rt-thread-official/bsp/hpmicro/hpm6300evk/board/board.c

750 lines
22 KiB
C

/*
* Copyright (c) 2022-2023 HPMicro
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include "board.h"
#include "hpm_uart_drv.h"
#include "hpm_gptmr_drv.h"
#include "hpm_lcdc_drv.h"
#include "hpm_i2c_drv.h"
#include "hpm_gpio_drv.h"
#include "hpm_femc_drv.h"
#include "pinmux.h"
#include "hpm_pmp_drv.h"
#include "assert.h"
#include "hpm_clock_drv.h"
#include "hpm_sysctl_drv.h"
#include "hpm_sdxc_drv.h"
#include "hpm_pwm_drv.h"
#include "hpm_trgm_drv.h"
#include "hpm_pllctlv2_drv.h"
#include "hpm_enet_drv.h"
#include "hpm_pcfg_drv.h"
#include "hpm_debug_console.h"
static board_timer_cb timer_cb;
ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag;
/**
* @brief FLASH configuration option definitions:
* option[0]:
* [31:16] 0xfcf9 - FLASH configuration option tag
* [15:4] 0 - Reserved
* [3:0] option words (exclude option[0])
* option[1]:
* [31:28] Flash probe type
* 0 - SFDP SDR / 1 - SFDP DDR
* 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
* 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
* 6 - OctaBus DDR (SPI -> OPI DDR)
* 8 - Xccela DDR (SPI -> OPI DDR)
* 10 - EcoXiP DDR (SPI -> OPI DDR)
* [27:24] Command Pads after Power-on Reset
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [23:20] Command Pads after Configuring FLASH
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
* 0 - Not needed
* 1 - QE bit is at bit 6 in Status Register 1
* 2 - QE bit is at bit1 in Status Register 2
* 3 - QE bit is at bit7 in Status Register 2
* 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
* [15:8] Dummy cycles
* 0 - Auto-probed / detected / default value
* Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
* [7:4] Misc.
* 0 - Not used
* 1 - SPI mode
* 2 - Internal loopback
* 3 - External DQS
* [3:0] Frequency option
* 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
*
* option[2] (Effective only if the bit[3:0] in option[0] > 1)
* [31:20] Reserved
* [19:16] IO voltage
* 0 - 3V / 1 - 1.8V
* [15:12] Pin group
* 0 - 1st group / 1 - 2nd group
* [11:8] Connection selection
* 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
* [7:0] Drive Strength
* 0 - Default value
* option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
* JESD216)
* [31:16] reserved
* [15:12] Sector Erase Command Option, not required here
* [11:8] Sector Size Option, not required here
* [7:0] Flash Size Option
* 0 - 4MB / 1 - 8MB / 2 - 16MB
*/
#if defined(FLASH_XIP) && FLASH_XIP
__attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
#endif
#if defined(FLASH_UF2) && FLASH_UF2
ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
#endif
void board_init_console(void)
{
#if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
console_config_t cfg;
/* Configure the UART clock to 24MHz */
clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
cfg.type = BOARD_CONSOLE_TYPE;
cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
init_uart_pins((UART_Type *) cfg.base);
if (status_success != console_init(&cfg)) {
/* failed to initialize debug console */
while (1) {
}
}
#else
while(1);
#endif
}
void board_print_clock_freq(void)
{
printf("==============================\n");
printf(" %s clock summary\n", BOARD_NAME);
printf("==============================\n");
printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
printf("axi:\t\t %luHz\n", clock_get_frequency(clock_axi));
printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
printf("==============================\n");
}
void board_init_uart(UART_Type *ptr)
{
init_uart_pins(ptr);
}
void board_init_ahb(void)
{
clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2);/*200m hz*/
}
void board_print_banner(void)
{
const uint8_t banner[] = {"\n\
----------------------------------------------------------------------\n\
$$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
$$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
$$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
$$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
$$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
$$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
$$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
\\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
----------------------------------------------------------------------\n"};
printf("%s", banner);
}
void board_ungate_mchtmr_at_lp_mode(void)
{
/* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
}
void board_init(void)
{
pcfg_dcdc_set_voltage(HPM_PCFG, 1100);
board_init_clock();
board_init_console();
board_init_pmp();
board_init_ahb();
#if BOARD_SHOW_CLOCK
board_print_clock_freq();
#endif
#if BOARD_SHOW_BANNER
board_print_banner();
#endif
}
void board_init_sdram_pins(void)
{
init_sdram_pins();
}
uint32_t board_init_femc_clock(void)
{
clock_add_to_group(clock_femc, 0);
/* Configure the SDRAM to 166MHz */
