdog single channel
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel: the selected ADC channel
only one parameter can be selected which is shown as below:
\arg ADC_CHANNEL_x: ADC Channelx(x=0..18)
\param[out] none
\retval none
*/
void adc_watchdog_single_channel_enable(uint32_t adc_periph , uint8_t adc_channel)
{
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDCHSEL);
/* analog watchdog channel select */
ADC_CTL0(adc_periph) |= (uint32_t)adc_channel;
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_WDSC;
}
/*!
\brief configure ADC analog watchdog group channel
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: the channel group use analog watchdog
only one parameter can be selected which is shown as below:
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\arg ADC_REGULAR_INSERTED_CHANNEL: both regular and inserted group
\param[out] none
\retval none
*/
void adc_watchdog_group_channel_enable(uint32_t adc_periph , uint8_t adc_channel_group)
{
ADC_CTL0(adc_periph) &= ~((uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC));
/* select the group */
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
/* regular channel analog watchdog enable */
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_RWDEN;
break;
case ADC_INSERTED_CHANNEL:
/* inserted channel analog watchdog enable */
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_IWDEN;
break;
case ADC_REGULAR_INSERTED_CHANNEL:
/* regular and inserted channel analog watchdog enable */
ADC_CTL0(adc_periph) |= (uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN);
break;
default:
break;
}
}
/*!
\brief disable ADC analog watchdog
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: the channel group use analog watchdog
only one parameter can be selected which is shown as below:
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\arg ADC_REGULAR_INSERTED_CHANNEL: both regular and inserted group
\param[out] none
\retval none
*/
void adc_watchdog_disable(uint32_t adc_periph , uint8_t adc_channel_group)
{
/* select the group */
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
/* disable ADC analog watchdog regular channel group */
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_RWDEN);
break;
case ADC_INSERTED_CHANNEL:
/* disable ADC analog watchdog inserted channel group */
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_IWDEN);
break;
case ADC_REGULAR_INSERTED_CHANNEL:
/* disable ADC analog watchdog regular and inserted channel group */
ADC_CTL0(adc_periph) &= ~((uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN));
break;
default:
break;
}
}
/*!
\brief configure ADC analog watchdog threshold
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] low_threshold: analog watchdog low threshold,0..4095
\param[in] high_threshold: analog watchdog high threshold,0..4095
\param[out] none
\retval none
*/
void adc_watchdog_threshold_config(uint32_t adc_periph , uint16_t low_threshold , uint16_t high_threshold)
{
/* configure ADC analog watchdog low threshold */
ADC_WDLT(adc_periph) = (uint32_t)WDLT_WDLT(low_threshold);
/* configure ADC analog watchdog high threshold */
ADC_WDHT(adc_periph) = (uint32_t)WDHT_WDHT(high_threshold);
}
/*!
\brief get the ADC flag bits
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_flag: the adc flag bits
only one parameter can be selected which is shown as below:
\arg ADC_FLAG_WDE: analog watchdog event flag
\arg ADC_FLAG_EOC: end of group conversion flag
\arg ADC_FLAG_EOIC: end of inserted group conversion flag
\arg ADC_FLAG_STIC: start flag of inserted channel group
\arg ADC_FLAG_STRC: start flag of regular channel group
\arg ADC_FLAG_ROVF: regular data register overflow flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus adc_flag_get(uint32_t adc_periph , uint32_t adc_flag)
{
FlagStatus reval = RESET;
if(ADC_STAT(adc_periph) & adc_flag){
reval = SET;
}
return reval;
}
/*!
\brief clear the ADC flag bits
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_flag: the adc flag bits
only one parameter can be selected which is shown as below:
\arg ADC_FLAG_WDE: analog watchdog event flag
\arg ADC_FLAG_EOC: end of group conversion flag
\arg ADC_FLAG_EOIC: end of inserted group conversion flag
\arg ADC_FLAG_STIC: start flag of inserted channel group
\arg ADC_FLAG_STRC: start flag of regular channel group
\arg ADC_FLAG_ROVF: regular data register overflow flag
\param[out] none
\retval none
*/
void adc_flag_clear(uint32_t adc_periph , uint32_t adc_flag)
{
ADC_STAT(adc_periph) &= ~((uint32_t)adc_flag);
}
/*!