clock_set_source_divider(clock_femc, clk_src_pll0_clk1, 2U);
return clock_get_frequency(clock_femc);
}
void board_delay_us(uint32_t us)
{
clock_cpu_delay_us(us);
}
void board_delay_ms(uint32_t ms)
{
clock_cpu_delay_ms(ms);
}
void board_timer_isr(void)
{
if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
timer_cb();
}
}
SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
void board_timer_create(uint32_t ms, board_timer_cb cb)
{
uint32_t gptmr_freq;
gptmr_channel_config_t config;
timer_cb = cb;
gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
config.reload = gptmr_freq / 1000 * ms;
gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
}
void board_i2c_bus_clear(I2C_Type *ptr)
{
init_i2c_pins_as_gpio(ptr);
}
void board_init_i2c(I2C_Type *ptr)
{
}
uint32_t board_init_spi_clock(SPI_Type *ptr)
{
if (ptr == HPM_SPI3) {
/* SPI3 clock configure */
clock_add_to_group(clock_spi3, 0);
clock_set_source_divider(clock_spi3, clk_src_osc24m, 1U);
return clock_get_frequency(clock_spi3);
}
return 0;
}
void board_init_gpio_pins(void)
{
init_gpio_pins();
}
void board_init_spi_pins(SPI_Type *ptr)
{
init_spi_pins(ptr);
}
void board_init_led_pins(void)
{
init_led_pins();
gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
}
void board_led_toggle(void)
{
gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
}
void board_led_write(uint8_t state)
{
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
}
void board_init_usb_pins(void)
{
/* set pull-up for USBx ID pin */
init_usb_pins();
/* configure USBx ID pin as input function */
gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
}
uint8_t board_get_usb_id_status(void)
{
return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
}
void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
{
}
void board_init_pmp(void)
{
extern uint32_t __noncacheable_start__[];
extern uint32_t __noncacheable_end__[];
uint32_t start_addr = (uint32_t) __noncacheable_start__;
uint32_t end_addr = (uint32_t) __noncacheable_end__;
uint32_t length = end_addr - start_addr;
if (length == 0) {
return;
}
/* Ensure the address and the length are power of 2 aligned */
assert((length & (length - 1U)) == 0U);
assert((start_addr & (length - 1U)) == 0U);
pmp_entry_t pmp_entry[3] = {0};
pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000);
pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000);
pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
}
void board_init_clock(void)
{
uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
hpm_core_clock = cpu0_freq;
if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
/* Configure the External OSC ramp-up time: ~9ms */
pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
/* Select clock setting preset1 */
sysctl_clock_set_preset(HPM_SYSCTL, 2);
}
/* Add most Clocks to group 0 */
clock_add_to_group(clock_cpu0, 0);
clock_add_to_group(clock_ahbp, 0);
clock_add_to_group(clock_axic, 0);
clock_add_to_group(clock_axis, 0);
clock_add_to_group(clock_mchtmr0, 0);
clock_add_to_group(clock_femc, 0);
clock_add_to_group(clock_xpi0, 0);
clock_add_to_group(clock_xpi1, 0);
clock_add_to_group(clock_gptmr0, 0);
clock_add_to_group(clock_gptmr1, 0);
clock_add_to_group(clock_gptmr2, 0);
clock_add_to_group(clock_gptmr3, 0);
clock_add_to_group(clock_i2c0, 0);
clock_add_to_group(clock_i2c1, 0);
clock_add_to_group(clock_i2c2, 0);
clock_add_to_group(clock_i2c3, 0);
clock_add_to_group(clock_spi0, 0);
clock_add_to_group(clock_spi1, 0);
clock_add_to_group(clock_spi2, 0);
clock_add_to_group(clock_spi3, 0);
clock_add_to_group(clock_can0, 0);
clock_add_to_group(clock_can1, 0);
clock_add_to_group(clock_sdxc0, 0);
clock_add_to_group(clock_ptpc, 0);
clock_add_to_group(clock_ref0, 0);
clock_add_to_group(clock_ref1, 0);
clock_add_to_group(clock_watchdog0, 0);
clock_add_to_group(clock_eth0, 0);
clock_add_to_group(clock_sdp, 0);
clock_add_to_group(clock_xdma, 0);
clock_add_to_group(clock_ram0, 0);
clock_add_to_group(clock_usb0, 0);
clock_add_to_group(clock_kman, 0);
clock_add_to_group(clock_gpio, 0);
clock_add_to_group(clock_mbx0, 0);
clock_add_to_group(clock_hdma, 0);
clock_add_to_group(clock_rng, 0);
clock_add_to_group(clock_mot0, 0);
clock_add_to_group(clock_mot1, 0);
clock_add_to_group(clock_acmp, 0);
clock_add_to_group(clock_dao, 0);
clock_add_to_group(clock_msyn, 0);
clock_add_to_group(clock_lmm0, 0);
clock_add_to_group(clock_pdm, 0);
clock_add_to_group(clock_adc0, 0);
clock_add_to_group(clock_adc1, 0);
clock_add_to_group(clock_adc2, 0);
clock_add_to_group(clock_dac0, 0);
clock_add_to_group(clock_i2s0, 0);
clock_add_to_group(clock_i2s1, 0);
clock_add_to_group(clock_ffa0, 0);
clock_add_to_group(clock_tsns, 0);
/* Connect Group0 to CPU0 */
clock_connect_group_to_cpu(0, 0);
/*
* Configure CPU0 to 480MHz
*
* NOTE: The PLL2 is disabled by default, and it will be enabled automatically if
* it is required by any nodes.
* Here the PLl2 clock is enabled after switching CPU clock source to it
*/
clock_set_source_divider(clock_cpu0, clk_src_pll1_clk0, 1);
/* Configure PLL1_CLK0 Post Divider to 1.2 */
pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 1);
/* Configure PLL1 clock frequencey to 576MHz, the PLL1_CLK0 frequency =- 576MHz / 1.2 = 480MHz */
pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 576000000);
clock_update_core_clock();
clock_set_source_divider(clock_aud1, clk_src_pll2_clk0, 46); /* config clock_aud1 for 44100*n sample rate */
}
uint32_t board_init_adc16_clock(ADC16_Type *ptr)
{
uint32_t freq = 0;
switch ((uint32_t) ptr) {
case HPM_ADC0_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc0, clk_adc_src_ana);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc0);
break;
case HPM_ADC1_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc1, clk_adc_src_ana);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc1);
break;
case HPM_ADC2_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc2, clk_adc_src_ana);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc2);
break;
default:
/* Invalid ADC instance */
break;
}
return freq;
}
uint32_t board_init_dao_clock(void)
{
return clock_get_frequency(clock_dao);
}
uint32_t board_init_pdm_clock(void)
{
return clock_get_frequency(clock_pdm);
}
uint32_t board_init_i2s_clock(I2S_Type *ptr)
{
return 0;
}
uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
{
uint32_t freq = 0;
if (ptr == HPM_DAC) {
if (clk_src_ahb == true) {
/* Configure the DAC clock to 160MHz */
clock_set_dac_source(clock_dac0, clk_dac_src_ahb);
} else {
/* Configure the DAC clock to 166MHz */
clock_set_dac_source(clock_dac0, clk_dac_src_ana);
clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
}
freq = clock_get_frequency(clock_dac0);
}
return freq;
}
void board_init_can(CAN_Type *ptr)
{
init_can_pins(ptr);
}
uint32_t board_init_can_clock(CAN_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_CAN0) {
/* Set the CAN0 peripheral clock to 80MHz */
clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
freq = clock_get_frequency(clock_can0);
} else if (ptr == HPM_CAN1) {
/* Set the CAN1 peripheral clock to 80MHz */
clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
freq = clock_get_frequency(clock_can1);
} else {
/* Invalid CAN instance */
}
return freq;
}
uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_GPTMR0) {
clock_add_to_group(clock_gptmr0, 0);
clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr0);
}
else if (ptr == HPM_GPTMR1) {
clock_add_to_group(clock_gptmr1, 0);
clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr1);
}
else if (ptr == HPM_GPTMR2) {
clock_add_to_group(clock_gptmr2, 0);
clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr2);
}
else if (ptr == HPM_GPTMR3) {
clock_add_to_group(clock_gptmr3, 0);
clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr3);
}
else {
/* Invalid instance */
}
}
/*
* this function will be called during startup to initialize external memory for data use
*/
void _init_ext_ram(void)
{
uint32_t femc_clk_in_hz;
board_init_sdram_pins();
femc_clk_in_hz = board_init_femc_clock();
femc_config_t config = {0};
femc_sdram_config_t sdram_config = {0};
femc_default_config(HPM_FEMC, &config);
config.dqs = FEMC_DQS_INTERNAL;
femc_init(HPM_FEMC, &config);
sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
sdram_config.prescaler = 0x3;
sdram_config.burst_len_in_byte = 8;
sdram_config.auto_refresh_count_in_one_burst = 1;
sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
sdram_config.precharge_to_act_in_ns = 18; /* Trp */
sdram_config.act_to_rw_in_ns = 18; /* Trcd */
sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
sdram_config.cke_off_in_ns = 42; /* Trcd */
sdram_config.act_to_precharge_in_ns = 42; /* Tras */
sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
sdram_config.act_to_act_in_ns = 12; /* Trrd */