\brief get the bit state of ADCx software start conversion
\param[in] adc_periph: ADCx, x=0,1,2 only one among these parameters can be selected
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus adc_regular_software_startconv_flag_get(uint32_t adc_periph)
{
FlagStatus reval = RESET;
if((uint32_t)RESET != (ADC_STAT(adc_periph) & ADC_STAT_STRC)){
reval = SET;
}
return reval;
}
/*!
\brief get the bit state of ADCx software inserted channel start conversion
\param[in] adc_periph: ADCx, x=0,1,2 only one among these parameters can be selected
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus adc_inserted_software_startconv_flag_get(uint32_t adc_periph)
{
FlagStatus reval = RESET;
if((uint32_t)RESET != (ADC_STAT(adc_periph) & ADC_STAT_STIC)){
reval = SET;
}
return reval;
}
/*!
\brief get the ADC interrupt bits
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_interrupt: the adc interrupt bits
only one parameter can be selected which is shown as below:
\arg ADC_INT_FLAG_WDE: analog watchdog interrupt
\arg ADC_INT_FLAG_EOC: end of group conversion interrupt
\arg ADC_INT_FLAG_EOIC: end of inserted group conversion interrupt
\arg ADC_INT_FLAG_ROVF: regular data register overflow interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus adc_interrupt_flag_get(uint32_t adc_periph , uint32_t adc_interrupt)
{
FlagStatus interrupt_flag = RESET;
uint32_t state;
/* check the interrupt bits */
switch(adc_interrupt){
case ADC_INT_FLAG_WDE:
/* get the ADC analog watchdog interrupt bits */
state = ADC_STAT(adc_periph) & ADC_STAT_WDE;
if((ADC_CTL0(adc_periph) & ADC_CTL0_WDEIE) && state){
interrupt_flag = SET;
}
break;
case ADC_INT_FLAG_EOC:
/* get the ADC end of group conversion interrupt bits */
state = ADC_STAT(adc_periph) & ADC_STAT_EOC;
if((ADC_CTL0(adc_periph) & ADC_CTL0_EOCIE) && state){
interrupt_flag = SET;
}
break;
case ADC_INT_FLAG_EOIC:
/* get the ADC end of inserted group conversion interrupt bits */
state = ADC_STAT(adc_periph) & ADC_STAT_EOIC;
if((ADC_CTL0(adc_periph) & ADC_CTL0_EOICIE) && state){
interrupt_flag = SET;
}
break;
case ADC_INT_FLAG_ROVF:
/* get the ADC regular data register overflow interrupt bits */
state = ADC_STAT(adc_periph) & ADC_STAT_ROVF;
if((ADC_CTL0(adc_periph) & ADC_CTL0_ROVFIE) && state){
interrupt_flag = SET;
}
break;
default:
break;
}
return interrupt_flag;
}
/*!
\brief clear the ADC flag
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_interrupt: the adc status flag
only one parameter can be selected which is shown as below:
\arg ADC_INT_FLAG_WDE: analog watchdog interrupt
\arg ADC_INT_FLAG_EOC: end of group conversion interrupt
\arg ADC_INT_FLAG_EOIC: end of inserted group conversion interrupt
\arg ADC_INT_FLAG_ROVF: regular data register overflow interrupt
\param[out] none
\retval none
*/
void adc_interrupt_flag_clear(uint32_t adc_periph , uint32_t adc_interrupt)
{
ADC_STAT(adc_periph) &= ~((uint32_t)adc_interrupt);
}
/*!
\brief enable ADC interrupt
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_interrupt: the adc interrupt flag
only one parameter can be selected which is shown as below:
\arg ADC_INT_WDE: analog watchdog interrupt flag
\arg ADC_INT_EOC: end of group conversion interrupt flag
\arg ADC_INT_EOIC: end of inserted group conversion interrupt flag
\arg ADC_INT_ROVF: regular data register overflow interrupt flag
\param[out] none
\retval none
*/
void adc_interrupt_enable(uint32_t adc_periph , uint32_t adc_interrupt)
{
switch(adc_interrupt){
case ADC_INT_WDE:
/* enable analog watchdog interrupt */
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_WDEIE;
break;
case ADC_INT_EOC:
/* enable end of group conversion interrupt */
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOCIE;
break;
case ADC_INT_EOIC:
/* enable end of inserted group conversion interrupt */
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOICIE;
break;
case ADC_INT_ROVF:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_ROVFIE;
break;
default:
break;
}
}
/*!