sdram_config.idle_timeout_in_ns = 6;
sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
sdram_config.cs = BOARD_SDRAM_CS;
sdram_config.base_address = BOARD_SDRAM_ADDRESS;
sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
sdram_config.delay_cell_value = 29;
femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
}
void board_init_sd_pins(SDXC_Type *ptr)
{
init_sdxc_pins(ptr, false);
init_sdxc_card_detection_pin(ptr);
}
uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq)
{
uint32_t actual_freq = 0;
do {
if (ptr != HPM_SDXC0) {
break;
}
clock_name_t sdxc_clk = clock_sdxc0;
sdxc_enable_sd_clock(ptr, false);
/* Configure the SDXC Frequency to 200MHz */
clock_set_source_divider(sdxc_clk, clk_src_pll0_clk0, 2);
sdxc_enable_freq_selection(ptr);
/* Configure the clock below 400KHz for the identification state */
if (freq <= 400000UL) {
sdxc_set_clock_divider(ptr, 600);
}
/* configure the clock to 24MHz for the SDR12/Default speed */
else if (freq <= 25000000UL) {
sdxc_set_clock_divider(ptr, 8);
}
/* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
else if (freq <= 50000000UL) {
sdxc_set_clock_divider(ptr, 4);
}
/* Configure the clock to 100MHz for the SDR50 */
else if (freq <= 100000000UL) {
sdxc_set_clock_divider(ptr, 2);
}
/* Configure the clock to 166MHz for SDR104/HS200/HS400 */
else if (freq <= 208000000UL) {
sdxc_set_clock_divider(ptr, 1);
}
/* For other unsupported clock ranges, configure the clock to 24MHz */
else {
sdxc_set_clock_divider(ptr, 8);
}
sdxc_enable_sd_clock(ptr, true);
actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr);
} while (false);
return actual_freq;
}
void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
{
/* This feature is not supported */
}
void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
{
/* This feature is not supported */
}
bool board_sd_detect_card(SDXC_Type *ptr)
{
return sdxc_is_card_inserted(ptr);
}
hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
{
/* set clock source */
if (ptr == HPM_ENET0) {
/* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for ent0 ptp clock */
clock_set_source_divider(clock_ptp0, clk_src_pll0_clk0, 4); /* 100MHz */
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
{
if (internal == false) {
return status_success;
}
/* Configure Enet clock to output reference clock */
if (ptr == HPM_ENET0) {
/* make sure pll0_clk2 output clock at 250MHz then set 50MHz for enet0 */
clock_set_source_divider(clock_eth0, clk_src_pll0_clk2, 5);
} else {
return status_invalid_argument;
}
enet_rmii_enable_clock(ptr, internal);
return status_success;
}
void board_init_adc16_pins(void)
{
init_adc_pins();
}
hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
{
init_enet_pins(ptr);
return status_success;
}
hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
{
return status_success;
}
void board_init_dac_pins(DAC_Type *ptr)
{
init_dac_pins(ptr);
}
uint32_t board_init_uart_clock(UART_Type *ptr)
{
uint32_t freq = 0U;
if (ptr == HPM_UART0) {
clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
clock_add_to_group(clock_uart0, 0);
freq = clock_get_frequency(clock_uart0);
} else if (ptr == HPM_UART1) {
clock_set_source_divider(clock_uart1, clk_src_osc24m, 1);
clock_add_to_group(clock_uart1, 0);
freq = clock_get_frequency(clock_uart1);
} else if (ptr == HPM_UART2) {
clock_set_source_divider(clock_uart2, clk_src_osc24m, 1);
clock_add_to_group(clock_uart2, 0);
freq = clock_get_frequency(clock_uart2);
} else {
/* Not supported */
}
return freq;
}
uint8_t board_enet_get_dma_pbl(ENET_Type *ptr)
{
return enet_pbl_16;
}
hpm_stat_t board_enet_enable_irq(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
intc_m_enable_irq(IRQn_ENET0);
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_enet_disable_irq(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
intc_m_disable_irq(IRQn_ENET0);
} else {
return status_invalid_argument;
}
return status_success;
}