\brief disable ADC interrupt
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_flag: the adc interrupt flag
only one parameter can be selected which is shown as below:
\arg ADC_INT_WDE: analog watchdog interrupt flag
\arg ADC_INT_EOC: end of group conversion interrupt flag
\arg ADC_INT_EOIC: end of inserted group conversion interrupt flag
\arg ADC_INT_ROVF: regular data register overflow interrupt flag
\param[out] none
\retval none
*/
void adc_interrupt_disable(uint32_t adc_periph , uint32_t adc_interrupt)
{
switch(adc_interrupt){
/* select the interrupt source */
case ADC_INT_WDE:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDEIE);
break;
case ADC_INT_EOC:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_EOCIE);
break;
case ADC_INT_EOIC:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_EOICIE);
break;
case ADC_INT_ROVF:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_ROVFIE);
break;
default:
break;
}
}
/*!
\brief configure the ADC sync mode
\param[in] sync_mode: ADC sync mode
only one parameter can be selected which is shown as below:
\arg ADC_SYNC_MODE_INDEPENDENT: all the ADCs work independently
\arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL: ADC0 and ADC1 work in combined regular parallel & inserted parallel mode
\arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_ROTATION: ADC0 and ADC1 work in combined regular parallel & trigger rotation mode
\arg ADC_DAUL_INSERTED_PARALLEL: ADC0 and ADC1 work in inserted parallel mode
\arg ADC_DAUL_REGULAL_PARALLEL: ADC0 and ADC1 work in regular parallel mode
\arg ADC_DAUL_REGULAL_FOLLOW_UP: ADC0 and ADC1 work in follow-up mode
\arg ADC_DAUL_INSERTED_TRRIGGER_ROTATION: ADC0 and ADC1 work in trigger rotation mode
\arg ADC_ALL_REGULAL_PARALLEL_INSERTED_PARALLEL: all ADCs work in combined regular parallel & inserted parallel mode
\arg ADC_ALL_REGULAL_PARALLEL_INSERTED_ROTATION: all ADCs work in combined regular parallel & trigger rotation mode
\arg ADC_ALL_INSERTED_PARALLEL: all ADCs work in inserted parallel mode
\arg ADC_ALL_REGULAL_PARALLEL: all ADCs work in regular parallel mode
\arg ADC_ALL_REGULAL_FOLLOW_UP: all ADCs work in follow-up mode
\arg ADC_ALL_INSERTED_TRRIGGER_ROTATION: all ADCs work in trigger rotation mode
\param[out] none
\retval none
*/
void adc_sync_mode_config(uint32_t sync_mode)
{
ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCM);
ADC_SYNCCTL |= sync_mode;
}
/*!
\brief configure the delay between 2 sampling phases in ADC sync modes
\param[in] sample_delay: the delay between 2 sampling phases in ADC sync modes
only one parameter can be selected which is shown as below:
\arg ADC_SYNC_DELAY_xCYCLE: x=5..20,the delay between 2 sampling phases in ADC sync modes is x ADC clock cycles
\param[out] none
\retval none
*/
void adc_sync_delay_config(uint32_t sample_delay)
{
ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDLY);
ADC_SYNCCTL |= sample_delay;
}
/*!
\brief configure ADC sync DMA mode selection
\param[in] dma_mode: ADC sync DMA mode
only one parameter can be selected which is shown as below:
\arg ADC_SYNC_DMA_DISABLE: ADC sync DMA disabled
\arg ADC_SYNC_DMA_MODE0: ADC sync DMA mode 0
\arg ADC_SYNC_DMA_MODE1: ADC sync DMA mode 1
\param[out] none
\retval none
*/
void adc_sync_dma_config(uint32_t dma_mode )
{
ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDMA);
ADC_SYNCCTL |= dma_mode;
}
/*!
\brief configure ADC sync DMA engine is disabled after the end of transfer signal from DMA controller is detected
\param[in] none
\param[out] none
\retval none
*/
void adc_sync_dma_request_after_last_enable(void)
{
ADC_SYNCCTL |= ADC_SYNCCTL_SYNCDDM;
}
/*!
\brief configure ADC sync DMA engine issues requests according to the SYNCDMA bits
\param[in] none
\param[out] none
\retval none
*/
void adc_sync_dma_request_after_last_disable(void)
{
ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDDM);
}
/*!
\brief read ADC sync regular data register
\param[in] none
\param[out] none
\retval sync regular data
*/
uint32_t adc_sync_regular_data_read(void)
{
return (uint32_t)ADC_SYNCDATA;
}